The Biophysical Society is grateful to its Industry Partners.

Learn more about becoming a Biophysical Society Industry Partner at www.biophysics.org.
Available on Amazon, this book explores the mechanisms that govern the function of nerve, muscle, and secretory cells. The laws of diffusion, electricity, and mass action are explained and applied to elucidate how cells establish a resting membrane potential, achieve osmotic balance, generate action potentials, initiate secretion, and control muscle contraction. The main text is complemented by computer programs in Python, an easy-to-learn, modern programming language. These programs, the explanatory text, and the exercises at the end of each chapter provide a unique framework for the exploration of the underlying mechanisms at a quantitative level. The material is suitable for a 1- or 2-semester course for advanced undergraduates or early graduate students.

The author is Professor Emeritus of Physiology at the University of Pennsylvania.
The Biophysicist

The Biophysicist is a peer-reviewed journal dedicated to highlighting and nurturing biophysics education, and its scholarship and development. This new, open access journal is accepting original manuscripts from the international science community and invites submissions from scientists and educators in biophysics and related disciplines. The articles focus on fundamental concepts and techniques used in biophysics education, as well as evidence-based pedagogical practice, accessible to individuals at all levels.

This journal serves undergraduate, graduate and post-graduate students and trainees, active researchers, and scholars of biophysics teaching and learning. Public outreach and K-12 education are also within the purview of this publication.

Research Articles are invited in the following categories:

- Novel Learning and Teaching Approaches
- Laboratory and Computational Teaching Tools
- Research-based Studies of Student Learning
- Biophysics Learning Perspectives
- Adapted Research Articles

Reports are invited in the following areas:

- Biophysics and Related Disciplines
- Biophysics in Society
- Student Forum
- Book Reviews

For additional information about these article types, Instructions to Authors, and to submit, visit www.thebiophysicist.org

Editorial Board
Gundula Bosch
Johns Hopkins University
Andrew Feig
Wayne State University
Wolfgang Losert
University of Maryland
Phil Nelson
University of Pennsylvania
Les Satin
University of Michigan
Patricia Soto
Creighton University

Editor in Chief
Samuel Safran
Weizmann Institute of Science
GUIDE TO THE ANNUAL MEETING

About the BPS Annual Meeting

The Biophysical Society (BPS) Annual Meeting is the largest gathering of biophysicists in the world, bringing together more than 7,000 researchers from over 45 countries. With over 200 sessions and more than 4,500 poster presentations, it can be overwhelming! Use this guide to help you get the most from your attendance at this world famous event.

Scientific Sessions

The BPS Annual Meeting is known for its many types of sessions, often taking place concurrently. Each type has its own distinct scope, format, and speaker makeup.

Symposia
- Broad topics featuring talks by leading researchers presenting new research
- Four speakers per two-hour session
- Two-to-three held concurrently

Platforms
- More focused topics selected from among submitted abstracts held concurrently with symposia
- Eight speakers per two-hour session, including early career researchers
- Approximately six held concurrently during each symposium session

Workshops
- Technique-oriented sessions
- Four-to-eight speakers per two-hour session
- Two-to-four held concurrently on Tuesday evenings

Subgroup Programs
- Scientific sessions held Saturday
- Feature speakers presenting the latest research in biophysics subfields

Biophysical Society Lecture
- One-hour presentation by a world-renowned biophysicist

Professional Development

The Annual Meeting includes daily sessions and resources for the professional development of biophysicists at all stages of their careers: undergrads and grad students, early and mid-stage, and senior scientists. These sessions are held before, after, and in-between the scientific sessions.

Career Development Center
Open all day, includes job and resume postings, interview scheduling, CV reviews, and job-related workshops

Breakfasts
For students and postdocs to network and learn about available resources

Panel Discussions
Expert presentations on career options, guidance on career transitions, funding resources, science policy

Workshops
- On publishing, teaching and science education, social media, grant writing, communication, and outreach

Exhibits
Over 200 displays of new equipment, publications, and products

Exhibitor Presentations
Hands-on demonstrations conducted by exhibiting companies of scientific products and their uses

Social and Networking Events

Opening Reception
- Hors d’oeuvres and cash bar

First-Time Attendee Drop-By
- Information on how to navigate the Meeting

Dinner Meet-Ups
- Local student and early career attendees available each day at the Society Booth to help you explore local restaurants and neighborhoods

Monday Evening Reception
- The place to meet, drink, eat, dance, and socialize with other meeting attendees

Exhibitor Presentations
- Opportunity to meet and socialize with new members and members of Society governance and committees

Posters

Most interactive and well attended scientific sessions of the meeting.

Poster Presenters
It is important to present science, but also have posters available for attendee viewing prior to and following presentations.

Poster Schedule
Please refer to the programming notice, desktop planner, or mobile app for the date and time of poster presentations.

<table>
<thead>
<tr>
<th></th>
<th>Sunday, February 16</th>
<th>Monday, February 17</th>
<th>Tuesday, February 18</th>
<th>Wednesday, February 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Setup Time</td>
<td>Removal Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Time</td>
<td>Saturday after 6 PM</td>
<td>Sunday before 5:30 PM</td>
<td>Monday after 6 PM</td>
<td>Wednesday after 7 AM</td>
</tr>
<tr>
<td>Removal Time</td>
<td>Sunday before 5:30 PM</td>
<td>Monday before 5:30 PM</td>
<td>Tuesday before 4 PM</td>
<td>Wednesday before 3 PM</td>
</tr>
</tbody>
</table>

PLEASE NOTE: POSTERS WILL NOT BE COLLECTED OR STORED FOR PICK UP AT A LATER TIME.
OVER 45 YEARS OF QUALITY PERFORMANCE AND INNOVATION

AMPLIFIER SYSTEMS
MICROMANIPULATION
MICROPIPETTE FABRICATION
MICROSCOPES
LIGHT SOURCES
OPTICAL INSTRUMENTS
MICROINJECTION
AIR TABLES
TRANSLATORS AND STAGES
FARADAY CAGES
PERFUSION SYSTEMS
CUSTOM PRODUCTS

VISIT US AT
BOOTH 400

ONE DIGITAL DRIVE, NOVATO, CA. 94949 | PHONE: +1.415.883.0128
FAX: +1.415.883.0572 | EMAIL: INFO@SUTTER.COM | WWW.SUTTER.COM
Table of Contents

Code of Conduct	III
San Diego Convention Center Facilities Maps	IV
Society Governance	VII
General Information	VIII
Society Committee Meetings Schedule	XI
Professional Development & Education Sessions	XII
Travel Awards	XIV
Ancillary Meetings	XXIII

Friday Schedule of Events 1
Satellite Meeting .. 2

Saturday Schedule of Events 3
Subgroup Dinner Schedule 3
Subgroup Meetings .. 3
Bioenergetics, Mitochondria & Metabolism 4
Biopolymers in Vivo .. 4
Membrane Fusion, Fission, and Traffic 4
Mechanobiology .. 4
Channels, Receptors, and Transporters 5
Nanoscale Approaches ... 5
Physical Cell Biology ... 5
Membrane Transport ... 5
Biological Fluorescence 6
Bioengineering .. 6
Intrinsically Disordered Proteins 6
Macromolecular Machines and Assemblies 7
Membrane Structure and Function 7
Motility and Cytoskeleton 7
Cryo-EM .. 8

Sunday Schedule of Events 11
Symposia 8:15 AM–10:15 AM 14
Platforms 8:15 AM–10:15 AM 14
Symposia 10:45 AM–12:45 PM 17
Platforms 10:45 AM–12:45 PM 18
Symposia 4:00 PM–6:00 PM 22
Platforms 4:00 PM–6:00 PM 23

SRAA Competition 6:00 PM–9:00 PM 26
(see page 51 for a list of SRAA Participants)
Sunday Posters ... 27

Monday Schedule of Events 57
Symposia 8:15 AM–10:15 AM 60
Platforms 8:15 AM–10:15 AM 60
Symposia 10:45 AM–12:45 PM 64
Platforms 10:45 AM–12:45 PM 64
Symposia 4:00 PM–6:00 PM 69
Platforms 4:00 PM–6:00 PM 70
Awards & 2020 Biophysical Society Lecture 72
Monday Posters ... 73

Tuesday Schedule of Events 99
Symposia 8:15 AM–10:15 AM 102
Platforms 8:15 AM–10:15 AM 102
Symposium 10:45 AM–12:45 PM 105
Platforms 10:45 AM–12:45 PM 105
Symposia 4:00 PM–6:00 PM 108
Platforms 4:00 PM–6:00 PM 108
Workshops 7:30 PM–9:30 PM 111
Tuesday Posters .. 112

Wednesday Schedule of Events 137
Symposia 8:15 AM–10:15 AM 139
Platforms 8:15 AM–10:15 AM 139
Symposia 1:00 PM–3:00 PM 141
Platforms 1:00 PM–3:00 PM 141
Wednesday Posters .. 145

Exhibits ... 169
Exhibitor Presentations 170
Exhibitor List .. 178
Product Categories ... 195

Author Index ... 200

2020 Biophysical Society Lecturer

Sunney Xie
Peking University, Beijing, China
From Single-Molecule Biophysics to Single-Cell Genomics: When Stochasticity Meets Precision

About the Image
The 2020 image featured on the cover is based on combinatorial transcription factor groups: Genome-wide binding sites of three individual transcription factors (EGR1, SP1 and YY1) and their pairwise combinations on a cross section of the 3D genome of human B cell.
List of Advertisers in the 2020 Annual Meeting Program

The Biophysical Society would like to thank the following companies for their generous support of the Annual Meeting:

ACS Omega
Applied Photophysics
Beckman Coulter Life Sciences
Bruker Corporation
Burroughs Wellcome Fund
Carl Zeiss Microscopy LLC
Chroma Technology
Dynamic Biosensors GmbH
ELEMENTS SRL
HORIBA Scientific
Leica Microsystems
LUMICKS
Mad City Labs
Mizar Imaging
Molecular Devices
Nanion Technologies
NanoSurface Biomedical
Olympus America Inc
Photonics Media
Physics Today
Sophion Bioscience A/S
Sutter Instrument
The Company of Biologists
The Journal of Physical Chemistry B
The Journal of Physical Chemistry Letters
Wyatt Technology

As of January 10, 2020
The Biophysical Society (BPS) is committed to providing an environment that encourages the free expression and exchange of scientific ideas. As a global, professional society, the BPS is committed to the philosophy of equal opportunity and respectful treatment for all, regardless of national or ethnic origin, religion or religious belief, gender, gender identity or expression, race, color, age, marital status, sexual orientation, disabilities, veteran status, or any other reason not related to scientific merit.

All BPS meetings and BPS-sponsored activities promote an environment that is free of inappropriate behavior and harassment by or toward all attendees and participants of Society events, including speakers, organizers, students, guests, media, exhibitors, staff, vendors, and other suppliers. BPS expects anyone associated with an official BPS-sponsored event to respect the rules and policies of the Society, the venue, the hotels, and the city.

Definition of Harassment

The term “harassment” includes but is not limited to epithets, unwelcome slurs, jokes, or verbal, graphic or physical conduct relating to an individual’s race, color, religious creed, sex, national origin, ancestry, citizenship status, age, gender or sexual orientation that denigrate or show hostility or aversion toward an individual or group.

Sexual harassment refers to unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature. Behavior and language that are welcome/acceptable to one person may be unwelcome/offensive to another. Consequently, individuals must use discretion to ensure that their words and actions communicate respect for others. This is especially important for those in positions of authority since individuals with lower rank or status may be reluctant to express their objections or discomfort regarding unwelcome behavior. It does not refer to occasional compliments of a socially acceptable nature. It refers to behavior that is not welcome, is personally offensive, debilitates morale, and therefore, interferes with work effectiveness. The following are examples of behavior that, when unwelcome, may constitute sexual harassment: sexual flirtations, advances, or propositions; verbal comments or physical actions of a sexual nature; sexually degrading words used to describe an individual; a display of sexually suggestive objects or pictures; sexually explicit jokes; unnecessary touching.

Attendees or participants who are asked to stop engaging in harassing behavior are expected to comply immediately. Anyone who feels harassed is encouraged to immediately inform the alleged harasser that the behavior is unwelcome. In many instances, the person is unaware that their conduct is offensive and when so advised can easily and willingly correct the conduct so that it does not reoccur. Anyone who feels harassed is NOT REQUIRED to address the person believed guilty of inappropriate treatment. If the informal discussion with the alleged harasser is unsuccessful in remedying the problem or if the complainant does not feel comfortable with such an approach, they can report the behavior as detailed below.

Reported or suspected occurrences of harassment will be promptly and thoroughly investigated. Following an investigation, BPS will immediately take any necessary and appropriate action. BPS will not permit or condone any acts of retaliation against anyone who files harassment complaints or cooperates in the investigation of same.

Reporting a Violation

Violations of this Conduct Policy should be reported immediately. If you feel physically unsafe or believe a crime has been committed, you should report it to the police immediately.

To report a violation to BPS:

- You may do so in person at the Annual Meeting at the BPS Business Office in the convention center.
- You may do so in person to BPS senior staff at Thematic Meetings, BPS Conferences, or other BPS events.
- At any time (during or after an event), you can make a report through http://biophysics.ethicspoint.com or via a dedicated hotline (phone numbers listed on the website) which will collect and relay information in a secure and sensitive manner.

Reported or suspected occurrences of harassment will be promptly and thoroughly investigated per the procedure detailed below. Following an investigation, BPS will immediately take any necessary and appropriate action. BPS will not permit or condone any acts of retaliation against anyone who files harassment complaints or cooperates in the investigation of same.

Investigative Procedure

All reports of harassment or sexual harassment will be treated seriously. However, absolute confidentiality cannot be promised nor can it be assured. BPS will conduct an investigation of any complaint of harassment or sexual harassment, which may require limited disclosure of pertinent information to certain parties, including the alleged harasser.

Once a complaint of harassment or sexual harassment is received, BPS will begin a prompt and thorough investigation. Please note, if a complaint is filed anonymously, BPS may be severely limited in our ability to follow-up on the allegation.

- An impartial investigative committee, consisting of the current President, President-Elect, and Executive Officer will be established. If any of these individuals were to be named in an allegation, they would be excluded from the committee.
- The committee will interview the complainant and review the written complaint. If no written complaint exists, one will be requested.
- The committee will speak to the alleged offender and present the complaint.
- The alleged offender will be given the opportunity to address the complaint, with sufficient time to respond to the evidence and bring his/her own evidence.
- If the facts are in dispute, the investigative team may need to interview anyone named as witnesses.
- The investigative committee may seek BPS Counsel’s advice.
- Once the investigation is complete, the committee will report their findings and make recommendations to the Society Officers.
- If the severity of the allegation is high, is a possible repeat offense, or is determined to be beyond BPS’s capacity to assess claims and views on either side, BPS may refer the case to the alleged offender’s home institution (Office of Research Integrity of similar), employer, licensing board, or law enforcement for their investigation and decision.

Disciplinary Actions

Individuals engaging in behavior prohibited by this policy as well as those making allegations of harassment in bad faith will be subject to disciplinary action. Such actions range from a written warning to ejection from the meeting or activity in question without refund of registration fees, being banned from participating in future Society meetings or Society-sponsored activities, being expelled from membership in the Society, and reporting the behavior to their employer or calling the authorities. In the event that the individual is dissatisfied with the results of the investigation, they may appeal to the President of the Society. Any questions regarding this policy should be directed to the BPS Executive Officer or other Society Officer.
San Diego Convention Center

Ground Level Exhibit Halls

Hall F-H
- Posters & Exhibits
- Education and Career Opportunities Fair
- SRAA Competition
- Exhibitor Lounge
- Image Contest
- Travel Awardee Reception

Gender Inclusive Restrooms

Speed Networking

Lobby G
- Registration
- Coat Check
- Society Help Desk
- Poster Pickup
- Society Booth
Plan the
Perfect Day!

Meeting Mobile App:

• Stay organized and keep up with the latest event information
• Search by keywords, sessions, presentations, or authors
• Bookmark sessions, abstracts, presentations, exhibitors
• Create your itinerary
• Sync itinerary you may have created using the Desktop Planner into the mobile app
• View abstracts
• Make and keep notes about sessions
• Browse exhibitors
• Find attendees and connect with colleagues through “Friends”
• Follow social media postings
• And much, much more!

Partially Supported by:

Downloading the App is Easy!

SEARCH
The iTunes™ App Store or Google Play™ for “Biophysical Society Events”

SCAN

For All Other Device Types (including Windows, and all other web browser-enabled devices):
While on your smartphone, point your mobile browser to www.core-apps.com/dl/bpsevents.

Should you have any questions, please contact society@biophysics.org, or locate your nearest Biophysical Society Meeting Support Staff.
2020 Program Committee

Patricia Clark, University of Notre Dame, Co-Chair
William Kobertz, University of Massachusetts Medical School, Co-Chair
Teresa Giraldez, Universidad de La Laguna
Ruben Gonzalez, Columbia University
Joanna Swain, Cogen Therapeutics

Patricia Bassereau, Institut Curie
Bertrand Garcia Moreno, Johns Hopkins University
Susan Marqusee, University of California, Berkeley, Past Co-Chair
Andrej Sali, University of California, San Francisco, Past Co-Chair

BPS Officers

David W. Piston, President
Catherine A. Royer, President-Elect
Angela M. Gronenborn, Past President
Kalina Hristova, Treasurer
Erin Sheets, Secretary

BPS Council

Term Ending 2020
Zev Bryant
Teresa Giraldez
Ruben Gonzalez
Marina Ramirez-Alvarado

Term Ending 2021
Linda Columbus
Jennifer Ross
David Stokes
Pernilla Wittung-Stafshede

Term Ending 2022
Michelle A. Digman
Marta Filizola
Joseph A. Mindell
Anna Moroni

The Biophysicist

Samuel Safran, Editor-in-Chief
Gundula Bosch, Editor
Andrew Feig, Editor
Wolfgang Losert, Editor
Phil Nelson, Editor
Les Satin, Editor
Patricia Soto, Editor

Society Office Staff

Jennifer L. Pesanelli, Executive Officer
Dorothy Chaconas, Director of Meetings & Exhibits
Catie Curry, Publications Coordinator
Leann Fox, Director of Advocacy and Public Affairs
Jennifer Fraser, Meetings Coordinator
Joonyoung Kwak, Programs Coordinator
Ally Levine, Sales & Exhibits Manager
Laura Phelan, Communications & Content Manager
Harris Povich, Director of Finance & Operations
Saran Ramu, Director of Information Technology
Jesse Seese, Publications & Administrative Assistant
Caitlin Simpson, Membership Coordinator
Beth Staehle, Director of Publications
Elizabeth Vuong, Director of Marketing, Communications & Outreach
Stacey Wendelbo, Programs Coordinator
Ray Wolfe, Creative Designer & IT Systems Engineer
Umi Zhou, Meetings Manager

Biophysical Journal

Jane Dyson, Editor-in-Chief
Vasanthi Jayaraman, Associate Editor
Jason Kahn, Associate Editor
Anne Kenworthy, Associate Editor
Elizabeth Rhoades, Associate Editor
Tamar Schlick, Associate Editor
Stanislav Shvartsman, Associate Editor
Claudia Steinem, Associate Editor

Sorting and Programming of 2020 Abstracts

Sorting and programming of the 2020 Annual Meeting abstracts into poster and platform sessions was completed by: Patricia Bassereau, Zev Bryant, Patricia Clark, Linda Columbus, Michelle Digman, Marta Filizola, Karen Fleming, Teresa Giraldez, Ruben Gonzalez, Angela Gronenborn, Kalina Hristova, William Kobertz, Francesca Marassi, Joseph Mindell, Carolyn Moores, Anna Moroni, Jeanne Nerbonne, David Piston, Jennifer Ross, Catherine Royer, Andrej Sali, Erin Sheets, David Stokes, Joanna Swain, Pernilla Wittung-Stafshede.
Badges
Badges are required for admission to all scientific sessions, including Saturday Subgroup symposia, poster areas, exhibits, and social functions. A guest badge for non-scientific guests can be purchased for $65 at the on-site registration counter located in Lobby G. Guest registration is only for admittance to the Opening Mixer on Saturday night and Reception on Monday night. It does not include admission to scientific sessions, posters, or exhibits. There is a $30 fee to reprint a lost or forgotten badge.

Banking and Currency Exchange
Bank transactions can be done during regular bank business hours at Bank of America, 455 Island Ave, San Diego, CA 92101. Please bring two forms of identification with you.

Monday–Thursday 9:00 AM–5:00 PM
Friday 9:00 AM–6:00 PM
Saturday 10:00 AM–2:00 PM
Sunday Closed

ATMs are also available in the San Diego Convention Center.

Foreign Currency Exchange
Foreign Currency Exchange and travelers’ insurance services are available daily at two locations in Terminal 2 of San Diego International Airport: in the Baggage Claim area (8:00 AM–8:00 PM) and in the gate areas (5:00 AM–1:00 PM, 4:30 PM–7:30 PM).

Business Center, Lobby Level
The San Diego Convention Center provides a full-service business center for the convenience of attendees and exhibitors. Services include photocopying, faxing, computer work stations, and printing services. Shipping is provided through FedEx. The business center is located in inside the San Diego Convention Center across from Hall D. To contact the business center, call 619-525-5450 or email usa1324@fedex.com.

Sunday–Saturday 8:00 AM–5:00 PM

Career Development Center, Room 26AB
Services are available for both those seeking a position and employers with positions to fill. Please note, the career development center is the only place to post job openings. Unauthorized notices placed elsewhere in the San Diego Convention Center will be removed.

Saturday 12:00 NOON–7:00 PM
Sunday–Tuesday 8:00 AM–5:30 PM

Certificates of Attendance
Certificates of Attendance may be obtained in person at the Society Help Desk located at registration in Lobby G or in the Society Meeting Office, in Room 27AB.

Child Care
Child care will be provided by KiddieCorp. On-site registration is available on a limited basis. Visit the BPS Meeting Office, Room 27AB, for additional information.

Code of Conduct
The Biophysical Society Annual Meeting provides an environment that encourages free and respectful expression and exchange of scientific ideas. Please review the code of conduct policy (page III) that all meeting participants must follow.

Coat Check/Luggage Storage, Lobby G
Please do not bring luggage to meeting rooms. If you are planning to check items, please plan to arrive early to ensure that you are not late for sessions due to long lines.

Saturday 8:30 AM–7:30 PM
Sunday–Tuesday 7:30 AM–6:30 PM
Wednesday 7:30 AM–4:00 PM

Dinner Meet-Ups
Interested in making new acquaintances and experiencing the cuisine of San Diego? Meet at the Society Booth each evening, Sunday through Tuesday, where a BPS member will coordinate dinner at a local restaurant. On Sunday, meet at 7:30 PM. Monday and Tuesday meet at 6:00 PM.

Restaurant/Concierge, Lobby E
The Convention Center staff will make restaurant recommendations and reservations as well as provide information about shopping and local sightseeing at the concierge service table.

Exhibits, Exhibit Hall F-H
The Exhibit Hall features the most advanced equipment, products, services, and publications available. A list of exhibitors as of January 10, 2020 can be found beginning on page 169. Please see Addendum for those registered after January 10, 2020.

Sunday 10:00 AM–5:00 PM
Monday 10:00 AM–5:00 PM
Tuesday 10:00 AM–4:00 PM

Exhibitor Lounge, Exhibit Hall F
Exhibitors may visit the Exhibitor Lounge at the following times for assistance while at the meeting.

Friday 8:00 AM–5:00 PM
Saturday 8:00 AM–3:00 PM
Sunday 8:00 AM–5:00 PM
Monday 8:00 AM–5:00 PM
Tuesday 8:00 AM–4:00 PM
Wednesday Closed

Exhibitor Passport Competition
Pick up a Passport Competition booklet inside the entrance of the Exhibit Hall. Visit participating exhibitors, get your passport stamped, and drop your passport at the Society Booth located in Lobby G before 2:30 PM Tuesday. The winner will be announced on Tuesday at 3:00 PM in the Exhibit Hall. You must be present at the drawing to win. Good luck!
Family Room, Room 33B
The Family Room is equipped with diapers, electrical outlets for pumps, labels for breast milk, plastic bags for disposing of diapers, a small refrigerator, private areas for nursing, and a small area for rest and play.

First Aid, Box Office G
In case of medical emergency, dial 5911 from any house phone or 619-525-5911 from a cell phone. For a non-emergency, you may dial 5490. The First Aid room is located in Lobby G. For other minor medical needs, this room will be staffed with First Aid Administrators trained in First Aid Response during the hours below.

Individuals Requiring Assistance
Attendees requiring special assistance during the meeting should visit the Society Meeting Office in Room 27AB. Society staff will do their best to accommodate requests, however, we cannot ensure that special needs will be met without prior notice.

Internet Access
Wireless Internet access is available free-of-charge in the lobby and common spaces of the San Diego Convention Center, excluding the Exhibit Hall and meeting rooms. Paid access is available in the areas below:

- Attendee paid access to Internet in the Upper Level Lobby areas and meeting rooms is $13 per day, per device. Exhibitor paid access to Internet in the Exhibit Hall is $80 per day.

Meditation Room, outside entrance of Ballroom 20D
A room will be available for attendees to use for quiet meditation or prayer.

Mobile App and Desktop Planner
The Biophysical Society’s Official Mobile App is available for download in App Store and Google Play Store. iOS and Android Users can search for “Biophysical Society Events” to download the App. We do not support native apps for Windows Mobile, however, those users may access our mobile-friendly Desktop Planner at www.biophysics.org/2020meeting. Using the Mobile App you can view & create schedules, view abstracts/authors/exhibitors, receive event alerts from BPS, Join the conversation in social media, find & interact virtually with other attendees, and sync itineraries that were created with the Desktop Planner.

Parking
On-site private vehicle parking is available at the 1,950-vehicle underground garage located below the San Diego Convention Center. Rates may range from $15 to $35 on days when there are special events at Petco Park or other downtown events.

Photography
Registration for the meeting implies consent to having photographs taken and to their use by officials of the Biophysical Society, or their representatives, for editorial and promotional purposes, on the Society website, social media outlets, and publications. To respect the willingness of presenters to share data at the meeting, as well as their publication opportunities, recordings of any kind (audio, video, camera, or cell phone) in the session rooms, Exhibit Hall, and poster areas are strictly prohibited. Any individual seen taking photographs of any session or presentation will be escorted out by security.

