As the Biophysical Society continues to grow, the Society's subgroups allow members to meet and interact within more focused areas in smaller groups. Subgroups hold scientific symposia and business meetings each year on the Saturday that starts of the Annual Meeting. They also sponsor several awards, including the Student Research Achievement Awards (SRAA) Poster Competition. Membership to the Society's subgroups is open to all members. New subgroups may be formed by petition, signed by at least 100 regular members. The petition and accompanying bylaws need to be approved by Council.


The Bioenergetics Subgroup studies cellular and molecular processes associated with mitochondria, chloroplasts, and bacteria linked to metabolic energy transduction. Systems as varied as whole cells, intact organelles, membrane channels, carriers, and redox complexes might be used.


The Bioengineering Subgroup provides a forum for discussion and dialogue about the application of engineering principles, approaches, tools, and techniques to biological problems. It provides a unique venue for trainees and researchers working at the interface between the engineering and biological sciences, including those interested in the application of engineering strategies to resolve biological and human health related challenges.

Biological Fluorescence

The Biological Fluorescence Subgroup focuses on the advance of knowledge pertaining to the development of new capabilities in fluorescence. Methodologies, both theoretical and experimental, and applications to derive structural and mechanistic understanding of biological systems can be involved.

Biopolymers in vivo

The purpose of this subgroup is to create a forum to discuss biophysical properties and function of biomolecules in cells and cell-like conditions, and to develop experimental and computational approaches to study these phenomena. The subgroup invites participants from all scientific disciplines with an interest in broadening our understanding of biophysical processes in cells, using approaches ranging from biophysical studies of biomolecules in vitro and in silico to experiments performed in living cells and beyond. We believe that this is a timely and emerging field of high importance for all aspects of biophysics. Although biopolymers such as proteins and nucleic acids are the workhorses of the cell, our knowledge about how they behave in cells is limited. One reason for this shortcoming is that the microenvironments inside cells and in cell membranes (and in extracellular spaces of multi-cellular organisms) are extremely complex, with macromolecules together occupying as much as 40% of volume but with the composition of macromolecules highly heterogeneous and constantly changing.


The Cryo-EM Subgroup focuses on research using electron cryo-microscopy, including techniques, methods and applications of cryo-EM to biological problems.

Exocytosis & Endocytosis

The Exocytosis & Endocytosis Subgroup promotes research on the molecular and cellular mechanisms of vesicular secretion and uptake.  This subgroup addresses the processes of membrane fusion and fission, which are of crucial interest for intracellular membrane trafficking. 

Intrinsically Disordered Proteins (IDP)

The IDP Subgroup seeks, through the use of biophysical and computational methods, to understand the physical basis for the biological roles of proteins, or protein regions that do not exhibit 3D structure in isolation under physiological conditions. Such proteins, or regions, are said to be intrinsically disordered. 


Mechanobiology is an emerging area of biophysics that focuses on the role of mechanical cues that alter cellular responses and their transduction by cells. Topics ranging from rigidity sensing by stem cells to osmosensing in bacteria are all based upon mechanochemical processes. This new subgroup will call attention to how mechanical aspects of biological functions are critical for shaping organisms and influencing cellular processes at the molecular level. Cellular properties are not merely defined by their components, but how these components interact physically with one another and the cellular microenvironment over time. 

Membrane Biophysics

The membrane biophysics Subgroup promotes the exchange of ideas and information pertaining to the study of biological membranes. Subgroup members pursue research in a variety of areas, including: the structure, function and regulation of channels and transporters, ligand-receptor interactions, signal transduction mechanisms, protein trafficking and secretory mechanisms.

Membrane Structure & Assembly

The Membrane Structure & Assembly Subgroup focuses on the biophysical properties of lipids, lipid assemblies, membrane proteins and lipid-protein interactions generally relevant to biological membranes and their assembly. 

Molecular Biophysics

The Molecular Biophysics Subgroup investigates structures, conformational switching, responses to various imposed perturbations and deformational dynamics of biological macromolecules and their supramolecular assemblies. Measurements of thermodynamics and kinetics as well as uses of theoretical and computational methods for interpretation are addressed.

Motility and Cytoskeleton

The mission of the Motility and Cytoskeleton Subgroup is to understand the basic mechanisms that underlie motility and contractility of biological systems. These processes are ultimately the result of molecular motors or contractile filaments that convert chemical energy stored in ATP/GTP into mechanical energy that drives, for example, cell motility, cytokinesis and muscle contraction. Areas of focus also include the regulatory proteins that control the activity of motors and the cytoskeleton. 

Nanoscale Biophysics

The Nanoscale Biophysics Subgroup is interested in the study and control (manipulation) of biological, biocompatible, or bio-inspired matter on the scale of atoms and molecules. It is the melting pot for nanoscale approaches ranging from theoretical to methodological studies, from advanced optical microscopy to scanning probe microscopy, from manipulation of single molecules to their imaging and tracking, from the understanding of mechanisms at the nanoscale to the design of new approaches, from molecular motors to new nanobiomaterials. So, let's think at the nanoscale!

Permeation & Transport

The Permeation & Transport Subgroup fosters the study of biophysical mechanisms of permeation and transport of small molecules and biopolymers through cell membranes.