Poster Pickup
Posters ordered in advance through Tray Printing will be available for pick up at the San Diego Convention Center Exhibit Hall entrance during the following hours:

- Saturday: 4:00 PM–7:00 PM
- Sunday–Tuesday: 9:00 AM–11:00 AM and 1:00 PM–4:00 PM
- No Wednesday Pick up

Poster Sessions, Exhibit Hall F-H
Sunday–Wednesday
The Exhibit Hall will open at 8:00 AM each morning. It will remain open for poster viewing until 10:00 PM each night, except for Tuesday, when it will close at 4:30 PM for safety purposes during exhibit tear down. Posters are arranged according to topic. Your poster board number begins with “B.” On the day of presentation, authors assigned odd-numbered poster boards should present 1:45 PM–2:45 PM (10:30 AM–11:30 AM on Wednesday); even-numbered posters should present 2:45 PM–3:45 PM, (11:30 AM–12:30 PM on Wednesday). Other hours, day or evening, may be posted by the authors as desired. Additionally, authors may leave note paper so that visitors may request an appointment. Abstracts submitted after October 4, 2019, are scheduled each day, Sunday–Wednesday, during the regular poster sessions. These board assignments will begin with “LB.”

Posters are to be removed by 5:30 PM on Sunday and Monday, and 4:00 PM on Tuesday in order to accommodate exhibits tear down, and 3:00 PM on Wednesday. Please do not leave materials or belongings under poster boards or in the poster area. The Society is not responsible for any articles left in the poster area.

Raffles
Exhibitor Raffle: Want to win a Bose Portable Bluetooth Speaker? Pick up an Exhibitor Passport Competition booklet inside the entrance of the Exhibit Hall. Visit participating exhibitors, talk to them to find out the answer to their question, get your passport stamped, and drop off your passport at the Society Booth located in Lobby G before 2:30 PM on Tuesday, February 18. The winner will be announced on Tuesday at 3:00 PM in the Exhibit Hall. You must be present at the drawing to win. Good luck!
Wednesday Poster Session Raffle: Attend the Wednesday poster sessions in the Exhibit Hall for a chance to win a Fitbit Versa! Drop your ticket in the ballot box in the Exhibit Hall. The winner will be announced at 12:30 pm on Wednesday in the Exhibit Hall. You must be present in the Exhibit Hall to win. Good luck!

Stop by the Society Booth to answer the biophysics trivia question for a chance to win a t-shirt each day Saturday–Tuesday.

Registration Hours, Lobby G
Friday 3:00 PM–5:00 PM
Saturday 8:00 AM–6:30 PM
Sunday–Tuesday 7:30 AM–5:00 PM
Wednesday 8:00 AM–3:00 PM

Restrooms
Restrooms are located in the Exhibit Hall, Lobby G, and four banks on the meeting room level. Gender inclusive restrooms are located in Exhibit Hall F and on the upper level next to Room 26A and Room 33A.

Social Media
Society staff will be updating the BPS Facebook page, Twitter feed, Instagram account, and blog with Annual Meeting information throughout the meeting. Follow us on:

Twitter: @BiophysicalSoc, use hashtag #bps20
Facebook: www.facebook.com/biophysicalsociety
Instagram: @biophysicalsociety
Blog: www.biophysics.org/blog

Society Meeting Office, Room 27AB
Friday 3:00 PM–5:00 PM
Saturday 8:00 AM–6:30 PM
Sunday–Tuesday 7:30 AM–5:00 PM
Wednesday 8:00 AM–3:00 PM

Speaker Ready Room, Room 22
We highly encourage all presenters in Symposia, Workshops, and Platform sessions to visit the Speaker Ready Room one day prior to their scheduled presentation time. This room will be set up for your use, and will contain several screens and data projectors to allow you the opportunity to review your material prior to your scheduled presentation time slot. All speakers must bring their own laptops. An audiovisual technician will be available during room hours to assist you in setting up your laptop with the data projector and to answer any questions. As a courtesy to other presenters, please limit your viewing time to five minutes during peak times.

Saturday–Tuesday 8:00 AM–6:30 PM
Wednesday 8:00 AM–1:00 PM

Data projectors will be provided in all session rooms in the San Diego Convention Center. The data projectors will be compatible with both Windows and Mac laptops. Speakers must bring their own laptops. The Society does not provide laptops for those with flash drives or other storage devices.

Taxis
Taxis will be available from the Transportation Plazas of the San Diego Convention Center.

Yellow Radio Service 619-444-4444
American Radio Service 619-234-1111
Orange Radio Service 619-223-5555
San Diego Dispatch 619-226-8294
USA Radio Dispatch 619-231-1144

Undergraduate Student Lounge, Room 21
This special space is reserved for undergraduate meeting attendees looking for a place to relax or catch up on coursework they may be missing while at the Annual Meeting.

Saturday–Tuesday 8:00 AM–6:00 PM
Wednesday 8:00 AM–12:00 NOON
Mark Your Calendars! Future BPS Annual Meetings

65th Annual Meeting
February 20–24, 2021
Boston, Massachusetts

66th Annual Meeting
February 19–23, 2022
San Francisco, California

67th Annual Meeting
February 18–22, 2023
San Diego, California

68th Annual Meeting
February 10–14, 2024
Philadelphia, Pennsylvania

Governance and Committee Meetings

All rooms are located in the *San Diego Convention Center* unless noted otherwise.

Friday, February 14

3:30 PM–4:30 PM
New Council Orientation
Hilton, Cobalt 501C

5:00 PM–9:00 PM
Joint Council Reception, Dinner, and Meeting
Hilton, Cobalt 500AB

Saturday, February 15

8:30 AM–11:30 AM
Joint Council Meeting (continued)
Hilton, Cobalt 500AB

Sunday, February 16

8:30 AM–10:30 AM
Committee for Inclusion and Diversity Meeting
Room 30D

12:00 PM–1:30 PM
Public Affairs Committee Meeting
Room 30D

3:30 PM–5:00 PM
Early Careers Committee Meeting
Room 30D

Monday, February 17

8:30 AM–10:30 AM
CPOW Committee Meeting
Room 30D

3:30 PM–5:30 PM
Membership Committee Meeting
Room 30D

7:30 PM–10:30 PM
Biophysical Journal Editorial Board Dinner
The Ultimate Skybox at Diamond View Tower

Tuesday, February 18

8:00 AM–9:00 AM
Biophysical Society Business Meeting
Room 29AB

9:00 AM–10:30 AM
Subgroup Chairs Meeting
Room 32A

3:00 PM–5:00 PM
Education Committee Meeting
Room 30D

6:00 PM–10:00 PM
Publications Committee Meeting
Hilton, Cobalt 500AB

Wednesday, February 19

8:00 AM–11:00 AM
New Council Meeting
Room 32A

The Biophysical Society would like to thank Society members who serve on Council or Committees for their dedication and efforts.
Professional Development & Educational Sessions

The Society's committees have planned a variety of professional development activities to take place during the Annual Meeting. Below is a schedule of all of those activities. Detailed descriptions of the sessions can be found in the daily program. In addition, a student lounge for undergraduates will be available Sunday, February 16, to Wednesday, February 19, in Room 21.

Sessions in italics will be held in Career Development Center, Room 26AB.

Saturday, February 15, 2020

- **2:00 PM–4:00 PM** | Communicating Your Science Workshop
- **3:00 PM–4:00 PM** | Leveraging LinkedIn in the PhD Job Search: Networking, Informational Interviews, and More
- **3:00 PM–5:00 PM** | Undergraduate Mixer and Poster Award Competition

One-on-One Resume and Career Counseling
* 1:00 PM–2:40 PM | 4:30 PM–5:30 PM

Sunday, February 16, 2020

- **7:30 AM–8:30 AM** | Postdoctoral Breakfast: Tales From Two Sides of Recruitment
- **9:00 AM–10:00 AM** | Networking for Nerds Night: How to Create Your Unicorn Career
- **10:30 AM–11:30 AM** | Green Cards for Scientific Researchers: How to win your EB-1A/NIW Case! with Getson & Schatz, PC
- **11:15 AM–3:00 PM** | Exploring Careers in Biophysics Day**
- **11:30 AM–1:00 PM** | Undergraduate Student Pizza “Breakfast”
- **12:00 PM–1:00 PM** | Demystifying the Academic Job Search I: Understanding the Search Process from the Perspective of Search Committees and Decoding Job Announcements
- **1:00 PM–2:30 PM** | The World Outside the Lab: Following Your IDP Roadmap to the Career You Want
- **1:00 PM–3:00 PM** | Education & Career Opportunities Fair
- **2:00 PM–4:00 PM** | Teaching Science Like We Do Science
- **2:30 PM–3:30 PM** | The Industry Interview: What You Need to Do Before, During, and After to Get the Job
- **2:30 PM–4:00 PM** | Science and Research in the Global Political Landscape: The US and China
- **4:00 PM–5:00 PM** | Nailing the Job Talk, or Erudition Ain’t Enough
- **4:00 PM–6:00 PM** | PI to PI, a Wine & Cheese Mixer

One-on-One Resume and Career Counseling
* 8:30 AM–1:00 PM and 2:30 PM–6:00 PM

Monday, February 17, 2020

- **7:30 AM–8:30 AM** | Graduate Student Breakfast
- **10:00 AM–11:00 AM** | Demystifying the Academic Job Search II: Preparing your Written Application Materials: CV, Cover Letter, and Research Statement
- **11:00 AM–1:00 PM** | Annual Meeting of the Student Chapters
- **11:30 AM–12:30 PM** | Networking for Nerds: How to Create Your Unicorn Career
- **12:30 PM–2:00 PM** | The Nuts and Bolts of Preparing Your NSF Grant
- **1:00 PM–2:30 PM** | Careers in Industry: A Q&A Panel
- **1:00 PM–2:30 PM** | How Does Congress Set the Federal Budget for Biomedical Research?
- **1:30 PM–3:00 PM** | Biophysics 101: An Introduction to Molecular Dynamics Simulation and its Application to Biological Systems
- **2:15 PM–3:45 PM** | How to Get Your Scientific Paper Published
- **2:30 PM–3:30 PM** | Translating Your Credentials: Writing Effective Resumes + Cover Letters and Your LinkedIn Profile
- **3:30 PM–4:00 PM** | Beyond Reporting: How to be an Ally to Those Experiencing Harassment
- **4:00 PM–5:00 PM** | Marketing Your Value: Crafting Your Elevator Pitch/30 Second Value Statement/Brand Statement
- **4:30 PM–6:00 PM** | Speed Networking

One-on-One Resume and Career Counseling
* 8:30 AM–10:00 AM | 11:30 AM–12:30 PM | 2:00 PM–5:20 PM

Tuesday, February 18, 2020

- **9:30 AM–10:30 AM** | Looking Beyond Academia: Identifying Your Career Options using MyIDP, LinkedIn & More
- **11:30 AM–12:30 PM** | Negotiation for Nerds: Negotiation Strategies and Tactics and Evaluating a Job Offer
- **12:00 PM–1:30 PM** | Funding Opportunities for Faculty at Primarily Undergraduate Institutions
- **12:00 PM–1:30 PM** | Postdoc to Faculty Q&A: Transitions Forum and Luncheon
- **1:15 PM–2:45 PM** | Climate Change We Want to See: Mitigating Unconscious Bias in the Biophysical Professions
- **1:30 PM–3:00 PM** | The Nuts and Bolts of Preparing Your NIH Grant
- **2:30 PM–3:30 PM** | Going Live: Preparing for Interviews in Industry and Academia

One-on-One Resume and Career Counseling
* 8:00 AM–12:00 NOON and 1:30 PM–5:00 PM

* Slots for the One-on-One Resume and Career Counseling sessions are available on a first-come, first-served basis and fill up quickly. You may sign up for a slot beginning at 12:00 NOON on Saturday, February 15, in the Career Development Center, Room 26AB. Please come prepared with resumes, CVs, and other appropriate materials.

** This event requires pre-registration. If space is available, individuals who have not pre-registered may attend. Please stop by the event at the beginning of the session to see if space is available.
Andrew Green earned his PhD at the University of California, Berkeley, and has over 17 years of experience working with graduate students, PhDs, and postdocs as a career advisor. Before returning to Berkeley, where he serves as Associate Director of the Career Center, he spent six years on the faculty of Connecticut College. His specialty is working with PhDs and postdocs in the sciences and engineering pursuing professional opportunities in the business, government, and nonprofit sectors as well as those seeking faculty jobs. He has given invited presentations at major scientific meetings and research universities across the country; and appeared in the Chronicle of Higher Education, NatureJobs, and The Atlantic Online.

Alaina G. Levine is an award-winning entrepreneur, STEM career consultant, science journalist, professional speaker and corporate comedian. Her book, Networking for Nerds (Wiley, 2015), beat out Einstein (really!) for the honor of being named one of the Top 5 Books of 2015 by Physics Today. As President of Quantum Success Solutions, she is a prolific speaker and writer on career development and professional advancement for engineers and scientists. She has delivered over 700 speeches for clients in the US, EU, Mexico, Canada, Africa, and Asia, and has written over 400 articles in publications such as Nature, Science, Scientific American, National Geographic News Watch, and Smithsonian. She has served as a career columnist for Physics Today and is a regular contributor to the American Physical Society’s APS News and ScienceCareers. She also writes “Your Unicorn Career”, a careers column for ScienceCareers about finding your professional bliss. Levine authored two online courses for Oxford University Press on career development and entrepreneurship, is a consultant, speaker, and writer for the Lindau Nobel Laureate Meetings, and served as the event manager for an international conference on phononics. She holds bachelor’s degrees in mathematics and anthropology with a certificate in Middle Eastern Studies from the University of Arizona, and studied at the American University in Cairo as a US Department of Defense Boren Fellow.

Job Postings
Employers
Stop by the Career Center to post your job opening today! All attendees will have access to your job posting while at the meeting and your job will be posted on our online Job Board as well. Search resumes for a perfect fit and schedule an interview while you’re onsite at the meeting.

Job Applicants
Looking for a job in biophysics? Stop by the Career Development Center and upload your resume for employers to view on the Job Board both onsite and online. You may also apply for posted jobs.

Find a Job. Post a Job.
Visit the BPS Job Board today.
https://biophysics-jobs.careerwebsite.com
Travel Grant Awardees

Sunday, February 16

Diana M. Acosta, Weill Cornell Medicine
289-Pos, B120
BIOPHYSICAL CHARACTERIZATION OF COVALENTLY MODIFIED PROTEIN TAU: OLIGOMERS, AGGREGATION, AND TUBULIN INTERACTIONS

Alaa Al-Shaer, Simon Fraser University, Canada
173-Pos, B4
ATOMIC FORCE MICROSCOPY IMAGING REVEALS STRUCTURAL HETEROGENEITIES IN COLLAGEN TYPE IV MOLECULES

Chiara Autilio, Complutense University of Madrid, Spain
429-Pos, B260
MILD HYPOTHERMIA ENHANCES LUNG SURFACTANT ACTIVITY: DELVING INTO THE MOLECULAR MECHANISMS

Estefania Barreto-Ojeda, University of Calgary, Canada
122-Plat
INTERPLAY BETWEEN MEMBRANE CURVATURE AND CONFORMATIONAL STATES IN ABC TRANSPORTERS

Julie Beenken, University of Minnesota Duluth
216-Pos, B47
COMPARATIVE PHOTOPHYSICAL STUDIES OF OF MCERULEAN3 AND MTURQUOISE2.1 AS FRET DONORS

Alida Besch, New York University
260-Pos, B91
ELUCIDATING THE ACTIVATING MECHANISM OF GATEKEEPER MUTATIONS ON RECEPTOR TYROSINE KINASES

Mikayla Carlson, Arizona State University
619-Pos, B450
PREDATION STRATEGIES OF *BDELLOVIBRIO BACTERIOVORUS*

Charlotte Cialek, Colorado State University
142-Plat
VISUALIZING DYNAMIC TETHERING OF ARGONAUTE TO SINGLE MRNA IN LIVE HUMAN CELLS REVEALS THE MECHANISM OF MRNA-MEDIATED TRANSLATIONAL SILENCING

Katherine Coburn, University of Maryland, Baltimore
243-Pos, B74
INVESTIGATION OF THE IMPACT OF POST-TRANSLATIONAL MODIFICATIONS OF HNRNP A18 ON SMALL MOLECULE INHIBITORS

Dan Deviri, Weizmann Institute of Science, Israel
288-Pos, B119
MULTIVALENCY OF PROTEINS AND THEIR INTERACTIONS PREDICT THEIR PHASE SEPARATION

Lisa Dietel, University of Freiburg, Germany
442-Pos, B273
LIPID SCRAMBLING OF ASYMMETRIC LIPOSOMES INDUCED BY MEMBRANE ACTIVE SUBSTANCES

Daniele Di Marino, Marche Polytechnic University, Italy
225-Pos, B56
LIGAND BINDING, UNBINDING AND ALLOSTERIC EFFECTS: DECIPHERING SMALL MOLECULE MODULATION OF HSP90

Lawrence J. Dooling, University of Pennsylvania
755-Pos, B586
MOUSE MELANOMA B16 TUMORS ARE SOFT AND ENGULFABLE WHEN TARGETED IN COMBINATION WITH MACROPHAGE CHECKPOINT BLOCKADE

Anna R. Eitel, University of Arizona
398-Pos, B229
WATER AND MEMBRANE LIPIDS GOVERN G-PROTEIN ACTIVATION

Rui Gao, University of Utah
774-Pos, B605
DIRECT OBSERVATION OF SINGLE BIOMOLECULE HIDDEN BEHAVIORS BY AN ELECTRO-OPTICAL NANOPORE

Antarip Halder, Indian Institute of Science
341-Pos, B172
ROLE OF METAL IONS IN RNA TETRALOOP HAIRPIN MOTIF FORMATION

Joel C. Heisler, University of California, Merced
253-Pos, B84
CLOCK OUTPUT SERVES DUAL PURPOSE OF GENE REGULATION AND TIME KEEPING

Maria Hoernke, Albert-Ludwigs-University, BIOSS, Germany
404-Pos, B235
QUANTIFIED EFFICIENCY OF MEMBRANE LEAKAGE EVENTS RELATES TO ANTIMICROBIAL SELECTIVITY

Yihe Huang, Van Andel Research Institute
104-Plat
LIGAND RECOGNITION AND GATING MECHANISM OF THE TRPM2 CHANNEL

Elton D. Jhamba, University of New Mexico
704-Pos, B535
MULTIPLEXED DNA-PAINT USING A HIGH-SPEED LINE-SCANNING HYPERSONCTRAL MICROSCOPE

Griffin Jones, Lehigh University
196-Pos, B27
THE FUNCTION OF LYNX1 AND LYNX2 PROTEIN IN BINDING AFFINITY TO NICOTINIC RECEPTORS AND GENE RESTORATION

Avihay Kadosh, Technion, Israel
456-Pos, B287
THE TILTED HELIX MODEL OF DYNAMIN OLIGOMERS

Rhye-Samuel Kanassatega, University of Arizona
34-Plat
A FRET-BASED BIOSENSOR FOR DETECTING PHOSPHORYLATION-DEPENDENT STRUCTURAL DYNAMICS IN HUMAN MYOSIN BINDING PROTEIN-C

Ahmad Khalifa, McGill University, Canada
149-Plat
THE INNER JUNCTION COMPLEX OF THE CILIA IS AN INTERACTION HUB THAT INVOLVES TUBULIN POST-TRANSLATIONAL MODIFICATIONS
Dong-Hwee Kim, KU-KIST, South Korea
63-Plat
NUCLEAR MECHANOSENSATION REGULATES IMMUNOLOGICAL SENSITIVITY OF MACROPHAGE ACTIVATION

Tae-Hyung Kim, University of California, Los Angeles
478-Pos, B309
BETA-ADRENERGIC SIGNALING MODULATES CANCER CELL MECHANOTYPE THROUGH A RH OA-ROCK-MYOSIN II AXIS

Lydia Kisley, Case Western Reserve University
94-Plat
ADVANCEMENTS IN SUPERRESOLUTION CORRELATION ANALYSIS TO IMAGE ANOMALOUS DIFFUSION IN CROWDED ENVIRONMENTS

Elif S. Koksal, Norwegian Center for Molecular Medicine
409-Pos, B240
MILD TEMPERATURE GRADIENTS MAY HAVE ENHANCED THE GROWTH AND FUSION OF PROTOCELLS ON THE EARLY EARTH

Joon Lee, Weill Cornell Medicine
477-Pos, B308
PROBING THE HOMO- AND HETERO-DIMERIZATION PROPENSITIES OF METABOTROPIC GLUTAMATE RECEPTORS

Xingcheng Lin, Massachusetts Institute of Technology
379-Pos, B210
COARSE-GRAINED MODELING OF PRC2-MEDIATED INTERNUCLEOSOMAL INTERACTIONS

Ines Lüchtefeld, ETH Zurich, Switzerland
61-Plat
INVESTIGATING THE INFLUENCE OF MEMBRANE PRETENSION ON SINGLE CELL MECHANOSENSITIVITY WITH FORCE-CONTROLLED MICROPIPETTES

Sai Raghavendra Maddhuri Venkata Subramaniya, Purdue University
210-Pos, B41
PROTEIN SECONDARY STRUCTURE DETECTION IN INTERMEDIATE-RESOLUTION CRYO-EM MAPS USING DEEP LEARNING

Juliana Mira Hernandez, University of California, Davis
500-Pos, B331
DIMINISHED B-ADRENERGIC RESPONSE IN PROTEIN KINASE D KNOCK-OUT CARDIOMYOCYTES

Ananya Mondal, University of Houston
329-Pos, B160
INHOMOGENEOUS FORCES IN SEMIFLEXIBLE BIOPOLYMERS

Saeed Nazemidashtarjandi, Ohio University
745-Pos, B576
OUTER LEAFLET LIPID COMPOSITION AFFECT THE INTERNALIZATION OF NANOPARTICLE IN LIVE CELLS

Kelsey C. North, University of Tennessee Health Science Center
555-Pos, B386
PREGNENOLONE CONSTRICTS CEREBRAL ARTERIES BY TARGETING THE CHANNEL-FORMING SUBUNIT OF THE SMOOTH MUSCLE BK COMPLEX

Ariane Papa, Columbia University
43-Plat
BETA-ADRENERGIC STIMULATION OF CAV1.2 CHANNELS IS TRANSDUCED VIA THE IS6-AID LINKER

Natasha H. Rhys, King’s College London, United Kingdom
176-Pos, B7
ON THE ROLE OF THE SOLVENT ENVIRONMENT IN THE FOLDING AND UNFOLDING OF AMPHIPATHIC HELICES

Ampon Sae Her, New York University
124-Plat
INDUCING CONFORMATIONAL PREFERENCE OF A MULTIDRUG EFFLUX PUMP EMRE WITH A SINGLE MUTATION

Ignacio A. Segura, Centro Interdisciplinario de Neurociencia, Chile
539-Pos, B370
A FOCUSED ELECTRIC FIELD IN THE BK CHANNEL VOLTAGE SENSOR

Suzanne E. Stasiak, Northeastern University
1237-Pos, B305
COLLECTIVE MECHANOSENSING REGULATES THE AGONIST-INDUCED CALCUM RESPONSE IN SMOOTH MUSCLE CELLS

David V. Svintradze, University of Georgia, Tbilisi
413-Pos, B244
GENERALIZATION OF THE KELVIN EQUATION AND MACROMOLECULAR SURFACES

Marie Sweet, New York University
85-Plat
ACTION AND INACTIVATION OF THE BACTERIAL POTASSIUM PUMP KDPFABC

Jordana K. Thibado, Weill Cornell Medicine
466-Pos, B297
TUNING OF METABOTROPIC GLUTAMATE RECEPTOR ASSEMBLY AND ACTIVATION BY INTERACTIONS BETWEEN TRANSMEMBRANE DOMAINS

Yundti Wang, University of British Columbia, Canada
534-Pos, B365
MEFENAMIC ACID BINDING AND EFFECT ON IKs CHANNEL GATING

Sara J. Weaver, California Institute of Technology
52-Plat
CRYOEM STRUCTURE OF THE VIBRIO CHOLERAE TYPE IV PILUS SECRETIN PILOQ

Dominic G. Whittaker, University of Nottingham, United Kingdom
547-Pos, B378
RAPID CHARACTERISATION OF R56Q MUTANT HERG CHANNEL KINETICS USING SINUSOIDAL VOLTAGE PROTOCOLS

Shiyu Xia, Harvard Medical School
193-Pos, B24
PORE FORMATION MECHANISM OF HUMAN GASDERMIN D
Lili Zhang, McMaster University, Canada
246-Pos, B77
USING FLUORESCENCE CORRELATION SPECTROSCOPY TO ACCURATELY MEASURE PROTEIN CONCENTRATION GRADIENTS IN THE PRESENCE OF NOISE AND PHOTOBLEACHING

Monday, February 17

Jorge Alegre-Cebollada, CNIC, Spain
795-Plat
INDEPENDENT TUNING OF VISCOUS AND ELASTIC PROPERTIES OF PROTEIN BIOMATERIALS

Eduardo U. Anaya, University of New Mexico
1200-Pos, B268
INNATE ANTIFUNGAL IMMUNE RECEPTOR, DECTIN-1, UNDERGOES LIGAND-INDUCED OLIGOMERIZATION WITH HIGHLY STRUCTURED β-GLUCANS AND AT FUNGAL CELL CONTACT SITES

Baris O. Aydintug, University of Colorado Denver
1467-Pos, B535
PROTON TRANSPORT THROUGH E. COLI ClC CHLORIDE/PROTON ANTIPORTER IN THE PRESENCE OF BOUND FLUORIDE

Yousef Bagheri, University of Massachusetts Amherst
1147-Pos, B215
QUANTITATIVE ASSESSMENT OF THE DYNAMIC MODIFICATION OF LIPID-DNA PROBES ON LIVE CELL MEMBRANES

Matthieu P. Benoit, Albert Einstein College
856-Plat
CHEMO-MECHANICAL CYCLE DIVERSITY IN THE KINESIN SUPERFAMILY REVEALED BY CRYO-EM

Abrar A. Bhat, National Centre for Biological Sciences, India
801-Plat
DIFFERENTIAL ACTIN BINDING AFFINITY LEADS TO PROTEIN SORTING IN A RECONSTITUTED ACTIVE COMPOSITE LAYER

Madolyn Britt, University of Maryland, College Park
65-Plat, B305
MSCS IS A CRITICAL COMPONENT FOR OSMOTIC SURVIVAL OF VIBRIO CHOLERAE

Joshua Brockman, Emory University
1390-Pos, B458
SUPER-RESOLVED MEASUREMENT OF PICONEWTON RECEPTOR FORCES VIA TENSION-PAINT

Yunfeng Chen, The Scripps Research Institute
786-Plat
DISTINCTIVE MECHANO-SENSITIVITY OF FOCAL ADHESION INTEGRINS α5β1 AND αββ3 IN CONFORMATIONAL CHANGES

Sara J. Coddington, University of Maryland, Baltimore
1291-Pos, B359
MEASURING INTRINSIC LIGAND DYNAMICS OF HERG POTASSIUM CHANNELS USING THE UNNATURAL AMINO ACID L-ANAP AND TM-FRET

Kirsten Cottrill, Emory University
1174-Pos, B242
DETERMINING THE LIPID ENVIRONMENT AND INTERACTIONS OF CFTR

Elizabeth Erler, Swarthmore College
1023-Pos, B91
PROBING THE M1-M2 INTERACTION IN INFLUENZA A VIRUS USING SITE-DIRECTED SPIN LABELING EPR IN LIPID BILAYER NANODISCS

Joy Franco, Stanford University
1409-Pos, B477
AN IN VITRO SYSTEM FOR STUDYING NEMATODE MECHANOSENSORY NEURONS

Sarah Innes-Gold, University of California, Santa Barbara
976-Pos, B44
SINGLE-MOLECULE MECHANICAL MEASUREMENTS OF THE HYALURONAN-AGGRECAN BOTTLEBRUSH

Meghna Gupta, University of California, San Francisco
1026-Pos, B94
STRUCTURAL ANALYSIS OF A PHOSPHATE ‘TRANSCEPTOR’

Shanna Hamilton, Ohio State University Medical Center
1257-Pos, B325
HYPERACTIVITY OF RYR2 IN CARDIAC DISEASE IS EXACERBATED BY CALCIUM LEAK-INDUCED MITOCHONDRIAL ROS

Per Niklas Hedde, University of California, Irvine
1211-Pos, B279
PAIR CORRELATION ANALYSIS REVEALS BARRIERS TO NATURAL KILLER CELL RECEPTOR MOTION AT THE SYNAPSE

Maxx Holmes, University of Leeds, United Kingdom
838-Plat
SUB-CELLULAR HETEROGENEITY IN SERCA DETERMINES SPATIAL CALCIUM DYNAMICS IN CARDIOMYOCYTES

Farzana Hossain, Shizuoka University, Japan
1167-Pos, B235
MEMBRANE POTENTIAL IS VITAL FOR RAPID PERMEABILIZATION OF PLASMA MEMBRANES AND LIPID BILAYERS BY THE ANTIMICROBIAL PEPTIDE LACTOFERRICIN B

Joshua Brockman, Emory University
1390-Pos, B458
SUPER-RESOLVED MEASUREMENT OF PICONEWTON RECEPTOR FORCES VIA TENSION-PAINT

Yunfeng Chen, The Scripps Research Institute
786-Plat
DISTINCTIVE MECHANO-SENSITIVITY OF FOCAL ADHESION INTEGRINS α5β1 AND αββ3 IN CONFORMATIONAL CHANGES

Sara J. Coddington, University of Maryland, Baltimore
1291-Pos, B359
MEASURING INTRINSIC LIGAND DYNAMICS OF HERG POTASSIUM CHANNELS USING THE UNNATURAL AMINO ACID L-ANAP AND TM-FRET

Kirsten Cottrill, Emory University
1174-Pos, B242
DETERMINING THE LIPID ENVIRONMENT AND INTERACTIONS OF CFTR

Elizabeth Erler, Swarthmore College
1023-Pos, B91
PROBING THE M1-M2 INTERACTION IN INFLUENZA A VIRUS USING SITE-DIRECTED SPIN LABELING EPR IN LIPID BILAYER NANODISCS

Joy Franco, Stanford University
1409-Pos, B477
AN IN VITRO SYSTEM FOR STUDYING NEMATODE MECHANOSENSORY NEURONS

Sarah Innes-Gold, University of California, Santa Barbara
976-Pos, B44
SINGLE-MOLECULE MECHANICAL MEASUREMENTS OF THE HYALURONAN-AGGRECAN BOTTLEBRUSH

Meghna Gupta, University of California, San Francisco
1026-Pos, B94
STRUCTURAL ANALYSIS OF A PHOSPHATE ‘TRANSCEPTOR’

Shanna Hamilton, Ohio State University Medical Center
1257-Pos, B325
HYPERACTIVITY OF RYR2 IN CARDIAC DISEASE IS EXACERBATED BY CALCIUM LEAK-INDUCED MITOCHONDRIAL ROS

Per Niklas Hedde, University of California, Irvine
1211-Pos, B279
PAIR CORRELATION ANALYSIS REVEALS BARRIERS TO NATURAL KILLER CELL RECEPTOR MOTION AT THE SYNAPSE

Maxx Holmes, University of Leeds, United Kingdom
838-Plat
SUB-CELLULAR HETEROGENEITY IN SERCA DETERMINES SPATIAL CALCIUM DYNAMICS IN CARDIOMYOCYTES

Farzana Hossain, Shizuoka University, Japan
1167-Pos, B235
MEMBRANE POTENTIAL IS VITAL FOR RAPID PERMEABILIZATION OF PLASMA MEMBRANES AND LIPID BILAYERS BY THE ANTIMICROBIAL PEPTIDE LACTOFERRICIN B

Joshua Brockman, Emory University
1390-Pos, B458
SUPER-RESOLVED MEASUREMENT OF PICONEWTON RECEPTOR FORCES VIA TENSION-PAINT

Yunfeng Chen, The Scripps Research Institute
786-Plat
DISTINCTIVE MECHANO-SENSITIVITY OF FOCAL ADHESION INTEGRINS α5β1 AND αββ3 IN CONFORMATIONAL CHANGES

Sara J. Coddington, University of Maryland, Baltimore
1291-Pos, B359
MEASURING INTRINSIC LIGAND DYNAMICS OF HERG POTASSIUM CHANNELS USING THE UNNATURAL AMINO ACID L-ANAP AND TM-FRET

Kirsten Cottrill, Emory University
1174-Pos, B242
DETERMINING THE LIPID ENVIRONMENT AND INTERACTIONS OF CFTR

Elizabeth Erler, Swarthmore College
1023-Pos, B91
PROBING THE M1-M2 INTERACTION IN INFLUENZA A VIRUS USING SITE-DIRECTED SPIN LABELING EPR IN LIPID BILAYER NANODISCS

Joy Franco, Stanford University
1409-Pos, B477
AN IN VITRO SYSTEM FOR STUDYING NEMATODE MECHANOSENSORY NEURONS

Sarah Innes-Gold, University of California, Santa Barbara
976-Pos, B44
SINGLE-MOLECULE MECHANICAL MEASUREMENTS OF THE HYALURONAN-AGGRECAN BOTTLEBRUSH

Meghna Gupta, University of California, San Francisco
1026-Pos, B94
STRUCTURAL ANALYSIS OF A PHOSPHATE ‘TRANSCEPTOR’

Shanna Hamilton, Ohio State University Medical Center
1257-Pos, B325
HYPERACTIVITY OF RYR2 IN CARDIAC DISEASE IS EXACERBATED BY CALCIUM LEAK-INDUCED MITOCHONDRIAL ROS

Per Niklas Hedde, University of California, Irvine
1211-Pos, B279
PAIR CORRELATION ANALYSIS REVEALS BARRIERS TO NATURAL KILLER CELL RECEPTOR MOTION AT THE SYNAPSE

Maxx Holmes, University of Leeds, United Kingdom
838-Plat
SUB-CELLULAR HETEROGENEITY IN SERCA DETERMINES SPATIAL CALCIUM DYNAMICS IN CARDIOMYOCYTES

Farzana Hossain, Shizuoka University, Japan
1167-Pos, B235
MEMBRANE POTENTIAL IS VITAL FOR RAPID PERMEABILIZATION OF PLASMA MEMBRANES AND LIPID BILAYERS BY THE ANTIMICROBIAL PEPTIDE LACTOFERRICIN B

Joshua Brockman, Emory University
1390-Pos, B458
SUPER-RESOLVED MEASUREMENT OF PICONEWTON RECEPTOR FORCES VIA TENSION-PAINT

Yunfeng Chen, The Scripps Research Institute
786-Plat
DISTINCTIVE MECHANO-SENSITIVITY OF FOCAL ADHESION INTEGRINS α5β1 AND αββ3 IN CONFORMATIONAL CHANGES

Sara J. Coddington, University of Maryland, Baltimore
1291-Pos, B359
MEASURING INTRINSIC LIGAND DYNAMICS OF HERG POTASSIUM CHANNELS USING THE UNNATURAL AMINO ACID L-ANAP AND TM-FRET

Kirsten Cottrill, Emory University
1174-Pos, B242
DETERMINING THE LIPID ENVIRONMENT AND INTERACTIONS OF CFTR
Desmond Owusu Kwarteng, Kent State University
1118-Pos, B186
IONIZATION PROPERTIES OF PHOSPHATIDIC ACID AND DIACYLGlycerolpyrophosphate IN PC AND PC/PE MODEL MEMBRANES

Michael Pablo, University of North Carolina, Chapel Hill
810-Plat
BINDER/TAG: A VERSATILE APPROACH TO PROBE AND CONTROL THE CONFORMATIONAL CHANGES OF INDIVIDUAL MOLECULES IN LIVING CELLS

Samarthaben J. Patel, University of Wisconsin-Madison
1187-Pos, B255
CHARACTERIZING THE TRANSLOCATION OF CHARGED PEPTIDE LOOPS ACROSS LIPID BILAYERS WITH MOLECULAR DYNAMICS SIMULATIONS

Sanjoy Paul, TIFR, India
1498-Pos, B566
DYNAMICAL METRICS TO FINGERPRINT PROTEINS AND PROTEIN-PROTEIN INTERACTIONS

Lien Phung, University of Minnesota
1355-Pos, B423
DETECTION OF SUPER-RELAXED MYOSIN IN SPECIFIC HUMAN SKELETAL MUSCLE FIBER TYPES

Andrew Pyo, University of Alberta, Canada
1072-Pos, B140
MEMORY EFFECTS IN SINGLE-MOLECULE FORCE SPECTROSCOPY MEASUREMENTS OF BIOMOLECULAR FOLDING

Raju Regmi, Massachusetts Institute of Technology
913-Plat
SINGLE-MOLECULE INVESTIGATION OF CONFORMATIONAL CHANGES IN EPIDERMAL GROWTH FACTOR RECEPTOR

Julia R. Rogers, University of California, Berkeley
800-Plat
TRANSITION STATES OF PASSIVE LIPID TRANSPORT ARE CHARACTERIZED BY HYDROPHOBIC CONTACTS

Simon Sehayek, McGill University, Canada
1517-Pos, B585
A HIGH-THROUGHPUT IMAGE CORRELATION METHOD FOR RAPID ANALYSIS OF FLUOROPHORE PHOTOBLEACHING AND PHOTOLYSIS RATES
Enrico F. Semeraro, University of Graz, Austria
1151-Pos, B219
ANTIMICROBIAL PEPTIDES IMPAIR BACTERIA CELL STRUCTURES WITHIN SECONDS

Rohit R. Singh, Cornell University
804-Plat
THE COMBINED HYDRODYNAMIC AND THERMODYNAMIC EFFECTS OF IMMOBILIZED PROTEINS ON THE DIFFUSION OF MOBILE TRANSMEMBRANE PROTEINS

Claire J. Stewart, University of North Carolina, Chapel Hill
956-Pos, B24
POLYETHYLENE GLYCOL SIZE AND PROTEIN STABILITY

Joseph C. Sudar, Ohio State University
1235-Pos, B303
EXPLORING THE STRUCTURAL ELEMENTS RESPONSIBLE FOR CIS-HOMODIMERIZATION OF INNER EAR CADHERIN-23

Carl-Mikael Suomivuori, Stanford University
787-Plat
MOLECULAR MECHANISM OF BIASED SIGNALING IN A PROTOTYPICAL G-PROTEIN-COUPLID RECEPTOR

Li Tian, Institute of Biological Interfaces, Germany
1025-Pos, B145
SELF-ASSEMBLY OF ES/PDGFBR IN MEMBRANES STUDIED BY SOLID-STATE NMR DISTANCE MEASUREMENTS

Chen-Wei Tsai, University of Colorado
843-Plat
MECHANISMS OF MICU1 REGULATION OF THE MITOCHONDRIAL CALCIUM UNIPORTER COMPLEX

Chiamaka Ukachukwu, University of Michigan
1278-Pos, B346
RELATIVE HERG SUBUNIT ABUNDANCE MODIFIES I_K1 KINETICS AND MAGNITUDE DURING CARDIAC MATURATION

Zichen Wang, University of Illinois at Urbana-Champaign
1212-Pos, B280
COACTION OF ELECTROSTATIC AND HYDROPHOBIC INTERACTIONS IN SIGNALING: DYNAMIC CONSTRAINTS ON DISORDERED TRKA JUXTAMEMBRANE DOMAIN

Sarah Young, University of Arizona
1038-Pos, B106
RESOLVING CD47 STRUCTURE AND FUNCTION TO UNDERSTAND SIGNAL TRANSDUCTION MECHANISM

Klaus Yserentant, Heidelberg University, Germany
1522-Pos, B590
MOLECULAR COUNTING WITH CALIBRATED LABELING AND QUANTITATIVE FLUORESCENCE MICROSCOPY

William J. Zamora, University of Costa Rica
1162-Pos, B230
INSIGHTS INTO THE EFFECT OF THE MEMBRANE ENVIRONMENT ON THE THREE-DIMENSIONAL STRUCTURE-FUNCTION RELATIONSHIP OF ANTIMICROBIAL PEPTIDES

Zhi Wei Zeng, University of Toronto, Canada
1336-Pos, B404
CONFORMATIONAL DYNAMICS OF CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) REVEALED BY MOLECULAR SIMULATIONS

Tuesday, February 18

Ibraheem Alshareedah, University at Buffalo
1821-Pos, B91
SEQUENCE-ENCODED INTERACTIONS MODULATE REENTRANT LIQUID CONDENSATION OF RIBONUCLEOPROTEIN-RNA MIXTURES

Chase Amos, University of Virginia
1970-Pos, B240
PLASMA MEMBRANE ORDER REGulates INSULIN GRANULE EXOCYTOSIS

Marcelo Ayllon, Boise State University
2133-Pos, B403
STUDY OF HCM CAUSING β-CARDIAC MYOSIN MUTATIONS LOCATED AT DIFFERENT STRUCTURALLY SIGNIFICANT REGIONS OF THE MYOSIN-HEAD

Debanjan Bhowmik, Stanford University
1689-Pos, B106
ELECTRICAL REMODELLING CONTRIBUTES TO ATRIAL FIBRILLATION IN TYPE 2 DIABETES MELLITUS

Ingrid M. Bonilla, Ohio State University
1755-Pos, B25
PLASMA INDUCED MODIFICATION OF BIOMOLECULES (PLIMB) FOR EPITOPE MAPPING

Ana C. Chang-Gonzalez, Texas A&M University
2258-Pos, B528
IMAGE-BASED STRUCTURAL MODELING OF THE EARLY-STAGE ZEBRAFISH EMBRYO BRAIN

Giovana Cavenaghi Guimarães, IBILCE/UNESP, Brazil
1757-Pos, B27
CHARACTERIZATION OF THE THERMAL AND CHEMICAL DENATURATION OF THE MATRIX PROTEIN FROM HRSV

Mateusz Czub, University of Virginia
1585-Plat
STRUCTURAL BASIS OF NON-STEROIDAL ANTI-INFLAMMATORY DRUG (NSAID) TRANSPORT BY SERUM ALBUMIN
Orville Kirkland, Jr., Williams College
2083-Pos, B353
IMPACT OF REGULATORY LIGHT CHAIN MUTATION (K104E) ON THE ATPASE AND MOTOR PROPERTIES OF HUMAN CARDIAC MYOSIN

Matthew M. Klass, University of Arizona
1602-Plat
STOPPED-FLOW CALCIUM KINETICS OF HYPERTROPHIC CARDIOMYOPATHY-ASSOCIATED TROPONIN T MUTATIONS

Juliana M. Larson, Hamilton College
2060-Pos, B330
A CLOSER LOOK AT ORAI3: AN INVESTIGATION INTO CONSTITUTIVELY ACTIVE MUTANTS OF THE LESSER KNOWN CALCIUM ION CHANNEL

Tung T. Le, Cornell University
1830-Pos, B100
SYNERGISTIC COORDINATION OF CHROMATIN TORSIONAL MECHANICS AND TOPOISOMERASE ACTIVITY

Lindsey Lee, University of Colorado Boulder
1924-Pos, B194
CELL-FREE EXPRESSION SYSTEMS: PROBING NUCLEAR MECHANOTRANSDUCTION USING NOVEL ENGINEERING PLATFORMS

Marcos Matamoros, Washington University in St Louis
1779-Pos, B49
MOLECULAR MECHANISMS OF ION SELECTIVITY IN POTASSIUM CHANNELS

Karen Montoya, University of Michigan
1704-Plat
DIRECT IDENTIFICATION AND COUNTING OF MIRNAS IN SINGLE CELLS BY TRANSIENT HYBRIDIZATION AND KINETIC FINGERPRINTING
Emma A. Morrison, Medical College of Wisconsin
1850-Pos, B120
NUCLEOSOME ASSEMBLY STATE GOVERNS HISTONE H3 TAIL
CONFORMATION AND DYNAMICS

Neha Nandwani, Stanford University Biochemistry
2132-Pos, B402
UNCOVERING THE MOLECULAR AND STRUCTURAL BASIS OF
HYPERTROPHIC CARDIOMYOPATHY-CAUSING MUTATIONS IN MYOSIN
AND MYOSIN BINDING PROTEIN-C

Maria A. Neginskaya, New York University
2185-Pos, B455
DETERMINATION OF THE NUMBER OF PERMEABILITY TRANSITION
PORES IN SINGLE MITOCHONDRION

Rodrigo Ochoa, University of Antioquia Chemistry
1760-Pos, B30
COMPUTATIONAL DESIGN OF PEPTIDES BOUND TO THE MAJOR
HISTOCOMPATIBILITY COMPLEX CLASS II

Seunjeun Oh, Harvard Medical School
2290-Pos, B560
IN SITU MEASUREMENT OF PROTEIN AND LIPID MASS BY NORMALIZED
RAMAN IMAGING

Kendahl Ott, James Madison University
1742-Pos, B12
INHIBITING CALPAIN DEPENDENT DEGRADATION OF DESMOPLAKIN

Maria Papadaki, Loyola University Chicago
1601-Plat
MOLECULAR MECHANISMS AND THERAPEUTIC APPROACHES OF
MYOFILAMENT GLYcation AS A RESULT OF DIABETES

Alexandra Paul, Chalmers University of Technology, Sweden
2291-Pos, B561
MOLECULAR MICROSCOPY OF OIL BODY AND LIPID DROPLET
CHEMISTRY <i>></i> IN SITU </i> WITH PHYSIOLOGICALLY-RELEVANT
READOUTS

Hans-Michael Pratt, University of Antioquia Chemistry
1706-Plat
COMPUTATIONAL DESIGN OF PEPTIDES BOUND TO THE MAJOR
HISTOCOMPATIBILITY COMPLEX CLASS II

Rahul Roy, Indian Institute of Science
1785-Pos, B55
PORE ASSEMBLY OF BACTERIAL ALPHA PORE-FORMING TOxin (αPFT),
CYTOLYSIN A ON LIPID MEMBRANES

Marc-Antoine Sani, University of Melbourne and Bio21 Institute,
Australia
1679-Plat
SOLID-STATE NMR STUDY OF LIVE BACTERIA IN THE PRESENCE OF
ANTIMICROBIAL AGENTS

Yoel H. Sitbon, University of Miami
1604-Plat
DELETION OF THE N-TERMINUS OF MYOSIN ESSENTIAL LIGHT CHAIN
(N-ELC) IN THE BACKGROUND OF HCM-A57G MUTATION IN DOUBLE
MUTANT MICE RESCUES HYPERCONTRACTILE MYOSIN PHENOTYPE

Hanquan Su, Emory University
1706-Plat
POLYMER FORCE CLAMPS FOR THE MECHANICAL UNFOLDING OF
TARGET MOLECULES

Amid Vahedi, Ohio University
1916-Pos, B186
CHARACTERIZATION OF PHOSPHOLIPID COMPOSITION IN THE OUTER
LEAFLET OF RED BLOOD CELLS

Eleanor Vane, University of Washington
1870-Pos, B140
MEMBRANE DISRUPTION AND PEPTIDE/LIPID CO-ASSEMBLY BY THE
AMYLoid-FORMING PePTIDE, PAP248-286

Vinh H. Vu, University of Illinois at Urbana-Champaign
1775-Pos, B45
STRUCTURE-FUNCTION ANALYSIS OF E-CADHERIN DIMERIZATION AT
THE PLASMA MEMBRANE

Kevin J. Walsh, Ohio State University
2263-Pos, B533
A COMPARISON OF HISTO-CHEMICAL AND HISTO-MAGNETIC
DETECTION OF IRON
REGULATION OF ORAI1/STIM1 FUNCTION BY S-ACYLATION

Wednesday, February 19

Yuriana Aguilar-Sanchez, Rush University Medical Center
2774-Pos, B320
LUMINAL CALCIUM CONTROL OF TYPE-1 INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR

Cody P. Aplin, University of Minnesota Duluth
2485-Pos, B31
INVESTIGATING NOVEL HETERO-FRET BIOSENSORS FOR ENVIRONMENTAL IONIC STRENGTH USING EXPERIMENTAL AND THEORETICAL APPROACHES

Olivia Byun, McMaster University, Canada
2557-Pos, B103
MECHANISM OF ALLOSTERIC INHIBITION OF PLASMODIUM FALCIPARUM CGMP-DEPENDENT PROTEIN KINASE

Po-Chia Chen, EMBL Heidelberg, Germany
2547-Pos, B93
AB-INITIO PREDICTION OF NMR SPIN-RELAXATION PARAMETERS FROM MD SIMULATIONS

Zhijie Chen, University of California, Berkeley
2655-Pos, B201
SINGLE-MOLECULE NAVIGATION OF THE NUCLEOSOMAL TRANSCRIPTION LANDSCAPE

Yuan-i Chen, University of Texas at Austin
3012-Pos, B558
COMPARISON OF IN-VITRO AND IN-VIVO DNA HYBRIDIZATION KINETICS USING 3D SINGLE-MOLECULE TRACKING METHOD

Sami Chu, University of Minnesota
2909-Pos, B455
OBSERVING THE MYOSIN SUPER-RELAXED STATE (SRX) IN CARDIAC THICK FILAMENTS

Han Chow Chua, University of Copenhagen, Denmark
2443-Plat
THE SODIUM LEAK CHANNEL COMPLEX IS MODULATED BY VOLTAGE AND EXTRACELLULAR CALCIUM

Peter J. Chung, University of Chicago
2641-Pos, B187
ALPHA-SYNUCLEIN DETECTS AND PREFERENTIALLY BINDS TO OSMOTICALLY TENSE SYNAPTIC VESICLE-LIKE MEMBRANES

Claudia Crocini, University of Colorado Boulder
2797-Pos, B343
POST-PRANDIAL INOTROPIC RESPONSE IN PYTHON CARDIOMYOCYTES IS SUPPORTED BY DISTINCT METABOLIC ADAPTATION

Tapojyoti Das, Weill Cornell Medicine
2646-Pos, B192
THE STRUCTURAL BASIS OF OPPOSING FUNCTIONS OF ALPHA-SYNUCLEIN IN VESICLE EXOCYTOSIS
Yin-wei Kuo, Yale University
EFFECTS OF SEVERING ENZYMES ON THE LENGTH DISTRIBUTION AND TOTAL MASS OF MICROTUBULES

Chon Lok Lei, University of Oxford, United Kingdom
AUTOMATED HIGH-THROUGHPUT PATCH CLAMP AND MODELLING TO CAPTURE HERG KINETICS AND TEMPERATURE DEPENDENCE USING OPTIMISED VOLTAGE PROTOCOLS

Zhenhui Liu, Johns Hopkins University
UNVEILING THE TREND OF CHANGES IN MECHANICAL PHENOTYPES BETWEEN SUBPOPULATIONS OF ISOGENIC CANCER CELLS AT DISTINCT METASTATIC STAGES

Manman Lu, University of Pittsburgh
19F NMR STUDIES OF CYCLOPHILIN A AND ITS INTERACTION WITH HIV-1 CAPSID

Beibei Meng, Karlsruhe Institute of Technology, Germany
CORRELATIVE IN VIVO FLUORESCENCE IMAGING AND 19F-MRI OF ZEBRAFISH EMBRYOS

Zeinab Mohamed, Cornell University
UNCOVERING BIOPHYSICAL PROPERTIES AND INTERACTIONS OF BACTERIA MEMBRANE USING AN OUTER MEMBRANE SUPPORTED BILAYER

Kristopher S. Murray, University of Notre Dame
CAN THRESHOLD CHOICES INFLUENCE OBSERVED MICROTUBULE AGING?

Nathaniel C. Napierski, University of Arizona
SELECTIVE PHOSPHORYLATION OF CMYBP-C INCREASES CROSS-BRIDGE CYCLING RATES IN PERMEABILIZED CARDIOMYOCYTES FROM Spy-C MICE

Caila A. Pilo, University of California, San Diego
IMPAIRED AUTOINHIBITION OF PROTEIN KINASE Cγ IN SPINOCEREBELLAR ATAXIA TYPE 14

Matthew Pittman, Johns Hopkins University
ELEVATED EXTRACELLULAR FLUID VISCOITY STIMULATES MIGRATION OF METASTATIC CANCER CELLS

Yifeng Qi, Massachusetts Institute of Technology
POLYMER MODELING OF WHOLE-NUCLEUS DIPLOID GENOME ORGANIZATION

Christopher D. Reinkemeier, European Molecular Biology Laboratory, Germany
DESIGNER MEMBRANELESS ORGANELLES ENABLE HIGHLY SPECIFIC PROTEIN ENGINEERING IN EUKARYOTES

Matthew L. Rook, University of Rochester
STOICHIOMETRY OF ACID-SENSING ION CHANNEL (ASIC) PHARMACOLOGY

Rajneet Kaur Saini, Sri Guru Granth Sahib World University, India
HOW L17A/F19A DOUBLE MUTATION DIMINISH Aβ40 AGGREGATION IN ALZHEIMER’S DISEASE: KEY INSIGHTS FROM MOLECULAR DYNAMICS SIMULATIONS

Marilina de Sautu, University of Buenos Aires, Argentina
ALUMINIUM INTERACTS DIFFERENTLY WITH LIPID BILAYERS AND MODULATES THE PLASMA MEMBRANE CALCIUM ATPASE (PMCA) ACTIVITY

Yuanzi Sun, University College London, United Kingdom
DIRECT OBSERVATION OF PRION PROTEIN FIBRIL ELONGATION KINETICS

Maiwase Tembo, University of Pittsburgh
PHOSPHATE POSITION ON PHOSPHOINOSITIDES IS KEY IN MEDIATING TMEM16A CURRENTS IN XENOPUS LAEVIS OOCYTES

Liag Xue, European Molecular Biology Laboratory, Germany
INDIRECT BACTERIAL TRANSCRIPTION-TRANSLATION COUPLING MECHANISM REVEALED BY IN SITU INTEGRATIVE STRUCTURAL BIOLOGY

Dandan Yang, Ohio State University
THE UNCONVENTIONAL BIOPHYSICAL FUNCTION OF MICRORNA-1 IN MODULATING CARDIAC ELECTROPHYSIOLOGY

Shuting Zhang, Drexel University
CONFORMATIONAL DYNAMICS OF ALANINE IN WATER AND WATER/ETHANOL MIXTURES: EXPERIMENTALLY DRIVEN EVALUATION OF MOLECULAR DYNAMICS FORCE FIELDS
Ancillary Meetings

Friday, February 14, 5:00 PM–9:00 PM
Society of General Physiologists Meeting
Room 30D

Sunday, February 16, 6:00 PM–6:30 PM
Korean Biophysicists Meeting
Room 29AB

Sunday, February 16, 6:00 PM–8:00 PM
Biophysics Austria Mixer
Room 28CDE

Sunday, February 16, 7:00 PM–9:00 PM
Biophysical Society of Canada Mixer
Jolt’n Joe’s Gaslamp
379 Fourth Ave, San Diego, CA 92101, USA

Tuesday, February 18, 8:00 PM–10:00 PM
SOBLA (The Society for Latinoamerican Biophysicists) Meeting
Room 29C
Daily Program Summary

All rooms are located in the *San Diego Convention Center* unless noted otherwise.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM–5:00 PM</td>
<td>Exhibitor Registration</td>
<td>Lobby G</td>
</tr>
<tr>
<td>8:00 AM–5:00 PM</td>
<td>Drug Discovery for Ion Channels XX Satellite Meeting</td>
<td>Room 29AB</td>
</tr>
<tr>
<td>3:00 PM–5:00 PM</td>
<td>Registration</td>
<td>Lobby G</td>
</tr>
<tr>
<td>3:30 PM–4:30 PM</td>
<td>New Council Orientation</td>
<td>Hilton, Cobalt 501C</td>
</tr>
<tr>
<td>5:00 PM–9:00 PM</td>
<td>Joint Council Reception, Dinner, and Meeting</td>
<td>Hilton, Cobalt 500AB</td>
</tr>
<tr>
<td>5:00 PM–9:00 PM</td>
<td>Society of General Physiologists Meeting</td>
<td>Room 30D</td>
</tr>
</tbody>
</table>
Friday, February 14

Exhibitor Registration
8:00 AM - 5:00 PM, LOBBY G

Drug Discovery for Ion Channels XX Satellite Meeting
8:00 AM - 5:00 PM, ROOM 29AB

Sponsored by Sophion Bioscience; Nanion Technologies; Metrion Biosciences; SB Drug Discovery; and Fluxion

Ion channels are an important class of therapeutic drug targets, and mutations in ion channel genes are found to be responsible for an increasing number of diseases. While conventional electrophysiological techniques permit the most detailed and direct study of ion channel function, they are limited due to the manual nature of the method and their low throughput. Because of this, ion channels remain an underrepresented target class for drug discovery. The advent of higher throughput automated electrophysiology systems has changed the face of ion channel drug discovery. Since the inaugural “Drug Discovery for Ion Channels” satellite meeting, there have been many advances in ion channel drug discovery including new instrumentation and techniques.

8:00 AM
REGISTRATION, COFFEE, AND LIGHT BREAKFAST

8:45 AM
WELCOME AND OPENING REMARKS
Thais Johansen

SESSION I
Chair: Mads Korsgaard

9:00 AM
NONPSYCHOACTIVE ALTERNATIVES TO CANNABIS FOR TREATING PAIN: DISCOVERING NOVEL GLYCINE RECEPTOR MODULATORS BY AUTOMATED ELECTROPHYSIOLOGY. Yan Xu

9:30 AM
SODIUM CHANNEL BLOCKERS INHIBITING HUMAN SENSORY NEURONS IN DIVERSE PATHOLOGICAL STATES. Andre Ghetti

10:00 AM
UPDATE ON IHMRI’S HIGH THROUGHPUT E-PHYS CORE. Rocio Finol-Urdaneta

10:30 AM
COFFEE BREAK

SESSION II
Chair: Marc Rogers

11:00 AM
IDENTIFICATION OF NOVEL KV7.2/KV7.3 PAMS USING ADVANCED HIGH-THROUGHPUT SCREENING TOOLS. Jean-Francois Roland

11:30 AM
ELECTROPHYSIOLOGICAL EVALUATION OF NOVEL SMALL-MOLECULE NAV1.7-SELECTIVE STATE-INDEPENDENT PORE BLOCKERS. Anton Delwig

12:00 PM
EXAMINATION OF HIPCSC-CARDIOMYOCYTE MONOLAYERS IN 2.5D – A NEW APPROACH TO UNITE PHYSIOLOGICAL RELEVANCE AND THROUGHPUT. Matthias Gossmann

12:30 PM
SESSION III
Chair: Jeff Roland

1:30 PM
THE USE OF HIGH THROUGHPUT MULTI ION CHANNEL PROFILING AND IN SILICO MODELLING IN ASSESSING ARRHYTHMIA RISK - ONE PHARMA’S EXPERIENCE AND PERSPECTIVE. Stephen Jenkinson

2:00 PM
HIGH THROUGHPUT SCREENING OF NMDA RECEPTORS. David Dalrymple

2:30 PM
STUDY LIGAND GATED ION CHANNELS WITH MICROFLUIDIC BASED HIGH-THROUGHPUT, AUTOMATED ELECTROPHYSIOLOGY PLATFORM. David Wei

3:00 PM
COFFEE BREAK

SESSION IV
Chair: Niels Fertig

3:30 PM
SCREENING TOXINS AS ION CHANNEL THERAPEUTICS ON AUTOMATED PATCH CLAMP SYSTEMS: KV1.3 CASE STUDY. Marc Rogers

4:00 PM
CHALLENGES FOR THE STRUCTURAL BIOLOGY OF VOLTAGE-GATED ION CHANNELS. Nieng Yan

4:45 PM
CLOSING REMARKS
Thomas Binzer

Registration
3:00 PM - 5:00 PM, LOBBY G

New Council Orientation
3:30 PM - 4:30 PM, HILTON, COBALT 501C

Joint Council Reception, Dinner, and Meeting
5:00 PM - 9:00 PM, HILTON, COBALT 500AB

Society of General Physiologists Meeting
5:00 PM - 9:00 PM, ROOM 30D
Saturday, February 15, 2020

Daily Program Summary

All rooms are located in the San Diego Convention Center unless noted otherwise.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM–6:30 PM</td>
<td>Registration/Exhibitor Registration</td>
<td>Lobby G</td>
</tr>
<tr>
<td>8:25 AM–12:30 PM</td>
<td>Bioenergetics, Mitochondria and Metabolism</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>8:30 AM–11:30 AM</td>
<td>Joint Council Meeting</td>
<td>Hilton, Cobalt 500AB</td>
</tr>
<tr>
<td>8:30 AM–12:30 PM</td>
<td>Biopolymers in Vivo</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>8:30 AM–12:30 PM</td>
<td>Membrane Fusion, Fission, and Traffic</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>8:30 AM–12:30 PM</td>
<td>Mechanobiology</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>8:30 AM–12:30 PM</td>
<td>Channels, Receptors, and Transporters</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td>8:30 AM–12:30 PM</td>
<td>Nanoscale Approaches</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>9:00 AM–12:15 PM</td>
<td>Physical Cell Biology</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td>1:25 PM–5:30 PM</td>
<td>Membrane Transport</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td>1:30 PM–5:30 PM</td>
<td>Biological Fluorescence</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>1:30 PM–5:30 PM</td>
<td>Bioengineering</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>1:30 PM–5:30 PM</td>
<td>Intrinsically Disordered Proteins</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>1:30 PM–5:30 PM</td>
<td>Macromolecular Machines and Assemblies</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td>1:30 PM–5:30 PM</td>
<td>Membrane Structure and Function</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>1:30 PM–5:30 PM</td>
<td>Motility and Cytoskeleton</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>2:00 PM–4:00 PM</td>
<td>Communicating Your Science Workshop</td>
<td>Room 28CDE</td>
</tr>
<tr>
<td>3:00 PM–4:00 PM</td>
<td>Career Development Center Workshop: Leveraging LinkedIn in the PhD Job Search: Networking, Informational Interviews, and More</td>
<td>Room 26A</td>
</tr>
<tr>
<td>3:00 PM–5:00 PM</td>
<td>Undergraduate Mixer and Poster Award Competition</td>
<td>Ballroom Foyer</td>
</tr>
<tr>
<td>5:00 PM–6:00 PM</td>
<td>First-Time Attendee Drop By</td>
<td>Ballroom Foyer</td>
</tr>
<tr>
<td>5:00 PM–7:00 PM</td>
<td>Opening Mixer</td>
<td>Ballroom Foyer</td>
</tr>
<tr>
<td>6:00 PM–7:30 PM</td>
<td>Travel Awardee Reception</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>6:00 PM–10:00 PM</td>
<td>Cryo-EM</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>6:00 PM–10:00 PM</td>
<td>Poster Viewing</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>8:00 PM–9:30 PM</td>
<td>Motility and Cytoskeleton Evening Session</td>
<td>Room 24ABC</td>
</tr>
</tbody>
</table>

Subgroup Dinners

- **Bioenergetics, Mitochondria & Metabolism:** 7:00 PM at Marina Kitchen at Marriott Marquis – 333 W. Harbor Drive
- **Bioengineering:** 6:30 PM at Seasons52 Seaport – 789 W. Harbor Drive #134
- **Channels, Receptors & Transporters (Cole Award Dinner):** 6:00 PM at San Diego Water Grill - 615 J Street
- **Membrane Fusion, Fission & Traffic:** Joe’s Crab Shack – 525 E. Harbor Drive
- **Membrane Transport (Cole Award Dinner):** 6:00 PM at San Diego Water Grill - 615 J Street
- **Motility & Cytoskeleton:** 5:40 PM The Smoking Gun San Diego – 555 Market Street
- **Nanoscale Approaches:** 6:00 PM at Patron’s Corner – 332 J Street #102
- **Physical Cell Biology:** Marina Kitchen at Marriott Marquis – 333 W. Harbor Drive
Saturday, February 15

Registration/Exhibitor Registration
8:00 AM - 6:30 PM, LOBBY G

Bioenergetics, Mitochondria and Metabolism
8:25 AM - 12:30 PM, ROOM 24ABC

Subgroup Co-Chairs
Karin Busch, University of Münster, Germany
Tatiana K. Rostovtseva, NIH, NICHHD

8:25 AM OPENING REMARKS

1-SUBG 8:30 AM
IDENTIFICATION OF AN ATP-SENSITIVE POTASSIUM CHANNEL IN THE INNER MITOCHONDRIAL MEMBRANE. Diego De Stefani

NO ABSTRACT 9:00 AM
MITOCHONDRIAL CHLORIDE INTRACELLULAR CHANNELS IN CARDIOPROTECTION. Harpreet. Singh

10:00 AM COFFEE BREAK

NO ABSTRACT 10:15 AM
K+ AND H+ FLUXES DRIVE ATP SYNTHESIS IN MAMMALIAN ATP SYNTHASE. Steven J. Sollott

2-SUBG 10:45 AM
STRUCTURAL AND PHARMACOLOGICAL CHARACTERIZATION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION PORE: A MEGACHannel FORMED BY F1F0 ATP SYNTHASE. Nelli Mnatsakanyan, Marc C. Llaguno, Youshan Yang, Yangyang Yan, Joachim Weber, Fred J. Sigworth, Elizabeth A. Jonas

NO ABSTRACT 11:15 AM
GENETIC INHIBITION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION PORE. Jason Karch

11:45 AM YOUNG BIOENERGETICIST AWARD

12:00 PM SUBGROUP BUSINESS MEETING

Joint Council Meeting
8:30 AM - 11:30 AM, HILTON, COBALT 500AB

Biopolymers in Vivo
8:30 AM - 12:30 PM, ROOM 23ABC

Chair
Zaida Luthey-Schulten, University of Illinois, Urbana-Champaign

8:30 AM SUBGROUP BUSINESS MEETING

9:00 AM OPENING REMARKS

9:05 AM BIG YOUNG INVESTIGATOR AWARD

NO ABSTRACT 9:30 AM
STRUCTURAL BIOLOGY IN SITU: THE PROMISE AND CHALLENGES OF CRYO-ELECTRON TOMOGRAPHY. Wolfgang Baumeister

NO ABSTRACT 10:10 AM
ROLE OF THE RIBOSOME IN PROTEIN FOLDING AND AGGREGATION. Silvia Cavagnero

NO ABSTRACT 10:40 AM

Membrane Fusion, Fission, and Traffic
8:30 AM - 12:30 PM, ROOM 25ABC

Chair
Ling-Gang Wu, NIH, NINDS

8:30 AM OPENING REMARKS

NO ABSTRACT 8:35 AM
DYNAMICS OF MEMBRANE TENSION AND SYNAPTIC VESICLE RECYCLING. Erdem Karatekin

NO ABSTRACT 9:00 AM
VISUALIZING HOW SNARE PROTEINS REGULATE EXOSOME SECRETION. Michelle Knowles

10:05 AM BREAK

NO ABSTRACT 10:55 AM
SYNAPTOTAGMIN-7 PLACES VESICLES AT THE PLASMA MEMBRANE TO PROMOTE MUNC13-2 DEPENDENT PRIMING. Jakob Balslev Sorenson

11:20 AM SUBGROUP BUSINESS MEETING

Mechanobiology
8:30 AM - 12:30 PM, ROOM 30ABC

Chair
Xavier Trepat, Institute for Bioengineering of Catalonia, Barcelona, Spain

8:30 AM OPENING REMARKS

5-SUBG 8:35 AM
UNDERSTANDING AND EXPLOITING CANCER MECHANOBIOLOGY. Adam J. Engler

NO ABSTRACT 9:05 AM
SIGNALS, FORCES, AND CELLS: DECODING TISSUE MORPHOGENESIS. Jennifer Zallen

NO ABSTRACT 9:35 AM
PICONEWTON-SENSITIVE BIOSSENSORS TO INVESTIGATE ADHESION MECHANICS IN CELLS. Carsten Grashoff

Detailed Mathematical Models of Stochastic Gene Expression in Eukaryotic Cells. Ramon Grima

No Abstract 11:20 AM
Emergent Material Properties of Biopolymer Condensates. Shana Elbaum-Garfinkle

No Abstract 11:50 AM
Heavy Mice and Lighter Things: Using Solid-State NMR to Study the Extracellular Matrix. Melinda Duer

Biophysical Society
10:05 AM SELECTED SHORT TALK 1
10:20 AM SELECTED SHORT TALK 2
10:35 AM COFFEE BREAK
11:00 AM MECHANOBIOLOGY EARLY CAREER AWARD
11:30 AM SHORT TALK 3
11:45 AM ELEVATOR TALKS
12:10 PM SUBGROUP BUSINESS MEETING

Channels, Receptors, and Transporters
8:30 AM - 12:30 PM, BALLROOM 20D

Chair
Crina Nimigean, Weill Cornell Medicine

8:30 AM OPENING REMARKS

NO ABSTRACT
8:35 AM MECHANISMS OF ELECTROMECHANICAL COUPLING IN NON-DOMAIN-SWAPPED VOLTAGE DEPENDENT CHANNELS.
Eduardo Perozo

NO ABSTRACT
9:05 AM MOLECULAR MECHANISMS OF TRPV CHANNELS GATING REVEALED BY CRYO-EM.
Vera Moiseenkova-Bell

NO ABSTRACT
9:35 AM MOLECULAR MECHANISMS OF EXTREME MECHANOSTABILITY IN PROTEIN COMPLEXES.
Hermann Gaub

10:05 AM STRUCTURAL INSIGHTS INTO IP3R GATING AND REGULATION.
Irina Serysheva

10:35 AM BREAK

10:45 AM SUBGROUP BUSINESS MEETING

NO ABSTRACT
11:00 AM THE STRUCTURAL PHARMACOLOGY OF HUMAN GABAA RECEPTORS.
Radu Aricescu

NO ABSTRACT
11:30 AM GATING MECHANISMS IN PENTAMERIC LIGAND-GATED ION CHANNELS.
Sudha Chakrapani

NO ABSTRACT
12:00 PM STRUCTURES OF THE NON-CANONICAL LYSOSOMAL K+ CHANNEL TMEM175.
Richard Hite

12:30 PM ADJOURNMENT

Nanoscale Approaches
8:30 AM - 12:30 PM, BALLROOM 20BC

Chair
Ozgur Sahin, Columbia University

8:30 AM OPENING REMARKS

NO ABSTRACT
8:35 AM LONG-TERM, SINGLE-CARGO TRACKING IN LIVE NEURONS WITH SINGLE-MOLECULAR STEP RESOLUTION.
Chunte Peng

NO ABSTRACT
9:05 AM MOLECULAR MECHANISMS OF EXTREME MECHANOSTABILITY IN PROTEIN COMPLEXES.
Hermann Gaub

6:00 PM OPENING REMARKS

NO ABSTRACT
9:00 AM FORCE SENSING AND REGULATION IN TISSUES - FROM AGGREGATES TO ORGANISMS.
Megan T. Valentine

9:30 AM CONTRIBUTED TALK 1

6-SUBG
9:45 AM SCHRODINGER'S "WHAT IS LIFE" AT 75: THE PHYSICAL ASPECTS OF THE LIVING CELL REVISITED.
Robert B. Phillips

10:15 AM BREAK

10:30 AM SUBGROUP BUSINESS MEETING

Physical Cell Biology
9:00 AM - 12:15 PM, BALLROOM 20A

Chair
Julie S. Biteen, University of Michigan

9:00 AM OPENING REMARKS

NO ABSTRACT
9:30 AM CONTRIBUTED TALK 2

10:15 AM BREAK

10:30 AM CONTRIBUTED TALK 3

11:00 AM TACKLING ANTIMICROBIAL RESISTANCE, ONE MOLECULE AT A TIME.
Antoine M. van Oijen

12:00 PM SUBGROUP BUSINESS MEETING

Membrane Transport
1:25 PM - 5:30 PM, BALLROOM 20D

Chair
Susan Rempe, Sandia National Laboratories

1:25 PM OPENING REMARKS

NO ABSTRACT
1:30 PM STRUCTURAL BASIS FOR TRANSPORT CYCLE OF P4 FLIPPASE.
Osamu Nureki

NO ABSTRACT
2:00 PM EVOLUTION OF DRUG EXPORT BY THE SMALL MULTIDRUG RESISTANCE FAMILY OF TRANSPORTERS.
Randy Stockbridge
2:30 PM STUDENT TALK 1

NO ABSTRACT 2:50 PM
LIGAND BINDING IN MEMBRANES: A CLEAN APPROACH WHEN LIPIDS ARE THE LIGAND, SOLVENT, AND CONCENTRATION SCALE.
Grace Brannigan

3:20 PM BREAK

7-SUBG 3:30 PM
CONTROLLING THE RATE AND EFFICIENCY OF PROTON-COUPLED TRANSPORT BY EMRE. Nathan Thomas, Chao Wu, Peyton Spruecker, Grant Hussey, Samantha Wynne, Eva-Maria Uhlemann, Christopher Tate, Gregory T. DeKoster, Katherine Henzler-Wildman

4:00 PM STUDENT TALK 2

NO ABSTRACT 4:20 PM
MEMBRANE MORPHOLOGY, ENERGETICS & DYNAMICS AT THE INTERFACE WITH TRANSPORT PROTEINS. Jose Faraldo-Gomez

4:50 PM CLOSING REMARKS

5:00 PM SUBGROUP BUSINESS MEETING

Biological Fluorescence
1:30 PM - 5:30 PM, ROOM 25ABC

Chair
Diane S. Lidke, University of New Mexico

1:30 PM OPENING REMARKS

NO ABSTRACT 1:35 PM
EXPLORING THE SKIN OF A CELL USING FLUORESCENCE MICROSCOPY REVEALS AN ACTIVE MEMBRANE COMPOSITE. Satyajit Mayor

NO ABSTRACT 2:05 PM
METABOLIC FLIM AND OXYGEN PLIM: BASICS AND BIOMEDICAL APPLICATIONS. Angelica Rueck

8-SUBG 2:35 AM
PHOTOSWITCHING FRET STUDIES OF DOXORUBICIN-CHROMATIN INTERACTIONS. George H. Patterson, Kristin H. Rainey

3:05 PM BREAK

3:20 PM SUBGROUP BUSINESS MEETING

NO ABSTRACT 3:30 PM
SPATIOTEMPORAL DYNAMICS OF MEMBRANE RECEPTORS AT THE NANO SCALE. Diego Krapf

9-SUBG 4:00 PM
PLAYING WITH FLUORESCENCE EMISSION FOR ENHANCED SUPERRESOLUTION MICROSCOPY. Pierre Jouchet, Clement Cabriel, Adrien Mau, Abigail Illand, Guillaume Dupuis, Christian Pois, Emmanuel Fort, Sandrine Leveque-Fort

4:25 PM RAPID FIRE TALKS FROM POSTER ABSTRACTS

4:45 PM YOUNG FLUORESCENCE INVESTIGATOR AWARD & LECTURE

5:05 PM GREGORIO WEBER AWARD & LECTURE

5:25 PM CLOSING REMARKS & ADJOURNMENT

Bioengineering
1:30 PM - 5:30 PM, ROOM 23ABC

Chair
Raphael C. Lee, University of Chicago

1:30 PM OPENING REMARKS

NO ABSTRACT 1:35 PM
MULTI-OMICS AND AUTOMATED MICROFLUIDIC PUMPS AND VALVES FOR CONTROLLING AND REVERSE ENGINEERING OF BIOLOGICAL SYSTEMS. John P. Wikswo

NO ABSTRACT 2:05 PM
MODULATING CELL PROTEIN ABUNDANCE TO BOTH UNDERSTAND AND MANIPULATE BIOLOGICAL NETWORKS. H. Steve Wiley

NO ABSTRACT 2:35 PM
AN IN VITRO 3D NEURO MUSCULAR PLATFORM REVEALS CROSSTALK BETWEEN NEURAL NETWORKS AND MUSCLES. Taher Salf

3:05 PM SUBGROUP BUSINESS MEETING

3:30 PM POSTDOC RECOGNITION

NO ABSTRACT 3:50 PM
A STOCHASTIC MULTISCALE MODEL OF CARDIAC MUSCLE BIOPHYSICS USING BROWNIAN-LANGEVIN DYNAMICS. Yasser Aboelkassem

10-SUBG 4:20 PM
NANOPORES AND CHANNELS FOR BIOMIMETICS AND BIOMEDICAL ENGINEERING. Zuzanna S. Siwy, Elif Turker Acar, Steven Buchsbaum, Francesco Fornasier, Cody Combs

NO ABSTRACT 4:50 PM
MULTI-SCALE MODELING OF THERAPEUTIC MECHANISMS FOR HEART FAILURE. Andrew McCulloch

5:20 PM CLOSING REMARKS & ADJOURNMENT

Intrinsically Disordered Proteins
1:30 PM - 5:30 PM, BALLROOM 20BC

Chair
M. Madan Babu, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom

1:30 PM SUBGROUP BUSINESS MEETING

1:50 PM OPENING REMARKS

NO ABSTRACT 2:00 PM
PROBING PROTEINS IN SMALL VOLUMES. Tuomas Knowles

NO ABSTRACT 2:25 PM
LIQUID-LIQUID PHASE SEPARATION OF INTRINSICALLY DISORDERED PROTEINS. Markus Zweckstetter

2:50 PM ANNOUNCEMENT OF POSTDOC AWARDS

2:55 PM POSTDOC AWARD TALK

3:10 PM POSTDOC AWARD TALK

3:25 PM BREAK

NO ABSTRACT 3:40 PM
EMERGENT STRUCTURE AND DYNAMICS OF LOW-COMPLEXITY NUCLEOPROTEIN CONDENSATES. Priya R Banerjee

NO ABSTRACT 4:05 PM
DISORDERED PROTEINS AS CATALYSTS OF MEMBRANE TRAFFIC. Jeanne Stachowiak

Biophysical Society
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:30 PM</td>
<td>KINETIC REGULATION OF IDR-PROTEIN INTERACTIONS IN TRANSCRIPTION</td>
</tr>
<tr>
<td></td>
<td>REGULATION. (Jacqueline Matthews)</td>
</tr>
<tr>
<td>4:55 PM</td>
<td>KARYOPHERIN AS CHAPERONE. (Yuh Min Chook)</td>
</tr>
<tr>
<td>5:20 PM</td>
<td>CLOSING REMARKS & ADJOURNMENT</td>
</tr>
</tbody>
</table>

Macromolecular Machines and Assemblies

1:30 PM - 5:30 PM, BALLROOM 20A

Chair

Ilya Finkelstein, University of Texas, Austin

1:30 PM

OPENING REMARKS

NO ABSTRACT

1:45 PM

IN CELL STRUCTURAL BIOLOGY OF PROTEIN COMPLEXES USING SENSITIVITY ENHANCED SOLID-STATE NMR. (Kendra Frederick)

NO ABSTRACT

2:15 PM

STRUCTURES OF MANY MACROMOLECULAR MACHINES FROM A SINGLE CRYO-EM EXPERIMENT. (David Taylor)

NO ABSTRACT

3:45 PM

SINGLE-MOLECULE PROTEIN SEQUENCING. (Edward Marcotte)

NO ABSTRACT

4:15 PM

UNDERSTAND AND MODULATE THE STABILITY OF FORCE-TRANSMISSION CYTOSKELETAL SUPRAMOLECULAR LINKAGES. (Jie Yan)

NO ABSTRACT

4:45 PM

SELECTED ABSTRACT

5:00 PM

SELECTED ABSTRACT

5:15 PM

CLOSING REMARKS

Membrane Structure and Function

1:30 PM - 5:30 PM, ROOM 30ABC

Chair

Peter Tieleman, University of Calgary, Canada

NO ABSTRACT

1:30 PM

MEMBRANE PERMEABILIZATION IN REGULATED CELL DEATH. (Ana Garcia-Saez)

NO ABSTRACT

2:00 PM

THE REVOLUTION WILL NOT BE SYMMETRIZED: LESSONS FROM ASYMMETRIC MODEL MEMBRANES. (Fred Heberle)

NO ABSTRACT

2:30 PM

PHOSPHOLIPID SCRAMBLASES AND TRANSBILAYER LIPID ASYMMETRY. (Anant Menon)

NO ABSTRACT

3:00 PM

SIMULATING PLASMA MEMBRANES: EFFECTS OF LEAFLET ASYMMETRY AND COMPOSITIONAL COMPLEXITY. (Helgi Ingolfsson)

3:30 PM

COFFEE BREAK

NO ABSTRACT

3:45 PM

TUNING CLC DIMERIZATION IN MEMBRANES BY OPTIMIZING THE LIPID SOLVENT. (Janice Robertson)

Motility and Cytoskeleton

1:30 PM - 5:30 PM, ROOM 24ABC

Co-Chairs

Michael J. Previs, University of Vermont

Ahmet Yildiz, University of California, Berkeley

1:30 PM

OPENING REMARKS

NO ABSTRACT

1:35 PM

DYNEIN REGULATION. (Andrew Carter)

NO ABSTRACT

1:55 PM

CARDIAC MYOSIN BINDING PROTEIN-C REGULATES CARDIAC CONTRACTILITY. (Sakthivel Sadayappan)

NO ABSTRACT

2:15 PM

SELECTED TALK 1

2:25 PM

SELECTED TALK 2

NO ABSTRACT

2:35 PM

3D STRUCTURE AND REGULATION OF INTRAFLAGELLAR TRANSPORT BY CLEM AND CRYO-EM. (Gaia Pigino)

NO ABSTRACT

2:55 PM

HIGH-RESOLUTION CRYO-EM STRUCTURE OF THE DECORATED CILIARY DOUBLET MICROTBULE. (Rui Zhang)

NO ABSTRACT

3:15 PM

SUBGROUP BUSINESS MEETING AND COFFEE BREAK

NO ABSTRACT

3:40 PM

ROLES OF VERTICAL AND HORIZONTAL FORCES ON THE PROCESSIVITY OF MOTORS. (Jonathon Howard)

4:00 PM

SELECTED TALK 3

4:10 PM

SELECTED TALK 4

NO ABSTRACT

4:20 PM

THE MICROTBULE NETWORK IN CARDIAC HYPERTROPHY AND HEART FAILURE. (Ben Prosser)

NO ABSTRACT

4:40 PM

A MOLECULAR MECHANISM FOR SYMMETRY BREAKING AT CELL-CELL ADHESION COMPLEXES. (Alexander Dunn)

NO ABSTRACT

5:00 PM

SELECTED TALK 5

5:10 PM

SELECTED TALK 6
Communicating Your Science Workshop

2:00 PM - 4:00 PM, ROOM 28CDE

Communication plays a pivotal role in society; it’s the difference between accord and argument, the key to a new research breakthrough and the pathway to sharing the value and impact that scientific discovery has on the public at large. When trying to explain the role and value that research in biophysics has on health, energy, technology and science, you must keep in mind your target audience. Be it a neighbor, a reporter or a politician, your language needs to reflect a frame of reference that they can understand and see the value as it applies to them personally. Session speaker, Amy Showalter, will help you have the ability to make biophysics and scientific research relatable to the non-scientific community.

Speaker
Amy Showalter, The Showalter Group

Career Development Center Workshop

Leveraging LinkedIn in the PhD Job Search: Networking, Informational Interviews, and More

3:00 PM - 4:00 PM, ROOM 26A

You’ve done some exploration and identified some interesting possibilities as the next step after grad school or your postdoc, but is it enough to convince you that research in industry, medical science liaison, data science, etc. is right for you? More importantly, do you know enough to craft a persuasive story about why you’re a credible and compelling candidate? This presentation provides specific examples of how you build out your knowledge of a new, potential career field, and forge valuable connections that can facilitate your successful transition out of academia using LinkedIn, professional societies, informational interviews, and more.

Undergraduate Mixer and Poster Award Competition

3:00 PM - 5:00 PM, BALLROOM FOYER

If you’re an undergraduate student, plan on attending this social and scientific mixer! Come meet other undergraduates and learn about their research projects. For undergraduate students who will be presenting during the standard scientific sessions, the mixer provides an opportunity to hone presentation skills before the general poster session begin. Undergraduates listed as co-authors on posters are welcome to practice their poster presentation skills in a less formal setting, even if not listed as the presenting author. Additionally, undergrads presenting as first or second author on a poster may participate in the Undergraduate Poster Award Competition and be recognized for their work. Selected students will receive a $100 award and will be recognized by the BPS meeting attendees prior to the 2020 Biophysical Society Lecture. Winners will be selected based on the quality and scientific merit of their research, knowledge of the research problem, contribution to the project, and overall presentation of the poster.

Pre-registration was required to participate in the competition.

First-Time Attendee Drop By

5:00 PM - 6:00 PM, BALLROOM FOYER

Learn to navigate the meeting! If this is your first time attending a BPS Annual Meeting, you may find it helpful to speak to Society staff and committee members who can help you get the most out of your time at the BPS 2020 San Diego Annual Meeting.

Opening Mixer

5:00 PM - 7:00 PM, BALLROOM FOYER

All registered attendees are welcome to attend this reception. Cash bar and light refreshments will be offered.

Travel Awardee Reception

6:00 PM - 7:30 PM, EXHIBIT HALL

During this reception, students, postdocs, and early and mid-career scientists will be honored and presented with their travel awards by the chairs of the Education, Inclusion and Diversity, Membership, and Professional Opportunities for Women Committees.

Speaker
Yadilette Rivera-Coln, Bay Path University

Cryo-EM

6:00 PM - 10:00 PM, ROOM 31ABC

Chair
Elizabeth Villa, University of California, San Diego

6:00 PM OPENING REMARKS

NO ABSTRACT 6:05 PM WHERE IN THE CELL IS MY PROTEIN? David DeRosier

NO ABSTRACT 6:27 PM THE CONFORMATIONAL DYNAMICS OF AN ABC TRANSPORTER UNDER TURNOVER CONDITIONS. Arne Moeller

6:49 PM SUBGROUP BUSINESS MEETING

NO ABSTRACT 7:04 PM CRYO-ELECTRON TOMOGRAPHY CONTRIBUTES TO OUR UNDERSTANDING OF BACTERIAL INTERACTIONS WITH THEIR ENVIRONMENT. Ariane Briegel

NO ABSTRACT 7:26 PM STRUCTURAL CHARACTERIZATION OF LARGE MACROMOLECULAR COMPLEXES REGULATING CHROMOSOME ARCHITECTURE AND GENE EXPRESSION. Vignesh Kasinath

NO ABSTRACT 7:44 PM REGULATION OF CELL DIVISION DURING SPOORULATION IN BACILLUS SUBTILIS. Kanika Khanna

NO ABSTRACT 8:02 PM TOWARDS A BIOPSY AT THE NANOSCALE: ADVANCES IN CRYO-ELECTRON TOMOGRAPHY FOR IN SITU STRUCTURAL BIOLOGY OF CELLS AND TISSUES. Juergen Plitzko

8:24 PM COFFEE BREAK

NO ABSTRACT 8:39 PM CRYOEM AUTOMATION: BETTER, FASTER, CHEAPER. Bridget Carragher

11-SUBG 9:01 PM STRUCTURES OF NATIVELY-GLYCOSYLATED HIV-1 ENVELOPE TRIMERS DEFINE ANTIBODY-MEDIATED NEUTRALIZATION OF HIV-1. [] Christopher O. Barnes

9:19 PM SELECTED ABSTRACT SPEAKER

12-SUBG 9:37 PM LOCATION AND IDENTIFICATION OF MACROMOLECULAR COMPLEXES WITHIN CELLULAR ENVIRONMENTS BY HIGH-RESOLUTION TEMPLATE MATCHING. Nikolaus Grigorieff, Liang Xue, Timothy Grant, John P. Rick-gauer, Wim Hagen, Julia Mahamid

10:00 PM ADJOURNMENT
Poster Viewing
6:00 PM - 10:00 PM, EXHIBIT HALL

Motility and Cytoskeleton Evening Session
8:00 PM - 9:30 PM, ROOM 24ABC

Co-Chairs
Michael J. Previs, University of Vermont
Ahmet Yildiz, University of California, Berkeley

NO ABSTRACT 8:00 PM
MICROTUBULE DYNAMICS: NOT ONLY AT THE TIPS.
Antonina. Roll-Mecak

8:20 PM MOTILITY AND CYTOSKELETON JUNIOR FACULTY AWARD

NO ABSTRACT 8:45 PM
SPECTROSCOPIC PROBES OF MUSCLE PROTEINS: MECHANISTIC INSIGHTS
AND THERAPEUTIC DISCOVERY. David Thomas
Sunday, February 16, 2020

Daily Program Summary

All rooms are located in the San Diego Convention Center unless noted otherwise.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM–9:00 AM</td>
<td>Biophysical Journal Editorial Board Boot Camp</td>
<td>Room 32A</td>
</tr>
<tr>
<td>7:30 AM–8:30 AM</td>
<td>Postdoctoral Breakfast: Tales From Two Sides of Recruitment</td>
<td>Room 29AB</td>
</tr>
<tr>
<td>7:30 AM–5:00 PM</td>
<td>Registration/Exhibitor Registration</td>
<td>Lobby G</td>
</tr>
<tr>
<td>8:00 AM–10:00 PM</td>
<td>Poster Viewing</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Symposium: Asymmetric Membranes</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>Chair: Georg Pabst, University of Graz, Austria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VPS13 PROTEINS ARE CHANNELS THAT TRANSPORT LIPIDS BETWEEN MEMBRANES. Karin Reinisch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STRUCTURAL BASIS OF LIPID AND ION TRANSPORT BY TMEM16 SCRAMBLASES. Alessio Accardi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DYNAMIC IMAGING OF MEMBRANE HYDRATION. Sylvie Roke</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASYMMETRIC LIPID BILAYERS: INSIGHTS FROM LEAFLET-SPECIFIC STRUCTURAL STUDIES. Georg Pabst</td>
<td></td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Symposium: Single-Molecule Visualization of Transcription, Translation and Splicing</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td></td>
<td>Chair: Magnus Johansson, Uppsala University, Sweden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DYNAMIC IMAGING OF NASCENT RNA REVEALS GENERAL PRINCIPLES OF TRANSCRIPTION AND SPlicing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daniel R. Larson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMAGING NON-CANONICAL TRANSLATION DYNAMICS OF SINGLE RNA IN LIVING CELLS. Timothy J. Stasevich</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GENE REGULATION BY BACTERIAL SMALL RNA AND RNA CHAPERON HFQ. Jingyi Fei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIVE-CELL SINGLE-MOLECULE TRACKING FOR PROTEIN SYNTHESIS KINETICS MEASUREMENTS. Magnus Johansson</td>
<td></td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Intrinsically Disordered Proteins (IDP) and Aggregates I</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Cardiac Muscle Mechanics and Structure</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Member Organized Session: Multiscale Genome Organization</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Ion Channel Regulatory Mechanisms</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Membrane Protein Structures</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Mechanosensation</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>8:30 AM–10:30 AM</td>
<td>CID Committee Meeting</td>
<td>Room 30D</td>
</tr>
<tr>
<td>9:00 AM–10:00 AM</td>
<td>Career Development Center Workshop: Networking for Nerds: How to Create Your Unicorn Career</td>
<td>Room 26A</td>
</tr>
<tr>
<td>9:30 AM–11:00 AM</td>
<td>Exhibitor Presentation: Mizar Imaging</td>
<td>Room 33A</td>
</tr>
<tr>
<td></td>
<td>Tilt – A New Angle on Light Sheet Imaging</td>
<td></td>
</tr>
<tr>
<td>10:00 AM–5:00 PM</td>
<td>Exhibits</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>10:15 AM–11:00 AM</td>
<td>Coffee Break</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>10:30 AM–11:30 AM</td>
<td>Career Development Center Workshop: Green Cards for Scientific Researchers: How to Win Your EB-1A/NIW Case! with Getson & Schatz, PC</td>
<td>Room 26A</td>
</tr>
<tr>
<td>10:30 AM–12:00 PM</td>
<td>Exhibitor Presentation: Wyatt Technology</td>
<td>Room 33C</td>
</tr>
<tr>
<td></td>
<td>Recent Advances in Light Scattering and Related Techniques</td>
<td></td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Symposium: Mapping the Immune System</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>Chair: Brian Baker, University of Notre Dame</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A SYSTEMS APPROACH TO ENGINEERED IMMUNITY - FROM MOLECULES AND CELLS TO PATIENTS. Krishnendu Roy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOW TO HIT HIV WHERE IT HURTS. Arup Chakraborty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MULTI-SCALE COMPUTATIONAL MODEL OF IMMUNE CELL ACTIVATION IN CANCER. Stacey D. Finley</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEMYSTIFYING CROSS-REACTIVITY IN CELLULAR IMMUNITY. Brian M. Baker</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td>Room</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 10:45 AM–12:45 PM | Symposium: Cytoskeleton and Motility
 Chair: Joseph Falke, University of Colorado Boulder
 Ballroom 20D
 HOW DOES THE ACTIN CYTOSKELETON REGULATE DISTRIBUTION AND DIFFUSION OF MEMBRANE COMPONENTS? Barbara Baird
 REGULATION OF ACTIN AND MEMBRANE DYNAMICS BY CLASS I MYOSINS. Mira Krendel
 MECHANOCHEMICAL CIRCUITS IN THE CYTOPLASM. Margaret Gardel
 REGULATORY MECHANISMS OF CA²⁺, RECEPTOR, RAS, AND LIPID SIGNALS THAT CONTROL ACTIN POLYMERIZATION DURING CELL MIGRATION. Joseph J. Falke |
| 10:45 AM–12:45 PM | Symposium: Mitochondrial Calcium Fluxes
 Chair: Gyorgy Csordas, Thomas Jefferson University
 Ballroom 20BC
 MITOCHONDRIAL (ATP SYNTHASE) PERMEABILITY TRANSITION PORE. Elizabeth Jonas
 THE DUAL LIFE OF MITOCNDRIAL F-ATP SYNTHASE. Paolo Bernardi
 MITOCHONDRIAL CALCIUM AND CELL DEATH. Elizabeth Murphy
 NON-UNIFORM DISTRIBUTION OF INNER MITOCNDRIAL MEMBRANE CALCIUM TRANSPORT MECHANISMS IN THE CARDIAC MUSCLE. Gyorgy Csordas |
| 10:45 AM–12:45 PM | Platform: Protein-Lipid Interactions I
 Room 23ABC |
| 10:45 AM–12:45 PM | Platform: Membrane Pumps, Transporters, and Exchangers
 Room 24ABC |
| 10:45 AM–12:45 PM | Platform: Optical Microscopy and Superresolution Imaging I
 Room 25ABC |
| 10:45 AM–12:45 PM | Platform: TRP Channels
 Room 30ABC |
| 10:45 AM–12:45 PM | Platform: Protein Structure and Conformation I
 Room 31ABC |
| 11:15 AM–3:00 PM | Exploring Careers in Biophysics Day
 Room 28CDE |
| 11:30 AM–1:00 PM | Undergraduate Student Pizza “Breakfast”
 Room 28CDE |
| 11:30 AM–1:00 PM | Exhibitor Presentation: NanoSurface Biomedical
 Recreating the Extracellular Matrix in a Dish
 Room 33A |
| 12:00 PM–1:00 PM | Career Development Center Workshop:
 Demystifying the Academic Job Search I: Understanding the Search Process from the Perspective of Search Committees and Decoding Job Announcements
 Room 26A |
| 12:00 PM–1:30 PM | Public Affairs Committee Meeting
 Room 30D |
| 12:00 PM–4:00 PM | BPS/IOP Advisory Board Meeting
 Room 32B |
| 12:30 PM–2:00 PM | Exhibitor Presentation: Sutter Instrument
 Scientists Empowering Scientists
 Room 33C |
| 1:00 PM–2:30 PM | Town Hall for Community Input on the National Academies Decadal Survey of Biological Physics
 Room 31ABC |
| 1:00 PM–2:30 PM | The World Outside the Lab: Following Your IDP Roadmap to the Career You Want
 Room 28AB |
| 1:00 PM–3:00 PM | Education & Career Opportunities Fair
 Exhibit Hall |
| 1:30 PM–3:00 PM | Exhibitor Presentation: Carl Zeiss Microscopy LLC
 Multiplex Mode for the LSM 9 Series with Airyscan 2: Fast and Gentle Confocal Superresolution in Large Volumes
 Room 33A |
| 1:45 PM–3:00 PM | Snack Break
 Exhibit Hall |
| 1:45 PM–3:45 PM | Poster Presentations and Late Posters
 Exhibit Hall |
| 2:00 PM–4:00 PM | Teaching Science Like We Do Science
 Room 28CDE |
| 2:30 PM–3:30 PM | Career Development Center Workshop: The Industry Interview: What You Need to Do Before, During, and After to Get the Job
 Room 26A |
| 2:30 PM–4:00 PM | Exhibitor Presentation: Dynamic Biosensors GmbH
 switchSENSE® Biophysical Analysis with Electro-Switchable Biosurfaces
 Room 33C |
| 2:30 PM–4:00 PM | Science and Research in the Global Political Landscape: The US and China
 Room 29C |
| 3:30 PM–5:00 PM | Early Careers Committee Meeting
 Room 30D |
| 3:30 PM–5:00 PM | Exhibitor Presentation: Bruker Corporation
 Multiplexed Imaging and Superresolution Microscopy Using the Vutara 352 Microscope with Integrated Fluidics System
 Room 33A |
4:00 PM–5:00 PM Career Development Center Workshop: Nailing the Job Talk, or Erudition Ain’t Enough Room 26A

4:00 PM–6:00 PM Biophysical Journal Associate Editors Meeting Room 30E

4:00 PM–6:00 PM Symposium: Anion Channels Ballroom 20A
Chair: Criss Hartzell, Emory University
MECHANISMS OF CLC CL-/H+ TRANSPORTERS. Merritt Maduke
INTRACELLULAR CLC TRANSPORTERS - FROM KIDNEY STONES TO INTELLECTUAL DISABILITY. Michael Pusch
GATING DYNAMICS, REGULATION AND PHARMACOLOGY OF THE CFTR ANION CHANNEL. László Csánydy
AMAZING ANOCTAMINS (TMEM16) ALL AROUND. Criss Hartzell

4:00 PM–6:00 PM Symposium: “Fuzzy” Interactions and Crowding Ballroom 20D
Chair: Catherine Musselman, The University of Iowa
THE SHAPE OF (INTRACELLULAR) WATER. Francesco Cardarelli
PROTEINS IN A CROWD UNDER HEAT AND PRESSURE. Margaret S. Cheung
ENCODING MULTIPHASE CYTOPLASMIC STRUCTURE. Clifford Brangwynne
A TALE OF FUZZY TAILS AND THEIR ROLE IN CHROMATIN STRUCTURE REGULATION. Catherine Musselman

4:00 PM–6:00 PM Platform: Membrane Protein Dynamics and Folding I Ballroom 20BC

4:00 PM–6:00 PM Platform: Neuroscience Room 23ABC

4:00 PM–6:00 PM Platform: Nucleic Acid Replication, Transcription, Translation, and Repair Room 24ABC

4:00 PM–6:00 PM Platform: Microtubules, Actin, Dynamics, and Associated Proteins Room 25ABC

4:00 PM–6:00 PM Platform: Optical and Force Microscopy Room 30ABC

4:00 PM–6:00 PM Platform: Excitation-Contraction Coupling Room 31ABC

4:00 PM–6:00 PM PI to PI: A Wine & Cheese Mixer Room 28AB

5:30 PM–7:00 PM Exhibitor Presentation: ELEMENTS SRL Room 33A
Low-Noise, Handheld Amplifiers for Electrophysiology and Nanopore Applications

6:00 PM–6:30 PM Korean Biophysicists Meeting Room 29AB

6:00 PM–8:00 PM Biophysics Austria Mixer Room 28CDE

6:00 PM–9:00 PM Student Research Achievement Award (SRAA) Poster Competition Exhibit Hall

6:15 PM–7:15 PM Scientific Societies and Grassroots Movements: What We All Can Do to Combat Sexual Harassment Ballroom 20D
Chair: Sharona Gordon, University of Washington
Panel:
Sharona Gordon, University of Washington
David W. Piston, Washington University School of Medicine in St. Louis
Billy M. Williams, American Geophysical Union
Gabriela K. Popescu, SUNY Buffalo

7:00 PM–9:00 PM Biophysical Society of Canada (BSC) Mixer Jolt’n Joe’s Gaslamp

7:30 PM–8:00 PM Dinner Meet-Ups Society Booth/Lobby G

7:30 PM–10:30 PM Biophysical Journal Editorial Board Dinner The Ultimate Skybox at Diamond View Tower
Sunday, February 16

Biophysical Journal Editorial Board
Boot Camp
7:00 AM - 9:00 AM, ROOM 32A

Postdoctoral Breakfast
Tales From Two Sides of Recruitment
7:30 AM - 8:30 AM, ROOM 29AB

Support contributed by the Burroughs Wellcome Fund.

This breakfast presents an opportunity for postdoctoral Annual Meeting attendees to meet and discuss the issues they face in their current career stage. Limited to the first 100 attendees.

Moderators
Anthony Cammarato, Johns Hopkins University
Harpreet Singh, The Ohio State University

Speakers
Greg Harris, San Diego State University
Stephanie Grainger, San Diego State University
Peter Yingxiao Wang, San Diego State University
Lingyan Shi, San Diego State University

Registration/Exhibitor Registration
7:30 AM - 5:00 PM, LOBBY G

Poster Viewing
8:00 AM - 10:00 PM, EXHIBIT HALL

Symposium
Asymmetric Membranes
8:15 AM - 10:15 AM, BALLROOM 20A

Chair
Georg Pabst, University of Graz, Austria

No Abstract
8:15 AM
VPS13 PROTEINS ARE CHANNELS THAT TRANSPORT LIPIDS BETWEEN MEMBRANES. Karin Reinsch

13-SYMP
8:45 AM
STRUCTURAL BASIS OF LIPID AND ION TRANSPORT BY TMEM16 SCRAM-BLASES. Alessio Accardi

14-SYMP
9:15 AM
DYNAMIC IMAGING OF MEMBRANE HYDRATION. Sylvie Roke

15-SYMP
9:45 AM
ASYMMETRIC LIPID BILAYERS: INSIGHTS FROM LEAFLET-SPECIFIC STRUCTURAL STUDIES. Georg Pabst

Symposium
Single-Molecule Visualization of Transcription, Translation and Splicing
8:15 AM - 10:15 AM, BALLROOM 20D

Chair
Magnus Johansson, Uppsala University, Sweden

16-SYMP
8:15 AM
DYNAMIC IMAGING OF NASCENT RNA REVEALS GENERAL PRINCIPLES OF TRANSCRIPTION AND SPlicing. Daniel R. Larson

17-SYMP
8:45 AM
IMAGING NON-CANONICAL TRANSLATION DYNAMICS OF SINGLE RNA IN LIVING CELLS. Timothy J. Stasevich

18-SYMP
9:15 AM
GENE REGULATION BY BACTERIAL SMALL RNA AND RNA CHAPERON HFQ. Jingyi Fei

19-SYMP
9:45 AM
LIVE-CELL SINGLE-MOLECULE TRACKING FOR PROTEIN SYNTHESIS KINETICS MEASUREMENTS. Magnus Johansson

Platform
Intrinsically Disordered Proteins (IDP) and Aggregates I
8:15 AM - 10:15 AM, BALLROOM 20BC

Co-Chairs
Loren Hough, University of Colorado Boulder
Sumaiya Iqbal, Broad Institute

20-PLAT
8:15 AM
BURDEN OF FUNCTIONAL FEATURES AND GENETIC VARIATIONS IN HUMAN INTRINSICALLY DISORDERED PROTEINS. Shehab Ahmed, Zaara Rifat, Arthur J. Campbell, A. Keith Dunker, Sohel Rahman, Sumaiya Iqbal

21-PLAT
8:30 AM
DISSECTING THE MOLECULAR MECHANISM OF THE YEAST CELULAR STARVATION RESPONSE VIA IN-CELL NMR. Jeﬀre Allen, Kathryn P. Wall, Lindsey Hamblin, Jenna Trost, Loren E. Hough

22-PLAT
8:45 AM
PROGRAMMABLE PHASE BEHAVIOR IN BIOPOLYMER SOLUTIONS. William M. Jacobs

23-PLAT
9:00 AM
ALPHA-HELICAL STRUCTURE IN TDP-43 TUNES LIQUID-LIQUID PHASE SEPARATION AND CELLULAR FUNCTION. Alexander E. Concella, Gregory Dignon, G¨ul H. Zerze, Broder Schmidt, Alexandra M. D’Ordine, Youngchan Kim, Rajat Rohatgi, Yuna M. Ayala, Jeetain Mittal, Nicola S. Fawzi

24-PLAT
9:15 AM
FLASH TALKS

25-PLAT
9:30 AM
THE DYNAMIC SEARCH MODE OF A DISORDERED TRANSCRIPTION FACTOR. Conor Kelly, Mikhail Kuravsky, Christina Redﬁeld, Sarah L. Shammas

26-PLAT
9:45 AM
MODELING AMYLOID AGGREGATES USING MACHINE LEARNING AND STRUCTURAL PREDICTIONS. Malgorzata Kotulska, Jakub Wojciechowski, Michal Burdikiewicz

27-PLAT
10:00 AM
EVOLUTIONARILY CONSERVED AMINO ACID ORGANIZATION IN PROTEIN LOW COMPLEXITY REGIONS ENCODES CONFORMATION, DYNAMICS AND ASSEMBLY. Erik W. Martin, Alex S. Holehouse, Ivan Peran, Jeremias Incicco, Andrea Soranno, Rohit V. Pappu, Tanja Mittag
Platform
Cardiac Muscle Mechanics and Structure
8:15 AM - 10:15 AM, Room 23ABC
Co-Chairs
Mathias Gautel, King’s College London, United Kingdom
Rhye-Samuel Kanassatega, University of Arizona

27-PLAT
8:15 AM
HIGH-THROUGHPUT PRODUCTION AND BIOPHYSICAL CHARACTERIZATION OF WILD TYPE AND VARIANT TITIN DOMAINS. Martin Rees, Alexander Alexandrovich, Roksana Nikoopour, Sarah Grover, Anna Laddach, Franca Fraternali, Heinz Jungbluth, Mathias Gautel

28-PLAT
8:30 AM
THE SPECIFIC CLEAVAGE OF TITIN SPRINGS TO QUANTIFY THE CONTRIBUTION OF TITIN TO MYOCARDIAL PASSIVE STIFFNESS. Johanna K. Freundt, Christine Loescher, Andreas Unger, Ivan Liashkovich, Yong Li, Julio M. Fernandez, Wolfgang A. Linke

29-PLAT
8:45 AM
BAG3 LOCALIZES TO THE MATURE SARCOMERE AND MAINTAINS MYOFILAMENT FUNCTION. Thomas Martin

30-PLAT
9:00 AM
IMPACT OF MAVACAMTEN ON FORCE GENERATION IN SINGLE MYOFIBRILS FROM RABBIT PSOAS AND HUMAN CARDIAC MUSCLE. Beatrice Scellini, Nicoletta Piorddi, Marica Dente, Cecilia Ferrantini, Raffaele Coppini, Corrado Poggesi, Chiara Tesi

31-PLAT
9:15 AM
FRET MEASUREMENTS OF THE POWER STROKE IN HUMAN CARDIAC MYOSIN. Wanjian Tang, Jinghua Ge, Rohini Dessety, Christopher M. Yengo

32-PLAT
9:30 AM
STRUCTURE OF THE ACTIN-TROPOMYSIN-TNT COMPLEX. Matthew Doran, Anita Ghosh, William Lehman, Esther Bullitt

33-PLAT
9:45 AM
MECHANICAL SIGNATURES DRIVING HCM AND DCM REVEALED IN HUMAN ENGINEERED HEART TISSUES EXPRESSING CARDIOMYOPATHY-ASSOCIATED VARIANTS IN TPM1. Lorenzo R. Sewanan, Stuart G. Campbell

34-PLAT
10:00 AM
TRAVEL Awardee
A FRET-BASED BIOSENSOR FOR DETECTING PHOSPHORYLATION-DEPENDENT STRUCTURAL DYNAMICS IN HUMAN MYOSIN BINDING PROTEIN-C. Rhye-Samuel Kanassatega, Thomas A. Bunch, Christopher Wang, Victoria C. Lepak, Brett A. Colson

Platform
Member Organized Session: Multiscale Genome Organization
8:15 AM - 10:15 AM, Room 24ABC
Co-Chairs
Yamini Dalal, National Cancer Institute
Tamar Schlick, New York University, HHMI

35-PLAT
8:15 AM
A BALANCE BETWEEN ELASTIC AND RIGIDIFIED CENP-A NUCLEOSOMES GOVERN CENTROMERIC CHROMATIN FIDELITY. Daniël P. Melters, Mary Pitman, Tatini Rakshit, Emilios K. Dimitriadis, Minh Bui, Garegin A. Papoian, Yamini Dalal

36-PLAT
8:30 AM
NUCLEOSOME CLUTCHES IN CHROMATIN ARE TIGHTLY REGULATED BY NUCLEOSOME POSITIONS AND LINKER HISTONE DENSITY. Stephanie Portillo, Lucille H. Tsoa, Tamar Schlick

8:45 AM
UNRAVELING THE NUCLEOSOME THROUGH MICROSCOPIC SIMULATIONS. David N. Winogradoff, Aleksei Aksimentiev

9:00 AM
COMPUTATIONAL MODELING OF NUCLEOSOMAL MECHANICS AND EPIGENETIC MODIFICATIONS. Mary Pitman, Yamini Dalal, Garegin A. Papoian, Daniël P. Melters, Tatini Rakshit, Emilios K. Dimitriadis, Minh Bui

9:15 AM
A LIBRARY FOR COMPARATIVE ALL ATOM STUDIES OF NUCLEOSOMES. Ran Sun, Thomas C. Bishop

9:30 AM
ELUCIDATING ARCHAEOAL CHROMATIN “SLINKY” DYNAMICS THROUGH SIMULATION AND EXPERIMENT. Samuel Bowerman, Daren Kraft, Jeff Wereszczynski, Karolin Luger

9:45 AM
ANALYZING NUCLEOSOME PLASTICITY VIA ATOMIC MD SIMULATIONS. Anastasia Kniazeva, Grigorii Armeev, Iunona Pospelova, Alexey K. Shaytan

10:00 AM
CONNECTING NUCLEOSOMAL DNA FOLDING TO CHROMATIN ARCHITECTURE AND PROPERTIES. Steffjord Todolli, Wilma K. Olson

Platform
Ion Channel Regulatory Mechanisms
8:15 AM - 10:15 AM, Room 25ABC
Co-Chairs
Rose Dixon, University of California, Davis
Izhar Karbat, Weizmann Institute of Science, Israel

43-PLAT
8:15 AM
TRAVEL Awardee

44-PLAT
8:30 AM
B-ADRENERGIC RECEPTOR-MEDIATED SIGNALING PROMOTES ENHANCED SARCOLEMMLAL INSERTION OFQA.2 FROM RAB4-POSITIVE ENDOSONES. Silvia Garcia del Villar, Eamonn J. Dickson, Rose E. Dixon

45-PLAT
8:45 AM
HETEROMERIZATION OF KIR CHANNELS: PRINCIPLES OF ASSEMBLY AND PHYSIOLOGICAL SIGNIFICANCE. Alice Mett, Shachar Fine, Astrid Kollewe, Izhar Karbat, Bernd Fakler, Eitan Reuveny

46-PLAT
9:00 AM
ISOFORM-SPECIFIC REGULATION OF HCN4 CHANNELS BY A FAMILY OF NOVEL INTERACTING PROTEINS. Colin H. Peters, John Bankston, Cathy Proenza

47-PLAT
9:15 AM
NATIVE-STATE PROLYL ISOMERIZATION IS INVOLVED IN THE ACTIVATION OF A CNG CHANNEL. Philipp A. Schmidpeter, Crina M. Nimigean

48-PLAT
9:30 AM
STEPWISE DISSOCIATION OF AN INNER GATE CONTROLS PORE OPENING IN THE CALCIUM-ACTIVATED CHLORIDE CHANNEL TMEM16A. Andy Lam, Raimund Dutzler
<table>
<thead>
<tr>
<th>Platform</th>
<th>Membrane Protein Structures</th>
<th>8:15 AM - 10:15 AM, ROOM 30ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-Chairs</td>
<td>Lise Arleth, University of Copenhagen, Denmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James Gumbart, Georgia Institute of Technology</td>
<td></td>
</tr>
</tbody>
</table>
| 51-Plat | 8:15 AM | CANCER-ASSOCIATED MUTATIONS CO-LOCATE WITH TRPA1 HINGE FORMATION IN THE ANKIRYN REPEAT REGION.
Subir Sahu, Justen Elenewski, Michael Zwolak |
| 52-Plat | 8:30 AM | CRYOEM STRUCTURE OF THE VIBRIO CHOLEREA TYPE IV PILUS SECRETION PILQ.
Sara J. Weaver, Matthew Szinsky, Triana Dalia, Ankur Dalia, Grant J. Jensen |
| 53-Plat | 8:45 AM | SMALL-ANGLE NEUTRON SCATTERING SHOWS THAT THE SOLUTION STRUCTURES OF THE BACTERIAL MG²⁺-CHANNEL CORA ARE OVERALL SIMILAR WITH AND WITHOUT MG²⁺-BOUND.
Lise Arleth, Nicolai T. Johansen, Tone Bengtsen, Andreas Haahr Larsen, Frederik Tidemand, Thomas Pomorski, Kresten Lindorff-Larsen |
| 54-Plat | 9:00 AM | STRUCTURAL ORGANIZATION OF CAVEOLIN-1 85 OLIGOMERS DETERMINED BY CRYO-ELECTRON MICROSCOPY.
Bing Han, Jason Porta, Elad Binshtein, Erkan Karakas, Melanie D. Oh, Anne K. Kenworthy |
| 55-Plat | 9:15 AM | HIGHLY DYNAMIC C99 OLIGOMERIC STRUCTURE IN CHOLESTEROL AND SPHINGOMYELIN RICH BICELLES.
James Hutchison, Kuo-chih Shih, George Pantelopoulos, Haley Harrington, Kathleen Mittendorf, Holger Scheidt, Shuo Qian, Scott Collier, Melissa Chambers, Daniel Hunter, John Katsaras, Robert L. McFeeters, John E. Straub, Mu-Ping Nieh, Charles Sanders |
| 56-Plat | 9:30 AM | MODELING THE PLACEMENT OF THE ACRAB-TOLC MULTIDRUG EFFLUX PUMP IN THE BACTERIAL CELL ENVELOPE.
James C. Gumbart, Josie Ferreira, Sunny hwang, Anthony Hazel, Jerry M. Parks, Jeremy C. Smith, Morgan Beeby, Helen Zgrusikayu |
| 57-Plat | 9:45 AM | HUMAN ADENOSINE A₁R DIMERIZATION IS DRIVEN BY A C-TERMINAL MOTIF.
Khahn D.Q. Nguyen, Susanna Seppala, Michael Vigers, Nicole S. Schonenbach, Jennifer Hoover, Michelle A. O’Malley, Songi Han |
| 58-Plat | 10:00 AM | SINGLE-PARTICLE CRYO-EM OF MEMBRANE PROTEINS - SUCCESS STORIES AND CURRENT CHALLENGES.
Doreen Matthies, Biao Qiu, Chanhyung Bae, Eduardo Perozo, Kenton Swartz, Siriram Subramaniam, Olga Boudker, Zhiheng Yu |

Platform

Mechanosensation

8:15 AM - 10:15 AM, ROOM 31ABC

Co-Chairs

59-Plat 8:15 AM

MECHANOSENSITIVE CHANNELS IN PARABURKHOLDERIA GRAMINIS.
Brittini L. Miller, Hannah R. Malcolm

60-Plat 8:30 AM

STRUCTURING INNER-EAR MECHANOTRANSDUCTION.
Deepanshu Choudhary, Yoshiie Narui, Brandon Neel, Sanket Walujkar, Jeffrey M. Lotthammer, Joseph C. Sudar, Collin Nisler, Lahiru N. Wimalasena, Carissa F. Klasek, Pedro De-la-Torre, Conghui Chen, Raul R. Araya-Secchi, Elakiya Tamilselvan, Marcos Sotomayor

61-Plat 8:45 AM

INVESTIGATING THE INFLUENCE OF MEMBRANE PRETENSION ON SINGLE CELL MECHANOSENSITIVITY WITH FORCE-CONTROLLED MICROPETTIES.
Ines Lüchtefeld, Christoph Gabelein, Janos Voros, Boris Martinac, Tomaso Zamelli, Massimo Vassalli

62-Plat 9:00 AM

MAPPING THE DISTRIBUTION OF MECHANICAL STRESSES IN THE LINC COMPLEX.
Kamyar Behrouzi, Zeinab Jahed, Mohammad R. Mofrad

63-Plat 9:15 AM

NUCLEAR MECHANOSENSATION REGULATES IMMUNOLOGICAL SENSITIVITY OF MACROPHAGE ACTIVATION.
Dong-Hwee Kim

64-Plat 9:30 AM

BACTERIAL-LIKE MECHANOSENSITIVE CHANNELS CONTROL INFECTIVITY AND ORGANELLE DYNAMICS IN PROTOZOAN PARASITES.
Joshua Fonbuena, Ingrid Augusto, Tiffine Pham, Melvin Williams, Kildare Miranda, Veronica Jimenez

65-Plat 9:45 AM

COLLECTIVE MECHANOSENSING REGULATES THE AGONIST-INDUCED CALCIUM RESPONSE IN SMOOTH MUSCLE CELLS.
Suzanne E. Stasiak, Ryan J. Jamieson, Harikrishnan Parameswaran

66-Plat 10:00 AM

PROPAGATION OF MEMBRANE TENSION IN NEURONAL AXONS.
Zheng Shi, Adam E. Cohen

CID Committee Meeting

8:30 AM - 10:30 AM, ROOM 30D

Career Development Center Workshop

Networking for Nerds: How to Create Your Unicorn Career

9:00 AM - 10:00 AM, ROOM 26A

Wanna land your dream job? Get ready to network! Most jobs and other game-changing career opportunities are not advertised, and even if they are, there is usually a short-list of candidates already in mind. So how do you find out about and access the 90% of jobs and other opportunities that are “hidden”? In this workshop, we will focus on proven networking strategies and tactics to identify new opportunities, locate decision-makers within organizations, solidify your reputation and brand in the minds of those who hire, and gain access to hidden jobs and game-changing opportunities. Discover how networking and self-promotion can enable you to land or even create your dream job from scratch!
In this presentation we will discuss the recent advances in HPLC, field flow fractionation (FFF) and composition gradient (CG) coupled with multi-angle light scattering (MALS). The use of HPLC has expanded beyond size exclusion chromatography to include ion-exchange, reversed phase and hydrophobic interaction chromatography that enables the assessment of other properties and various types of molecules such as antibody drug conjugates. FFF-MALS is a gentle separation technique that allows for the separation of a wide range of particle sizes in a single channel with low shear. It is done entirely in a liquid stream and is well suited to utilizing the same separation buffer in which the molecules have been formulated, eliminating the worry that the elution buffer may be affecting the molecule in some way. With CG-MALS the user is able to study protein interaction with other molecules of interest again all in solution and label free.

We invite you to join us in this discussion of the newest uses to discover how they might apply to the next breakthrough in your research.

Speaker
Kevin McCowen, Regional Manager, Wyatt Technology

Symposium
Mapping the Immune System
10:45 AM - 12:45 PM, BALLROOM 20A

Chair
Brian Baker, University of Notre Dame

NO ABSTRACT
10:45 AM
A SYSTEMS APPROACH TO ENGINEERED IMMUNITY - FROM MOLECULES AND CELLS TO PATIENTS. Krishnendu Roy

67-SYMP
11:15 AM
HOW TO HIT HIV WHERE IT HURTS. Arup Chakraborty

68-SYMP
11:45 AM
MULTI-SCALE COMPUTATIONAL MODEL OF IMMUNE CELL ACTIVATION IN CANCER. Stacey D. Finley

NO ABSTRACT
12:15 PM
DEMYSTIFYING CROSS-REACTIVITY IN CELLULAR IMMUNITY. Brian M. Baker

Symposium
Cytoskeleton and Motility
10:45 AM - 12:45 PM, BALLROOM 20D

Chair
Joseph Falke, University of Colorado Boulder

69-SYMP
10:45 AM
HOW DOES THE ACTIN CYTOSKELETON REGULATE DISTRIBUTION AND DIFFUSION OF MEMBRANE COMPONENTS? Barbara Baird, David Hollowka

70-SYMP
11:15 AM
REGULATION OF ACTIN AND MEMBRANE DYNAMICS BY CLASS I MYOSINS. Mira Krendel

71-SYMP
11:45 AM
MECHANOCHEMICAL CIRCUITS IN THE CYTOPLASM. Margaret Gardel
Symposium
Mitochondrial Calcium Fluxes
10:45 AM - 12:45 PM, BALLROOM 20BC
Chair
Gyorgy Csordas, Thomas Jefferson University

73-SYMP
10:45 AM
MITOCHONDRIAL (ATP SYNTHASE) PERMEABILITY TRANSITION PORE. Elizabeth Jonas, Nelli Mnatsakanyan, Kambiz N. Alavian, Rongmin Chen

74-SYMP
11:15 AM
THE DUAL LIFE OF MITOCHONDRIAL F-ATP SYNTHASE. Paolo Bernardi, Ilidio Szabó, Giovanna Lippe, Christoph Gerle, Michael A. Forte

75-SYMP
11:45 AM
MITOCHONDRIAL CALCIUM AND CELL DEATH. Elizabeth Murphy

76-SYMP
12:15 PM
NON-UNIFORM DISTRIBUTION OF INNER MITOCHONDRIAL MEMBRANE TRANSPORT MECHANISMS IN THE CARDIAC MUSCLE. Gyorgy Csordas

Platform
Protein-Lipid Interactions I
10:45 AM - 12:45 PM, ROOM 23ABC
Co-Chairs
Brennica Marlow, Vanderbilt University
Phillip Stansfeld, University of Oxford, United Kingdom

77-PLAT
10:45 AM
STRUCTURAL DETERMINANTS OF CHOLESTEROL RECOGNITION IN HELICICAL MEMBRANE PROTEINS. Brennica Marlow

78-PLAT
11:00 AM
HIGH QUALITY METHYL-TROSY NMR STUDIES OF THE INTERACTIONS BETWEEN THE SMALL GTPASE ARF1 AND ITS ARFGAP ASAP1 AT THE MEMBRANE SURFACE. Yue Zhang, Olivier Soubias, Andrew Byrd

79-PLAT
11:45 AM
MOLECULAR MECHANISM OF SELECTIVE CHOLESTEROL UPTAKE IN CLASS B SCAVENGER RECEPTOR LIMP-2. Anna Liang, Christopher Ing, Richard L. Banh, Régis Pomès

80-PLAT
12:00 PM
SUPPORTED LIPID BILAYERS WITH ASYMMETRIC MEMBRANE PROTEINS: CONTROLLING THE PROTEIN ORIENTATION BY USING PEPTIDE-DISCs. Alessandra Luchini, Frederik G. Tidemand, Raul R. Araya-Secchi, Lise Arleth

81-PLAT
12:15 PM
MODELLING THE DYNAMIC ORGANISATION OF THE β1-ADRENERGIC RECEPTOR IN CROWDED MEMBRANES: FROM THE NANO TO THE MEGASCALE. Anna L. Duncan, Maximillian A.R. Bandurka, Wanling Song, Mark S.P. Sansom

82-PLAT
12:30 PM
ON-CELL MOTION OF SINGLE T4 BACTERIOPHAGES, A HIGHLY DYNAMIC TARGET-FINDING PROCESS. Lisa Dreesens

83-PLAT
12:45 PM
INVESTIGATING THE INFLUENCES OF LIPID BINDING ON RHODOPSIN ACTIVATION USING NATIVE MASS SPECTROMETRY. Carolanne E. Norris, James E. Keener, Nitupa Weerasinghe, Michael F. Brown, Michael T. Marty

Biophysical Society
93-Plat 10:45 AM NANOSECOND DISTRIBUTION OF NUCLEAR SITES ANALYZED BY SUPERRESOLUTION Tiefbeeld CROSS-CORRELATION SPECTROSCOPY. Michele Oneto, Lorenzo Scipioni, Maria Sarmento, Isotta Cainero, Elena Cerutti, Simone Pellicci, Laura Furia, Pier Giuseppe Pellicci, Gaetano Ivan Dellino, Paolo Bianchini, Mario Farella, Enrico Gratton, Alberto Diaspro, Luca Lanzano

94-Plat 11:00 AM TRAVEL AWARDEE ADVANCEMENTS IN SUPERRESOLUTION CORRELATION ANALYSIS TO IMAGE ANOMALOUS DIFFUSION IN CROWDED ENVIRONMENTS. Lydia Kisley

95-Plat 11:15 AM GAG LATTICE DYNAMICS DETECTED BY TIME-LAPSE AND CORRELATIVE IPALM. Ipsita Saha, Saveez Saffarian

96-Plat 11:30 AM A NANOCAMERA SYSTEM FOR FAST SPECTRAL FLIM IN LIVING CELLS. Lorenzo Scipioni, Alexander Vailmitjana, Francesco Palomba, Alessandro Rossetta, Enrico Gratton

11:45 AM FLASH TALKS

97-Plat 12:00 PM CRYOGENIC SUPERRESOLUTION FLUORESCENCE CORRELATED WITH CRYOGENIC ELECTRON TOMOGRAPHY: COMBINING SPECIFIC LABELING AND HIGH RESOLUTION. Peter D. Dahlberg, Saumya Saurabh, Jiarui Wang, Annina M. Sartor, Wah Chiu, Lucy Shaprio, William E. Moerner

98-Plat 12:15 PM SUPERRESOLUTION 3D ORIENTATION IMAGING REVEALS NANOSCALE COMPOSITIONAL HETEROGENEITY IN LIPID MEMBRANES. Jin Lu, Besam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

99-Plat 12:30 PM LIVE-CELL INTRACELLULAR STORM IN THE PRESENCE OF OXYGEN WITH MEMBRANE-IMPERMEABLE ORGANIC FLUOROPHORES. Yongjia Lee, Duncan L. Nall, Pinghua Ge, Paul R. Selvin

Platform Protein Structure and Conformation I

10:45 AM - 12:45 PM, Room 30ABC

Co-Chairs Acacia Dishman, Medical College of Wisconsin Carrie Partch, University of California, Santa Cruz

109-Plat 11:00 AM FOLD-SWITCHING SETS THE STAGE FOR COOPERATIVITY AND COMPETITION IN THE CYANOBACTERIAL CIRCADIAN CLOCK. Carrie L. Partch, Jeffrey A. Swan, Joel C. Heisler, Andy LiWang

110-Plat 11:15 AM NMR STRUCTURES OF CLOSELY RELATED PROTEIN CONFORMATIONS. Andrei T. Alexandrescu, Anne Kaplan, Therese Tripler, Carolyn M. Teschke

111-Plat 11:30 AM UNDERSTANDING THE NATIVE FLUCTUATION OF PROTEIN CORES. Zhe Mei, John Treado, Lynne J. Regan, Zachary Levine, Corey O’Hern

11:45 AM FLASH TALKS

112-Plat 12:00 PM COMPUTATIONAL PREDICTION OF METAMORPHIC BEHAVIOR IN PROTEIN SEQUENCES. Lee-Ping Wang, Andy LiWang, Nanhao Chen, Madhurima Das, Xuejun Yao

113-Plat 12:15 PM PROBING THE CONFORMATIONAL FLEXIBILITY OF THE MUNC18-1/SYNAPTOIN-1A COMPLEX. Ioanna Stefani, Dirk Fasshauer

114-Plat 12:30 PM EVOLUTION AND FUNCTIONAL ADVANTAGES OF PROTEIN METAMORPHOSIS. Acacia F. Dishman, Robert Tyler, Jamie Fox, Michelle Lee, Jaime de Anda, Ernest Lee, Gerard C. Wong, Brian Volkman
Exploring Careers in Biophysics Day
11:15 AM - 3:00 PM, ROOM 28CDE
This free day for San Diego area high school and college students at the BPS 64th Annual Meeting kicks off with an Undergraduate Student Pizza “Breakfast” where participants will have an opportunity to network with their peers and members of the Biophysical Society’s Education Committee in a fun and relaxed environment. The Breakfast will include a panel discussion on academic and career paths in biophysics, with times for questions and answers from the audience. Come prepared to find out about the course of study that aspiring biophysicists undertake, what it means to be a biophysicist, and how biophysicists make important discoveries. Attendees will be permitted to attend any of the meeting’s open sessions and activities for the full day, including the Education & Career Opportunities Fair where they can meet with representatives of, and learn about, opportunities from around the world. In addition, there will be some fun, interactive demos for students to learn about ground-breaking techniques in the field. Pre-registration was required.

Undergraduate Student Pizza “Breakfast”
11:30 AM - 1:00 PM, ROOM 28CDE
This “breakfast” for undergraduate students offers a valuable networking and social opportunity to meet other students, Biophysical Society Committee members, and scientists at all career levels to discuss academic goals and questions, and to develop a biophysics career path. The Breakfast will include a panel discussion on academic and career paths in biophysics, with opportunities for questions and answers from the audience - come prepared to find out about the course of study that aspiring biophysicists undertake, what it means to be a biophysicist, and how biophysicists make important discoveries. Space for this session is limited to the first 100 attendees.

Career Panel
Angel Payan, University of California, San Diego
Maria Colorado, Stanford Health Care
Annette Medina, Gilead Sciences

Career Talk
Carmilia Jimenez, Ajinomoto Bio-Pharma Services

Exhibitor Presentation
NanoSurface Biomedical
11:30 AM - 1:00 PM, ROOM 33A
Recreating the Extracellular Matrix in a Dish
Cells in the body use a variety of cues (e.g., structural, mechanical, electrical, and chemical) from the extracellular matrix (ECM) to develop and mature physiologically. These influential cues help regulate a broad spectrum of processes such as cell signaling, division, and differentiation. Many in vitro platforms seek to incorporate these cues into the cell’s microenvironment, but often fail, suffering from lack of reproducibility and incompatibility with other well-established end-point assays. Here, we demonstrate biomimetic in vitro platforms capable of reliably reproducing these essential ECM cues. These platforms markedly improve the structural and functional development of a variety of cell types, including stem cells, cardiomyocytes, muscle cells, and many more. Specifically, we show how NanoSurface Plates and Cytostretcher Cell-stretching Instruments can be utilized individually or collectively to study various model systems. The effects of cell-nanotopography interactions on adhesion, signaling, polarity, and migration across many applications such as human epithelia, cardiovascular function, and cancer biology are highlighted. Further, we describe how the differentiation of stem cells can be enhanced by providing a more biomimetic culture environment, with a particular focus on iPSC-derived cardiomyocytes and skeletal muscle cells.

Speaker
Hamed Ghazizadeh, Product Manager, NanoSurface Biomedical

Career Development Center Workshop
Demystifying the Academic Job Search I:
Understanding the Search Process from the Perspective of Search Committees and Decoding Job Announcements
12:00 PM - 1:00 PM, ROOM 26A
What goes on inside search committees; the “black box” of the academic job search process? How are they constituted, what are their processes, and what do they look for when assessing applicants? Answers to these and other questions presented by Andrew Green, PhD a veteran of the academic job search and numerous search committees.

Public Affairs Committee Meeting
12:00 PM - 1:30 PM, ROOM 30D
BPS/IOP Advisory Board Meeting
12:00 PM - 4:00 PM, ROOM 32B
Exhibitor Presentation
Sutter Instrument
12:30 PM - 2:00 PM, ROOM 33C
Scientists Empowering Scientists
For over 45 years, Sutter Instrument has been collaborating with researchers. During this period, there have been many technological evolutions in patch clamp electrophysiology, and Sutter has introduced many new product families, including pipette pullers, manipulators, light sources, wavelength switchers, specialized microscopes and, most recently, fully integrated patch clamp amplifier systems. At this presentation, we will teach techniques, tips and tricks, and showcase new features, such as dynamic clamp capability.

The IPA®, Double IPA® and new dPatch® Ultra-fast, Low-noise Integrated Patch Clamp Amplifiers and SutterPatch® Software are being used for a variety of common experiments, including characterization of ionic current and recording synaptic events in tissue slices. We will demonstrate how the SutterPatch Software’s online measurements and sophisticated control of experimental workflow can be used to aid real-time decision-making and eventually simplify analysis.

Town Hall for Community Input on the National Academies Decadal Survey of Biological Physics
1:00 PM - 2:30 PM, ROOM 31ABC
The National Academies of Sciences, Engineering, and Medicine is undertaking a decadal survey of biophysics to look at how the approaches and tools of physics can help to answer important questions about living systems. A committee of experts will evaluate the current state of the field, identify important future research directions, and assess workforce and education needs. This study is funded by the National Science Foundation, and will serve as a guide for federal agencies and academic leadership as they make decisions regarding the future of biophysics. Community input for this study is critical—particularly given the interdisciplinary nature of the field—and this town hall will serve as an opportunity for members of the BPS community to express their thoughts directly to the committee members who are conducting the study. This town hall is open to all members of the BPS community, and we encourage your participation.

Speakers
William Bialek, Princeton University
Christopher Jones, National Academies of Sciences, Engineering, and Medicine
Steven Moss, National Academies of Sciences, Engineering, and Medicine
The World Outside the Lab
Following Your IDP Roadmap to the Career You Want
1:00 PM - 2:30 PM, ROOM 28AB
Finding a job is easy, finding the job you want requires a plan! In this interactive workshop, you will be guided through the creation of your Individual Development Plan (IDP) and will develop strategies for utilizing your IDP to find, land, and succeed in a career that fits you best. Learn how to identify what you desire and require a job, evaluate how well potential career fields match your needs, and develop goals to prepare for and land a position you will find satisfying and rewarding. Don’t settle for just any job, join us and plot your course to a fulfilling career! Speaker Heather Dillon has over a decade of experience in recruitment and advising, and has assisted hundreds of graduate students and postdoctoral fellows and their job searches and application materials and is devoted to helping trainees succeed in their chosen professions by providing career guidance and advice through seminars, workshops, and individual meetings.

Speaker
Heather Dillon, University of California, San Diego

Education & Career Opportunities Fair
1:00 PM - 3:00 PM, EXHIBIT HALL
Learn about the different leading biophysics programs and opportunities. This fair will give you the opportunity to speak to representatives from different institutions, agencies, and companies about their biophysics programs and opportunities. All those attending the Annual Meeting are encouraged to attend.

Exhibitor Presentation
Carl Zeiss Microscopy LLC
1:30 PM - 3:00 PM, ROOM 33A
Multiplex Mode for the LSM 9 Series with Airyscan 2: Fast and Gentle Confocal Superresolution in Large Volumes
The LSM 9 family with Airyscan 2 from ZEISS provides more options to enable the perfect balance of speed and resolution for today’s confocal-imaging needs. The new Multiplex mode extends sensitive Airyscan imaging to larger model systems with low expression levels by increasing acquisition speeds even further. It extracts more spatial information; hence, multiple lines can be imaged in a single line scan. This allows for larger acquisition steps to improve image acquisition speeds and reduce the illumination dosage to the sample. This novel concept allows rapid volumetric imaging with unprecedented resolution beyond what is available in traditional confocal systems today.

Airyscan 2 provides new data handling concepts, providing 6.6 times smaller data sizes and 5 times faster image reconstruction times. Further, optimized real time acquisition strategies employed with the LSM 9 family enable faster scan speeds for Airyscan 2, allowing higher data throughput.

Join this workshop and learn how the newest members of the ZEISS imaging portfolio, ZEISS LSM 9 series with Airyscan 2 can help you capture dynamic processes in volumes and improve your imaging experiments in completely new ways.

Speaker
Renée Dalrymple, Product Marketing Manager-Laser Scanning Microscopy, Carl Zeiss Microscopy LLC

Snack Break
1:45 PM - 3:00 PM, EXHIBIT HALL

Poster Presentations and Late Posters
1:45 PM - 3:45 PM, EXHIBIT HALL

Teaching Science Like We Do Science
2:00 PM - 4:00 PM, ROOM 28CDE
This interactive, hands-on workshop focuses on practice-applicable, easy-to-use strategies and tools that educators at any level of biophysical science education can use to assess what their students’ take away from their teaching, and where changes to their educational methods might be appropriate.

In the first hour of the workshop, we will review a set of assessment techniques commonly used in science education. Guided by provided workshop resources, participants will have opportunities to share first-hand experiences in round table discussions and collaborate, regardless of the extent of previous knowledge, to compose a personal assessment toolbox that aligns with their course objectives.

In the second hour, we will discuss how results from course assessment can be used to inform curricular decisions regarding program effectiveness. This bigger picture approach is not only relevant to program directors or department chairs, but will also result in a better awareness of every instructor of the holistic nature of a student's education.

Speakers
Gundula Bosch, Johns Hopkins University
Pedro Muñío, St. Francis University

Career Development Center Workshop
The Industry Interview: What You Need to Do Before, During, and After to Get the Job
2:30 PM - 3:30 PM, ROOM 26A
When does the interview begin? Much sooner than you think: it starts from the first point of contact you have with someone from the organization. And when does it end? Only when the offer is extended and accepted. Learn how to convert conversations and networking into interviews and interviews into job offers in this special presentation focusing on industry positions. Discover what you need to know and do throughout the interview process to demonstrate your value to the company and land the job. We will discuss common mistakes that job seekers make, and specific ways in which you can give yourself a competitive edge in the interview. Both academic and non-academic interviewing tactics will be addressed.
As US-China tensions continue to rise, what are the long-term repercussions for scientific research— an endeavor that has always thrived on collaborative efforts and global perspectives? What is the impact of university and federal agency investigations on the participation of Chinese institutions, with collaborations involving US scientists comprising the largest share.

The high level of US-China scientific collaboration has coincided with trade disputes and concerns about intellectual property theft. The United States Congress has begun to actively pursue legislation to protect the products of US research efforts from foreign governments. At the same time, the US agencies overseeing federal research grants have initiated investigations into grantees with undisclosed collaborative agreements with foreign governments amidst allegations of ‘double dipping.’

As US-China tensions continue to rise, what are the long-term repercussions for scientific research— an endeavor that has always thrived on collaborative efforts and global perspectives? What is the impact of university and federal agency investigations on the participation of Chinese nationals in the US scientific enterprise?

Science and Research in the Global Political Landscape The US and China

2:30 PM - 4:00 PM, ROOM 29C

Science has always thrived on collaborations, with many significant advances resulting from the coordinated efforts of multiple research teams, frequently based in different countries. China’s recent increased investment in science and technology has been accompanied by increasing numbers of international scientific collaborations involving scientists at Chinese institutions, with collaborations involving US scientists comprising the largest share.

The high level of US-China scientific collaboration has coincided with trade disputes and concerns about intellectual property theft. The United States Congress has begun to actively pursue legislation to protect the products of US research efforts from foreign governments. At the same time, the US agencies overseeing federal research grants have initiated investigations into grantees with undisclosed collaborative agreements with foreign governments amidst allegations of ‘double dipping.’

As US-China tensions continue to rise, what are the long-term repercussions for scientific research— an endeavor that has always thrived on collaborative efforts and global perspectives? What is the impact of university and federal agency investigations on the participation of Chinese nationals in the US scientific enterprise?

Exhibitor Presentation

Dynamic Biosensors GmbH

2:30 PM - 4:00 PM, ROOM 33C

switchSENSE® Biophysical Analysis with Electro-Switchable Biosurfaces

The presentation will highlight the broad range of applications of the switchSENSE® technology that is supported by the recently launched heliX® biosensor:

- Size and Conformational Change – Screening and ranking of small molecule induced conformational changes by de novo real-time conformation referencing
- Bispecific Antibodies – Bifunctional sensor functionalization, advanced ligand density control and two-color fluorescence detection for the in-depth analysis of bispecific binders
- Resolving the fastest kinetics with confidence using advanced microfluidics and 10 ms data collection
- DNA/RNA Binding Proteins – Flexible exchange of DNA/RNA targets for binding and enzymatic activity studies in real-time
- From Small Molecules to Cells – Chip functionalization solutions for the biophysical characterization of very small or very large structures

Speakers

Ulrich Rant, CEO, Dynamic Biosensors GmbH
Aishwarya Mahadevan, Application Specialist, Dynamic Biosensors Inc

Early Careers Committee Meeting

3:30 PM - 5:00 PM, ROOM 30D

Exhibitor Presentation

Bruker Corporation

3:30 PM - 5:00 PM, ROOM 33A

Multiplexed Imaging and Superresolution Microscopy Using the Vutara 352 Microscope with Integrated Fluidics System

The Vutara 352 super resolution microscope has been designed for single molecule localization microscopy in multiple types of biological samples. However, most current methods for super resolution microscopy are limited to three- to four-targets due to the limited number of dyes compatible with quality super resolution techniques. This talk presents a method for multiplexing single molecule localization microscopy imaging within a biological sample through the use of an integrated automated microfluidics system. Probe multiplexing allows for the imaging of greater than four different targets within a cell. Using the Vutara 352 and integrated fluids unit we will show the three-dimensional oligoSTORM imaging of a multiplexed oligoPAINT labeled chromosome in individual human fibroblast cells along with 3D multi probe DNA-PAINT based single molecule localization data for antibody labeled targets in cell culture and tissue slices. The Vutara 352 with integrated fluids and SRX software provides a powerful suite of tools for simultaneous imaging, localization, visualization and statistical analysis of multiplexed single molecule super resolution data.

Speaker

Robert Hobson, Applications Scientist, Bruker Corporation

Career Development Center Workshop

Nailing the Job Talk, or Erudition Ain’t Enough

4:00 PM - 5:00 PM, ROOM 26A

Congratulations! You’ve made it to the finals and are suddenly facing the most important presentation of your life. Answers to your questions about how to structure your presentation, how much detail to include, what they are really looking for, etc.

Biophysical Journal Associate Editors Meeting

4:00 PM - 6:00 PM, ROOM 30E

Symposium

Anion Channels

4:00 PM - 6:00 PM, BALLROOM 20A

Chair

Criss Hartzell, Emory University

115-SYM

4:00 PM

MECHANISMS OF CLC CL/H+ TRANSPORTERS. **Merritt Maduke**

116-SYM

4:30 PM

INTRACELLULAR CLC TRANSPORTERS - FROM KIDNEY STONES TO INTELLECTUAL DISABILITY. **Michael Pusch**, Alessandra Picollo, Sara Bertelli, Giovanni Zifarelli, Elizabeth E. Palmer, Vera Kalscheuer

117-SYM 5:00 PM

GATING DYNAMICS, REGULATION AND PHARMACOLOGY OF THE CFTR ANION CHANNEL. **László Csanády**, Csaba Mihályi, Beáta Töröcsik

118-SYM

5:30 PM

AMAZING ANOCTAMINS (TMEM16) ALL AROUND. **Criss Hartzell**, Kuai Yu, Steven Foltz, Hyoung Choo, Jarred M. Whitlock
Symposium
“Fuzzy” Interactions and Crowding
4:00 PM - 6:00 PM, BALLROOM 20D

Chair
Catherine Musselman, The University of Iowa

119-SYMP 4:00 PM
THE SHAPE OF (INTRACELLULAR) WATER. Francesco Cardarelli

120-SYMP 4:30 PM
PROTEINS IN A CROWD UNDER HEAT AND PRESSURE. Margaret S. Cheung

121-SYMP 5:00 PM
ENCODING MULTIPHASE CYTOPLASMIC STRUCTURE. Clifford Brangwynne

NO ABSTRACT 5:30 PM
A TALE OF FUZZY TAILS AND THEIR ROLE IN CHROMATIN STRUCTURE REGULATION. Catherine Musselman

Platform
Membrane Protein Dynamics and Folding I
4:00 PM - 6:00 PM, BALLROOM 20BC

Co-Chairs
Estefania Barreto-Ojeda, University of Calgary, Canada
Heedok Hong, Michigan State University

122-PLAT 4:00 PM TRAVEL Awardee
INTERPLAY BETWEEN MEMBRANE CURVATURE AND CONFORMATIONAL STATES IN ABC TRANSPORTERS. Estefania Barreto-Ojeda, Patricia M. Bassereau, Daniel Levy, Peter D. Tieleman

123-PLAT 4:15 PM
C-TERMINAL REGION PLAYS A DIRECT ROLE IN HOMO- AND HETERODIMERIZATION OF A2A ADENOSINE RECEPTORS. Eric Sefah, Blake Mertz

124-PLAT 4:30 PM TRAVEL Awardee
INDUCING CONFORMATIONAL PREFERENCE OF A MULTIDRUG EFFLUX PUMP EMRE WITH A SINGLE MUTATION. Ampon Sae Her, Maureen Leninger, Nate Traaseth

125-PLAT 4:45 PM
INVESTIGATING THE CONFORMATIONAL DYNAMICS OF THE OUTER MEMBRANE LPS TRANSLOCOON LPTE. Francesco Fiorentino, Xing Yu Qiu, Joshua B. Sauer, Jani Reddy Bolla, Shahid Mehmood, Phillip J. Stansfeld, Carol V. Robinson

126-PLAT 5:00 PM
TRACKING CA(2+)ATPASE INTERMEDIATES IN REAL-TIME BY X-RAY SOLUTION SCATTERING. Harsha Ravishankar, Martin Nors Pedersen, Alya Sitsel, Cheng Li, Annette Duelli, Matteo Levantino, Michael Wulff, Andreas Barth, Claus Olesen, Poul Nissen, Magnus Andersson

127-PLAT 5:15 PM
TOWARDS UNDERSTANDING HOW WATER MODULATES MEMBRANE PROTEIN STABILITY. Dagan C. Marx, Karen G. Fleming

128-PLAT 5:30 PM
CHARACTERIZATION OF PROTEIN FOLDING DYNAMICS IN MEMBRANE-MIMETIC ENVIRONMENTS USING SINGLE-MOLECULE FLUORESCENCE SPECTROSCOPY. Andreas Hartmann, Simon Ollmann, Vadim Bogatyry, Georg Krainer, Michael Schlierf

129-PLAT 5:45 PM
MEMBRANE INDUCES CONTRACTION BUT NOT COLLAPSE OF THE DENATURED STATE OF A HELICAL MEMBRANE PROTEIN. Ruinquong Guo, Kristen A. Gaffney, Michael D. Bridges, Miyeon Kim, Wayne L. Hubbell, Tobin R. Sosnick, Heedok Hong

Platform
Neuroscience
4:00 PM - 6:00 PM, ROOM 23ABC

Co-Chairs
Isabella Farhy-Tselnicker, Salk Institute for Biological Studies
Paul Selvin, University of Illinois at Urbana-Champaign

130-PLAT 4:00 PM
ANTAGONISTS PHARMACOLOGICALLY CHAPERONE OPIOID RECEPTORS. Stephen Grant, Anand K. Muthusamy, Andres Collazo, Henry A. Lester

131-PLAT 4:15 PM
CHANGES IN NUMBER AND STRUCTURE OF NERVE RECEPTORS (AMPS) ASSOCIATED WITH MEMORY IN DISASSOCIATED HIPPOCAMPAL NEURONS. Paul R. Selvin, Chaoyi Jin, Sung Soo Jang, Pinghua Ge, Hee Jung Chung

132-PLAT 4:30 PM
ASTROCYTE EXPRESSION OF SYNAPSE PROMOTING GENES IS DEVELOPMENTALLY REGULATED BY NEURONAL AND ASTROCYTE ACTIVITY. Isabella Farhy-Tselnicker, Cari Dowling, Nicola J. Allen

133-PLAT 4:45 PM
COMPUTATIONAL MODELING OF SPATIAL PROPAGATION OF MEMBRANE VOLTAGE IN COMPLEX DENDRITIC GEOMETRIES. Miriam Bell, Christopher T. Lee, Padmini Rangamani

134-PLAT 5:00 PM
DEVELOPING NANOELECTRODES INTO ROBUST ELECTROPHYSIOLOGICAL TOOLS FOR ACCURATE AND PARALLEL RECORDING OF ACTION POTENTIALS FROM SINGLE CELLS. Zeinab Jahed, Yang Yang, huaxiao Yang, Allister McGuire, Aofei Liu, Xiao Li, Bianxiao Cui

135-PLAT 5:15 PM
BIOPHYSICAL MODEL OF THE VESTIBULAR HAIR CELL CALYX SYNAPSE. Aravind Chenrayan Govindaraju, Imran Quraishi, Anna Lysakowski, Ruth Anne Eatock, Robert M. Raphael

136-PLAT 5:30 PM
SCALING LAWS GOVERNING DENDRITIC MORPHOLOGY DEVELOPMENT OF DROSPHILALAMELANOGASTER CLASS IV NEURONS. Maijia Liao, Jonathon Howard

137-PLAT 5:45 PM
M-CURRENT INHIBITION IN HIPPOCAMPAL NEURONS TRIGGERS INTRINSIC AND SYNAPTIC HOMEOSTATIC RESPONSES AT DIFFERENT TEMPORAL SCALES. Bernard Attali, Jonathan Lezmy, Maxim Katsenelson, Boaz Sty, Hanna Gelman, Eliav Tikochinsky, Maya Lipinsky, Asher Peretz, Shira Burg, Inna Slutsky

Platform
Nucleic Acid Replication, Transcription, Translation, and Repair
4:00 PM - 6:00 PM, ROOM 24ABC

Co-Chairs
Achilles Kapanidis, University of Oxford, United Kingdom
Yang Liu, Johns Hopkins University

138-PLAT 4:00 PM
VERY FAST CRISPR ON DEMAND. Yang Liu, Roger Zou, Yuta Nihongaki, Shuaixin He, Shiva Razavi, Bin Wu, Taekjip Ha
139-Plat 4:15 PM
VISUALIZING ENDOGENOUS RNA POLYMERASE II PHOSPHORYLATION DYNAMICS AT A SINGLE GENE. Linda S. Forero Quintero, William Raymond, Tetsuya Handa, Matthew Saxton, Tatsuya Morisaki, Edouard Bertrand, Hiroshi Kimura, Brian Munsy, Timothy J. Stasevich

140-Plat 4:30 PM
SINGLE-MOLECULE ANALYSIS REVEALS THE MECHANISM FOR DNA OPENING IN TRANSCRIPTION INITIATION. Abhishek Mazumder, Richard H. Ebright, Achilles N. Kapanidis

141-Plat 4:45 PM

142-Plat 5:00 PM
VISUALIZING DYNAMIC TETHERING OF ARGONAUT TO SINGLE MRNA IN LIVE HUMAN CELLS REVEALS THE MECHANISM OF MRNA-MEDIATED TRANSLATIONAL SILENCING. Charlotte A. Cialek, Taiowa A. Montgomery, Timothy J. Stasevich

143-Plat 5:15 PM
STUDYING THE DYNAMICS OF PARTIALLY FOLDED NASCENT PEPTIDES ON THE RIBOSOME USING PET-FCS APPROACH. Manisankar Maiti, Marija Liutkute, Ekaterina Samatova, Joerg Enderlein, Marina V. Rodnina

144-Plat 5:30 PM
DAMAGE SEARCH MECHANISM OF HUMAN NER PROTEIN XPC-RAD23B AT THE SINGLE-MOLECULE LEVEL. Na Young Cheon, Ja Yl Lee

145-Plat 5:45 PM
DNA BRIDGING BY THE HOMOLOGOUS RECOMBINATION COMPONENT CTIP INVESTIGATED ON THE SINGLE DNA MOLECULE LEVEL. Robin Öz, Sean Michael Howard, Hanna Törnkvist, Sriram KK, Petr Cejka, Fredrik Westerlund

Platform
Microtubules, Actin, Dynamics, and Associated Proteins

4:00 PM - 6:00 PM, ROOM 25ABC

Co-Chairs
Richard McKenney, University of California, Davis
Kristen Skruber, University of Florida

146-Plat 4:00 PM
MOLECULAR MECHANISM FOR DIFFERENTIAL FORCE-REGULATED ACTIN BINDING BY VINCULIN AND ALPHA-CATENIN. Lin Mei, Santiago Espinosa de los Reyes, Matthew J. Reynolds, Shixin Liu, Gregory M. Alushin

147-Plat 4:15 PM
MICROTUBULE GATE TAU CONDENSATION TO SPATIALLY REGULATE MICROTBULBE FUNCTIONS. Ruensern Tan, Alieen Lam, Tracy Tan, Jisoo Han, Dan W. Nowakowski, Sergi Simo, Michael Vershinin, Kassandra M. Ori-McKenney, Richard J. McKenney

148-Plat 4:30 PM
THE C-TERMINAL DOMAIN OF TALIN FORMS A FORCE-RESPONSIVE, DIRECTIONAL CATCH BOND TO F-ACTIN. Leanna M. Owen, Nicolas A. Bax, William I. Weis, Alexander R. Dunn

149-Plat 4:45 PM
THE INNER JUNCTION COMPLEX OF THE CILIA IS AN INTERACTION HUB THAT INVOLVES TUBULIN POST-TRANSLATIONAL MODIFICATIONS. Ahmad Khalifa, Muneyoshi Ichikawa, Daniel Dai, Corbin Black, Katya Peri, Thomas McAleer, Shintaroh Kubo, Simon Veyron, Shun Kai Yang, Kaustuv Basu, Javier Vargas, Jean-Francois Trempe, Susanne Bechstedt, Khanh Huy Bui

150-Plat 5:00 PM
PROFILIN-1 CONTROLS ACTIN NETWORK ORGANIZATION AND HOMEOSTATIC THROUGH COORDINATION WITH OTHER ASSEMBLY FACTORS. Kristen Skruber, Peyton Warp, Jessica Henty-Ridilla, Eric Vitriol

151-Plat 5:15 PM
COLLECTIVE MECHANOCHEMICAL EFFECTS IN MICROTBULBE DYNAMICS: THEORY AND SIMULATIONS. Kristian Blom, Maxim Igaev, Aljaz Godec, Helmut Grubmueller

152-Plat 5:30 PM
PATHWAYS FOR ACTIN POLYMERIZATION MEDIATED BY FORMINS. Naomi Courtemanche

153-Plat 5:45 PM
MICROTUBULE TREADMILLING RECONSTITUTED WITH A MINIMAL-COMPONENT IN VITRO SYSTEM. Goker Arpag, Elizabeth Lawrence, Marija Zanic

Platform
Optical and Force Microscopy

4:00 PM - 6:00 PM, ROOM 30ABC

Co-Chairs
Alvaro Alonso-Caballero, Columbia University
Megan Kern, University of North Carolina Chapel Hill

154-Plat 4:00 PM
ANISOTROPY RESOLVED MULTIDIMENSIONAL EMISSION SPECTROSCOPY (ARMES) AND CHEMOMETRIC MODELLING TO STUDY FORSTER RESONANCE ENERGY TRANSFER (FRET) PROCESSES. Fiona Gordon

155-Plat 4:15 PM
RAMAN SPECTROSCOPY AND ARTIFICIAL INTELLIGENCE TO PREDICT THE BAYESIAN PROBABILITY OF BREAST CANCER. Ragini Kothari, Veronica Jones, Dominique Mena, Viviana Bermudez, Youkang Shon, Jennifer Smith, Daniel Schmolze, Philip Cha, Yuman Fong, Michael Storrie-Lombardi

156-Plat 4:30 PM
NONSPECIFIC PROBE BINDING AND AUTOMATIC GATING IN FLOW CYTOMETRY AND FLUORESCENCE ACTIVATED CELL SORTING (FACS). Bhaven A. Mistry, Tom Chou

157-Plat 4:45 PM
GOLD NANOISLAND SUBSTRATES AS UNIFORM SERS SUBSTRATES FOR SENSITIVE DETECTION OF BONE MARROW-DERIVED MESENCHYMAL STROMAL CELLS FINGERPRINTS. Adrianna Milewska, Vesna Zivanovic, Virginia Merk, Olafur E. Sigurjónsson, Janina S. Kneipp, Kristjan Leosson

158-Plat 5:00 PM
A THERMODYNAMIC FRAMEWORK FOR DYNAMIC FORCE SPECTROCOPY. Alan Y. Liu, Todd A. Sulchek

159-Plat 5:15 PM
COMBINED AFM AND VERTICAL LIGHT SHEET MICROSCOPY TO CORRELATE ACTIN ACCUMULATION TO ENGULFMENT FORCES DURING PHAGOCYTOSIS. Megan E. Kern, Evan F. Nelsen, Chad M. Hobson, Joe Hsiao, E. Timothy O’Brien, Michael R. Falvo, Richard Superfine

160-Plat 5:30 PM
BIOMOLECULAR DATA ASSIMILATION TO INTEGRATE HIGH-SPEED ATOMICS AND MAMMALIAN CYTOSIS. Antonio F. Fuchs, Jesse Huang, Richard H. Ebright, Jens H. Gundlach

161-Plat 5:45 PM
HIGH FORCE MAGNETIC TWEEZERS REVEAL THAT BACTERIAL ADHESION PILI ACT AS MEGADALTON-SCALE SCHOCK ABSORBERS. Alvaro Alonso-Caballero, Rafael Tapia-Rojo, Carmen L. Badilla, Julio M. Fernandez
Excitation-Contraction Coupling

4:00 PM - 6:00 PM, ROOM 31ABC

Co-Chairs
Donald Bers, University of California, Davis
Montserrat Samso, Virginia Commonwealth University School of Medicine

162-PLAT 4:00 PM
ELUCIDATION OF MECHANISM OF CA2+ INDUCED CA2+ RELEASE OF RYR2 REVEALED BY CRYO-EM. Takuya Kobayashi, Akihisa Tsutsumi, Nagomi Kurebayashi, Kei Saito, Takashi Sakurai, Masahide Kikkawa, Takashi Murayama, Haruo Ogawa

163-PLAT 4:15 PM
STRUCTURAL INSIGHT ON THE REGULATION OF RYR1 BY CALCIUM AND MAGNESIUM. Ashok R. Nayak, Alex H. Will, Joshua Lobo, Pablo Castro-Hartmann, Montserrat Samso

164-PLAT 4:30 PM
ALTERNATIVE SPLICING OF CAV \textsubscript{1.2 IN ARVC PATIENTS. Theresa Bourjau, Valentina Di Blase, Marta Campiglio, Maria Gigibergter, Barbara Schober, Teresa Stauber, Gabriela Pietrzyk, Andrea Baessler, Marcus Fischer, Stefan Wagner, Lars S. Maier, Karin P. Hammer

165-PLAT 4:45 PM
TRPV4 CONTRIBUTES TO PRO-ARRHYTHMIC CALCIUM SIGNALING IN CARDIOMYOCYTES OF AGED MICE. Deborah Peana, Timothy L. Domeier

166-PLAT 5:00 PM
CARDIAC CAMKII\textsubscript{A} MEMORY: HOW POST-TRANSLATIONAL-MODIFICATIONS ALTER CALMOLUNI AFFINITY. Mitchell Simon, Christopher Y. Ko, Sonya Baidar, Ravzan L. Cornea, Julie Bossuyt, Donald M. Bers

167-PLAT 5:15 PM
EFFECT OF BAPTA AND DYSFERLIN'S C2A DOMAIN ON RECOVERY OF CA2+ TRANSIENTS AFTER OSMOTIC SHOCK IN DYSFERLIN-NUL MYOFIBERS. Valery I. Lukyanenko, Joaquim M. Muriel, Robert J. Bloch

168-PLAT 5:30 PM
HUMAN BIN1 ISOFORMS MAINTAIN, REGENERATE AND ELICIT FUNCTIONAL EC-COUPING AND COUPONS IN ADULT RAT AND HUMAN INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES. Peter Lipp, Jia Guo, Qinghai Tian, Monika Barth, Wenyung Xian, Sandra Ruppenthal, Hans-Joachim Schaefer, Zhifen Chen, Alessandra Moretti, Karl-Ludwig Laugwitz

169-PLAT 5:45 PM
THE E258K-MYPBC3 MODELLED IN HCM PATIENT-DERIVED CARDIOMYOCYTES TO IDENTIFY THE PRIMARY IMPACT OF THE MUTATION VERSUS THE SECONDARY CHANGES DUE TO CARDIAC REMODELING. J. M. Pioner, Sonette Steczina, Giulia Vitale, Saffie Mohran, Chiara Palandri, Lorenzo Santini, Silvia Querceto, Marianna Langione, Elisabetta Cerbai, Chiara Tesi, Raffaele Coppini, Cecilia Ferrantini, Corrado Poggesi, Michael Regnier

A Wine & Cheese Mixer

4:00 PM - 6:00 PM, ROOM 28AB

You finally have a job working in biophysics, in industry or academia, with some funding and a lab, but you've realized that the career challenges continue. Come relax and network with your contemporaries and senior biophysicists over a beer or glass of wine. This event is a great chance to compare notes with colleagues and discuss one-on-one your unique solutions to issues that arise in the time between getting your job and getting your next promotion, including management of lab staff, getting your work published, and renewing your funding. Refreshments will be provided, with cash bar.

Exhibitor Presentation
ELEMENTS SRL

5:30 PM - 7:00 PM, ROOM 33A

Low-Noise, Handheld Amplifiers for Electrophysiology and Nanopore Applications

Ultra-portable and cost-effective amplifier technology is now a reality accessible to any electrophysiology research lab, thanks to Elements miniaturized products, based on our custom CMOS microchips.

In this presentation, we will be featuring our latest products through the hands-on experience of current customers from the US, Europe, and Japan. You will hear first-hand accounts about their research and the results they got using:

- The world’s smallest integrated patch clamp amplifier, ePatch
- A handheld nanopore kit for nanoparticle detection using disposable glass nanopore chips, eNPR

Attend this presentation to learn about:

- The advantages of using a versatile and compact nano-current amplifier technology
- Portable nanopore solution for protein detection using disposable nanopore chips
- How the world’s smallest and cheapest patch clamp amplifier is radically changing patch-clamp measurements
- Different user experience ranging from patch-clamp on live cells, to exosome detection using solid state nanopores, as well as lipid bilayer experiments

Complimentary Italian hors d’oeuvres and drinks will be served. Seating is limited.

Speakers
Federico Thei, Chief Executive Officer, ELEMENTS SRL
Alessandro Porro, Application Scientist, ELEMENTS SRL
Guilherme Henrique Bomfim, Researcher, New York University
Nelly Mnatsakanyan, Assistant Professor, Yale University
David Niedzwiecki, Scientist, Goeppert LLC
Mark Platt, Senior Lecturer, University of Loughborough
Masato Nishio, Tokyo University
Korean Biophysicists Meeting
6:00 PM - 6:30 PM, ROOM 29AB

Biophysics Austria Mixer
6:00 PM - 8:00 PM, ROOM 28CDE

Student Research Achievement Award (SRAA) Poster Competition
6:00 PM - 9:00 PM, EXHIBIT HALL

This session features students who are presenting posters at the Annual Meeting and have indicated at the time of abstract submission that they wish to participate in the competition. During the competition, students will deliver a five-to-seven minute oral presentation of their poster to one or more judges. Winners will be recognized on Monday evening prior to the Biophysical Society Lecture.

Scientific Societies and Grassroots Movements: What We All Can Do to Combat Sexual Harassment
6:15 PM - 7:15 PM, BALLROOM 20D

Join us for this critically important look at the NASEM report on sexual harassment and how scientific societies, including BPS, are taking responsibility and working to ensure safe, welcoming, inclusive environments for members and attendees.

Moderator
Sharona Gordon, University of Washington

Speakers
Sharona Gordon, University of Washington
David W. Piston, Washington University School of Medicine in St. Louis
Billy M. Williams, American Geophysical Union
Gabriela K. Popescu, SUNY Buffalo

Biophysical Society of Canada (BSC) Mixer
7:00 PM - 9:00 PM, JOLT’N JOE’S GASLAMP

Dinner Meet-Ups
7:30 PM - 8:00 PM, SOCIETY BOOTH/LOBBY G

Interested in making new acquaintances and experiencing the cuisine of San Diego? Meet at the Society Booth each evening Sunday (7:30 PM), Monday and Tuesday (6:00 PM), where a BPS member will coordinate dinner at a local restaurant.

Biophysical Journal Editorial Board Dinner
7:30 PM - 10:30 PM, THE ULTIMATE SKYBOX AT DIAMOND VIEW TOWER
SUNDAY POSTER SESSIONS
1:45 PM–3:45 PM, EXHIBIT HALL

Below is the list of poster presentations for Sunday of abstracts submitted by October 1. The list of late abstracts scheduled for Sunday is available in the Program Addendum, and those posters can be viewed on boards beginning with LB.

Posters should be mounted beginning at 6:00 PM on Saturday and removed by 5:30 PM on Sunday evening. Posters will be on view until 10:00 PM the night before presentation. Poster numbers refer to the program order of abstracts as they appear in the online Abstract Issue. Board numbers indicate where boards are located in the Exhibit Hall.

Odd-Numbered Boards 1:45 PM–2:45 PM | **Even-Numbered Boards** 2:45 PM–3:45 PM

<table>
<thead>
<tr>
<th>Board Numbers</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1–B35</td>
<td>Protein Structure and Conformation I</td>
</tr>
<tr>
<td>B36–B53</td>
<td>Protein Structure, Prediction, and Design I</td>
</tr>
<tr>
<td>B54–B74</td>
<td>Protein-Small Molecule Interactions I</td>
</tr>
<tr>
<td>B75–B96</td>
<td>Protein Dynamics and Allostery I</td>
</tr>
<tr>
<td>B97–B116</td>
<td>Membrane Protein Dynamics I</td>
</tr>
<tr>
<td>B117–B140</td>
<td>Intrinsically Disordered Proteins (IDP) and Aggregates I</td>
</tr>
<tr>
<td>B141–B160</td>
<td>DNA Structure and Dynamics I</td>
</tr>
<tr>
<td>B161–B179</td>
<td>RNA Structure and Dynamics</td>
</tr>
<tr>
<td>B180–B212</td>
<td>Protein-Nucleic Acid Interactions I</td>
</tr>
<tr>
<td>B213–B237</td>
<td>Membrane Physical Chemistry I</td>
</tr>
<tr>
<td>B238–B262</td>
<td>Membrane Dynamics I</td>
</tr>
<tr>
<td>B263–B287</td>
<td>Membrane Structure I</td>
</tr>
<tr>
<td>B288–B313</td>
<td>Membrane Receptors and Signal Transduction I</td>
</tr>
<tr>
<td>B314–B331</td>
<td>Excitation-Contraction Coupling I</td>
</tr>
<tr>
<td>B332–B344</td>
<td>Cardiac, Smooth, and Skeletal Muscle Electrophysiology I</td>
</tr>
<tr>
<td>B345–B356</td>
<td>Voltage-gated Ca Channels</td>
</tr>
<tr>
<td>B357–B385</td>
<td>Voltage-gated K Channels I</td>
</tr>
<tr>
<td>B386–B410</td>
<td>Ion Channels, Pharmacology, and Disease I</td>
</tr>
<tr>
<td>B411–B426</td>
<td>Skeletal and Smooth Muscle Mechanics, Structure, and Regulation</td>
</tr>
<tr>
<td>B427–B442</td>
<td>Actin Structure, Dynamics, and Associated Proteins</td>
</tr>
<tr>
<td>B443–B455</td>
<td>Bacterial Mechanics, Cytoskeleton, and Motility</td>
</tr>
<tr>
<td>B456–B471</td>
<td>Membrane Pumps, Transporters, and Exchangers I</td>
</tr>
<tr>
<td>B472–B476</td>
<td>Light Energy Harvesting, Trapping, and Transfer</td>
</tr>
<tr>
<td>B477–B488</td>
<td>Cellular Signaling and Metabolic Networks</td>
</tr>
<tr>
<td>B489–B500</td>
<td>Diffraction and Scattering Techniques</td>
</tr>
<tr>
<td>B501–B531</td>
<td>Molecular Dynamics I</td>
</tr>
<tr>
<td>B532–B566</td>
<td>Optical Microscopy and Superresolution Imaging I</td>
</tr>
<tr>
<td>B567–B586</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>B587–B606</td>
<td>Micro- and Nanotechnology I</td>
</tr>
</tbody>
</table>

It is the responsibility of the poster presenters to remove print materials from the board after their presentations. Please do not leave materials or belongings under poster boards or in the poster area. Posters will not be collected or stored for pick-up at a later time. The Biophysical Society is not responsible for any articles left in the poster area.
Protein Structure and Conformation I
(Boards B1 - B35)

170-Pos
BOARD B1
UNDERSTANDING FUNCTION OF MITOCHONDRIAL HSP70 WITH IN OR-GANELLO SINGLE-MOLECULE FRET. **Vanessa Trauschke**, Rupa Banerjee, Dejana Mokranjac, Don C. Lamb

171-Pos
BOARD B2
SQUEEZING PROTEINS AT THE UNFOLDING LIMIT. **Prabhat Tripathi**, Abdelkrim Bennabas, Paul M. Champion, Meni Wanunu

172-Pos
BOARD B3
LIQUID-OBSERVED VAPOR EXCHANGE (LOVE) NMR REVEALS RESIDUE-LEVEL EFFECTS OF PROTECTANTS ON A DRIED PROTEIN. **Candice J. Crilly**, Julia A. Noonan Brom, David A. Rockcliffe, Gary J. Pielak

173-Pos
BOARD B4
ATOMIC FORCE MICROSCOPY IMAGING REVEALS STRUCTURAL HETEROGENEITIES IN COLLAGEN TYPE IV MOLECULES. **Alaa Al-Shaer**

174-Pos
BOARD B5
THERMODYNAMICS OF PROTEIN-SURFACE BINDING - THE MODEL MAKES ALL THE DIFFERENCE. **Nicholas C. Fitzkee**, Kayla D. McConnell, Olivia C. Williams, Emily R. Chappell, Rebecca G. Manns

175-Pos
BOARD B6
FROZEN IN TIME - HOW PHOSPHORYLATION INDUCES CONFORMATIONAL REARRANGEMENT IN THE CIRCIRADIAN AAA'-ATPASE KAIC. **Colby R. Sandate**, Jeffrey A. Swan, Carrie L. Partch, Gabriel C. Lander

176-Pos
BOARD B7
ON THE ROLE OF THE SOLVENT ENVIRONMENT IN THE FOLDING AND UNFOLDING OF AMPHIPATHIC HELICES. **Natasha H. Rhys**, Nicola Steinke, Samvid Kurlekar, Christian D. Lorenz, Sylvia E. McLain

177-Pos
BOARD B8
PRESSURE PERTURBATION OF PROTEIN SECONDARY STRUCTURE COUPLED WITH MICROFLUIDIC MODULATION SPECTROSCOPY - A POWERFUL PLATFORM FOR BIOPHARMACEUTICAL FORMULATIONS DEVELOPMENT. **Alexander Lazarev**, Vera Gross, Libo Wang, Matthew McGann, Gary B. Smejkal, Nicole Cutri, Jeffrey A. Zonderman

178-Pos
BOARD B9
MECHANICS OF ADHESION MOLECULES PROBED BY MOLECULAR DYNAMICS AND HIGH-SPEED FORCE SPECTROSCOPY. Fidan Sumbul, Felix Rico

179-Pos
BOARD B10
A SYSTEMATIC REVIEW OF CHROMOGRAININ A (CGA) AND ITS BIO-MEDICAL APPLICATIONS, UNVEILING ITS STRUCTURE-RELATED FUNCTION. **Manhuyk Han**, Kyuhyung Choi, Seung Joong Kim

180-Pos
BOARD B11
SPR AND HDXMS ANALYSIS OF INTERACTIONS BETWEEN COMPLEMENT COMPONENT 3 AND THROMBOMODULIN. **Julia R. Koeppke**, Jose Giler

181-Pos
BOARD B12
AMYLOID BETA Oligomerization PROBED BY SINGLE-MOLECULE FRET. **Fanjie Meng**, Janghyun Yoo, Jae-Yeol Kim, Hoi Sung Chung

182-Pos
BOARD B13
THE STRUCTURE AND MECHANISM OF A UNIQUE RIESKE-TYPE MONO-OXYGENASE ENZYME FROM THE HUMAN GUT MICROBIOTA IMPLI-CATED IN CARDIOVASCULAR DISEASE. **Mussa Quareshy**, Murailitharan Shanmugam, Alexander D. Cameron, Timothy D. Bugg, Yin Chen

183-Pos
BOARD B14
STRUCTURAL INSIGHTS INTO AN ATP-DEPENDENT RIBOKINASE FROM ARABIDOPSIS THALIANA. Pyeoung-Ang Kang, Juntaek Oh, Haeehee Lee, Claus-Peter Witte, **Sangkee Rhee**

184-Pos
BOARD B15

185-Pos
BOARD B16
STRUCTURE OF SMYBP-C M DOMAIN. Lindsey M. Hensley, Nathan T. Wright

186-Pos
BOARD B17
PROBING LOCAL ENVIRONMENTS OF ADENYLATE KINASE WITH UN-NATURAL AMINO ACIDS. **Angelica Camilo**, Scott H. Brewer, Christine M. Phillips-Piro

187-Pos
BOARD B18
THE ELUCIDATION OF THE FORMATION PROCESS OF ZEBRAFISH TAIL FIN BY 3D MODEL USING ADVANCED TRANS-SCALE EM AND BY CLEM. Jun-pei Kuroda, Takeshi Itabashi, Takako Ichinose, Shigeru Kondo, Atsuko H. Iwane

188-Pos
BOARD B19
CRYSTAL STRUCTURE OF AN ANTI-CRISPR PROTEIN, ACRF2, AND ITS INTERACTION WITH TYPE I-F CAS PROTEINS. Donghyun Ka, Nayoung Suh, Euiyoung Bae

189-Pos
BOARD B20
UNRAVELING COMPLEX PROTEIN ENVIRONMENTS IN GREEN FLUORES-CENT PROTEIN USING THE UNNATURAL AMINO ACID 4-CYANO-L-PHENYLALANINE. **Brianna M. Papoutsis**, ByungUk Lee, Nathan Wong, Paul Nerenberg, Scott H. Brewer, Christine M. Phillips-Piro

190-Pos
BOARD B21
ELUCIDATING THE STRUCTURE OF AGGREGATION-PRONE INTERMEDIATES IN DIVERSE POINT MUTANTS OF HUMAN ID-CRYSTALLIN. **Jimmy Thai**, Eugene Serebryany, Eugene Shakhnovich

191-Pos
BOARD B22
STRUCTURAL AND FUNCTIONAL STUDIES ON A SMALL HEAT SHOCK PROTEIN FROM E. HISTOLYTICA. **Devanshu Kurre**

192-Pos
BOARD B23
INTEGRATED STRUCTURAL DYNAMICS OF CALMODULIN. **Narendar Kolimi**

193-Pos
BOARD B24
PORE FORMATION MECHANISM OF HUMAN GASDERMIN D. **Shiyu Xia**, Jianbin Ruan, Juan Lorenzo Pablo, Zhibin Zhang, Longfei Wang, Tian-Min Fu, Anna Greka, Judy Lieberman, Hao Wu

194-Pos
BOARD B25
USING ALPHA SHAPES TO CHARACTERIZE PROTEIN PACKING AND CAPTURE THE MULTISCALE ASPECTS OF ALLOSTERY. **Pranav M. Khade**, Ambuj Kumar, Robert L. Jernigan

195-Pos
BOARD B26
STRUCTURAL AND NANOMECHANICAL PROPERTIES OF GLYCATED COLLAGEN FROM MOLECULES TO TISSUE. **Dora Haluszka**, Jolán Hársfalvi, Miklós S. Kellermayer

196-Pos
BOARD B27
THE FUNCTION OF LYNX1 AND LYNX2 PROTEIN IN BINDING AFFINITY TO NICOTINIC RECEPTORS AND GENE RESTORATION. **Griffin M. Jones**
Protein-Small Molecule Interactions I
(Boards B54 - B74)

223-Pos
Board B54
ILLUMINATING THE STRUCTURAL DETERMINANTS FOR TETRAMERIC ASSEMBLY OF ONCOGENIC CTBP TO GUIDE INHIBITOR DESIGN.
William E. Royer, Jeffry C. Nichols, Celia A. Schiffer

224-Pos
Board B55
CORRELATIONS BETWEEN THERMODYNAMICS AND STRUCTURE OF CARBONIC ANHYDRASE-INHIBITOR BINDING.
Valida Paketuryte, Alexey Smirnov, Alberta Jankunaite, Audrius Zaksauskas, Edita Capkauskaite, Daumantas Matulis

225-Pos
Board B56
TRAVEL Awardee
LIGAND BINDING, UNBINDING AND ALLOSTERIC EFFECTS: DECIPHERING SMALL MOLECULE MODULATION OF HSP90.
Daniele Di Marino, Ilida D’Annessa, Stefano Raniolo, Vittorio Limongelli, Giorgio Colombo

226-Pos
Board B57
INTERPLAY OF CONFORMATIONAL PLASTICITY AND SUBSTRATE POLYMORPHISM IN MALARIAL TYROSYL-TRNA SYNTHETASE.
Manish Datt

227-Pos
Board B58
ER STRESS DIRECTLY ACTIVATES INFLAMMATORY RESPONSES THROUGH DAMP PRODUCTION.
Ying Fan, Darren F. Boehning, Askar M. Akimzhanov, Abdikarim Abdullahi, Marc Jeschke

228-Pos
Board B59
AN INTEGRATED COMPUTATIONAL APPROACH FOR THE DISCOVERY OF UBIQUITIN SPECIFIC PROTEASE 7 (USP7) INHIBITORS AS POTENTIAL CANCER THERAPIES.
Serdar Durdagi

229-Pos
Board B60
TRAVEL Awardee
TWO STEP MECHANISM OF AN ACTIVITY-BASED FLUORESCENT PROBE FOR CYCLOXYGENASE-2.
Andres S. Arango, Anuj Yadav, Christopher J. Reinhardt, Hannah C. Huff, Liang Dong, Aditi Das, Michael G. Malkowski, Jefferson Chan, Emad Tajkhoshyd

230-Pos
Board B61
THE EFFECT OF (-)-EPICHALLOATECHIN-3-GALLATE ON THE AB SECONDARY STRUCTURE.
Atanu Acharya, Julia Stockmann, Leon Beyer, Andreas Nabers, Klaus Gerwert, James C. Gumbart, Victor S. Batista

231-Pos
Board B62
MECHANISM OF PKR ACTIVATION BY SMALL MOLECULES.
Stephen J. Hesler, Vicky Godoy, **James L. Cole**

232-Pos
Board B63
CRYO-EM AS A TOOL FOR DRUG DEVELOPMENT INVOLVING AN INHIBITOR OF A 29 KDA PROTEIN.
Wei Huang, Hongyun Li, Joseph M. Ready, Sanford D. Markowitz, Derek J. Taylor

233-Pos
Board B64
THE ENTHALPY OF PROTEIN-LIGAND INTERACTION.
Asta Zubrien, Daumantas Matulis

234-Pos
Board B65
DILUTE VS NON-DILUTE FLOODING MOLECULAR DYNAMICS SIMULATIONS - WHERE DO WE DRAW THE LINE.
Leticia Stock, Leonardo Cirqueira, Werner Tretkow

235-Pos
Board B66
IDENTIFYING LIGAND BINDING SITES OF PROTEINS USING CRYSTALLOGRAPHIC BFACTORs AND RELATIVE POCKET SIZES.
Navya Shilpa Josyula, Constance Jeffery

236-Pos
Board B67
POLYETHYLENE GLYCOL SIZE AND PROTEIN-COMPLEX STABILITY.
Francis J. Lauzier, Claire J. Stewart, Daniel Harries, Gary J. Pielak, Shannon L. Speer

237-Pos
Board B68
THE CONSTRUCTION OF FUNCTIONALIZED BIO-INORGANIC NANOPORES AND ITS APPLICATION.
Sha Wang, Shuo Huang

238-Pos
Board B69
CALCULATION OF BACKBONE AND SIDE CHAIN CONFORMATIONAL ENTROPY CHANGES UPON BINDING OF PROLINE-RICH MOTIFS TO SH3 DOMAIN.
Jie Shi, Jae-Hyun Cho, Wonmuk Hwang

239-Pos
Board B70
STRUCTURAL BASIS OF P97 INHIBITION BY THE ANTI-CANCER COMPOUND CB-5083.
Di Xia, Wai-Kwan Tang

240-Pos
Board B71
FROM BRANCHES TO FIBERS - INVESTIGATING F-ACTIN NETWORKS WITH BIOCHEMISTRY AND MATHEMATICAL MODELING.
Melissa A. Riddle, Olga Askinazi, Callie Miller, Dorothy Schafer

241-Pos
Board B72
ABSOLUTE BINDING FREE ENERGY CALCULATIONS OF DRUGS TO THE HERG CHANNEL FOR THE PREDICTION OF CARDIOTOXICITY.
Tatsuki Negami, Tohru Terada

242-Pos
Board B73
MOLECULAR MECHANISM OF MELATONIN AND SEROTONIN AFFECTING THE AGGREGATION OF AMYLOID-B.
Yehong Gong, Yu Zhou, Qingwen Zhang

243-Pos
Board B74
INVESTIGATION OF THE IMPACT OF POST-TRANSLATIONAL MODIFICATIONS OF HNRP A18 ON SMALL MOLECULE INHIBITORS.
Katherine Coburn, Eduardo Solano-Gonzalez, Braden Roth, Paul T. Wilder, Kristen Varney, France Carrier, David J. Weber

Protein Dynamics and Allostery I
(Boards B75 - B96)

244-Pos
Board B75
SEARCHING FOR A MECHANISTIC DESCRIPTION OF PAIRWISE EPISTASIS IN PROTEIN SYSTEMS.
Jonathan Barnes, Kyle Martin, Craig Miller, F. Marty Ytreberg

245-Pos
Board B76
MAPPING THE ADENYLATED KINASE REACTION BY TIME-RESOLVED X-RAY SOLUTION SCATTERING.
Harsha Ravishankar, Jack Goodman, Martin Nors Pedersen, Michael Wulff, Matteo Levantino, Magnus Wolf-Watz, Magnus Andersson

246-Pos
Board B77
TRAVEL Awardee
USING FLUORESCENCE CORRELATION SPECTROSCOPY TO ACCURATELY MEASURE PROTEIN CONCENTRATION GRADIENTS IN THE PRESENCE OF NOISE AND PHOTobleaching.
Lili Zhang, Cécile Fradin

247-Pos
Board B78
S195A IS A CATALytically INACTIVE MUTANT OF THE PROTEASE DOMAIN OF THE UROKINASE-TYPE PLASMINOGEN ACTIVATOR (UPA).
Francis X. Alipranti, Mahima Masih, Constanza Torres-Paris, Elizabeth A. Kornives

248-Pos
Board B79
BACKBONE DYNAMICS AND CHEMICAL EXCHANGE OF PEROXIDEXIDOXIN Q FROM XANTHAMONAS CAMPESTRIS.
Aidan Estelle, Patrick N. Reardon, Seth Pinckney, Andrew Karplus, Elizar J. Barbar

249-Pos
Board B80
CONFORMATIONAL CONSEQUENCES OF PHOSPHOINOSITIDE BINDING TO DYSFERLIN C2A.
Shauna C. Otto, Patrick N. Reardon, Tanushri Kumar, Colin P. Johnson
Membrane Protein Dynamics I (Boards B97 - B116)

266-Pos BOARD B97 INVESTIGATING THE DYNAMICS IN VIBRIO CHOLERAE PATHOGENICITY BY SINGLE-MOLECULE PALM AND BAYESIAN STATISTICS. Eric D. Donarski, Josh D. Karslake, Lucas Demey, Victor J. DiRita, Julie Biteen

267-Pos BOARD B98 DEVELOPMENT AND IMPLEMENTATION OF A SINGLE-MOLECULE PLATFORM TO STUDY THE MECHANISM OF THE BETA-BARREL ASSEMBLY MACHINE COMPLEX. Megan E. Mitchell, Marcelo C. Sousa

268-Pos BOARD B99 INVESTIGATION OF THE SPATIO-TEMPORAL DYNAMICS OF GLUT4 IN CARDIOMYOCYTES. Anna Magdalena Koester

269-Pos BOARD B100 CADHERIN EXTRACELLULAR DOMAIN CLUSTERING IN THE ABSENCE OF TRANS-INTERACTIONS. Connor Thompson, Vinh H. Vu, Deborah E. Leckband, Daniel K. Schwartz

270-Pos BOARD B101 DETERMINING MEMBRANE PROTEIN INTERACTION KINETICS THROUGH SINGLE-MOLECULE IMAGING AND STOCHASTIC MODELING. Luciana R. de Oliveira, Khuloud Jaqaman

271-Pos BOARD B102 HOW DIFFERENT ANIONIC LIPIDS SORT DYNAMICS OF KRAS4B ON MODEL MEMBRANES, POPS VERSUS PIP2 IN MILLISECOND ALL ATOM MOLECULAR DYNAMICS SIMULATIONS. Van A. Ngo, Sumantra Sarka, Chris Neale, Angel E. Garcia

272-Pos BOARD B103 THE INFLUENCE OF LIPIDS ON THE ASSEMBLY OF AQUIPORIN Z. Batiste Thienpont, James N. Sturgis

273-Pos BOARD B104 DOMAINS OF ACTIVATED GPCRS MEDIATED BY MEMBRANE CURVATURE. Line Lauritsen, Christopher G. Shuttle, Efletheria Kazepeidou, Dimitrios Stamou

274-Pos BOARD B105 HIGH SPEED AFM IMAGING OF STRUCTURE AND DYNAMICS OF BACTERIAL ABC TRANSPORTER MSBA DURING LIPID TRANSPORT. XuanKien Ngo

275-Pos BOARD B106 EGF SIGNALING IN EPITHELIAL CARCINOMA CELLS UTILIZES HIGHER ORDER ARCHITECTURES OF EGF AND HER2. Adam J. Wollman, Charlotte Fournier, Isabel Llorente-Garcia, Oliver Harriman, Sviatlana Shashkova, Alex Hargreaves, Peng Zhou, Djamila Ouaret, Jenny Wilding, Akihiro Kusumi, Walter Bodmer, Mark C. Leake

276-Pos BOARD B107 BRIDGING BIOCHEMICAL ACTIVITIES WITH CONFORMATIONAL DYNAMICS OBSERVED IN ATOMIC FORCE MICROSCOPY. Kanokporn Chattrakun, David P. Hooperheide, Chunfeng Mao, Linda L. Randall, Gavin King
Intrinsically Disordered Proteins (IDP) and Aggregates I (Boards B117- B140)

277-Pos
BOARD B108
DYNAMIC INTERNAL MOTION OF GPCR ON LIVE CELLS. Masaki Ishihara, Shoko Fujimura, Kohei Ichiyangi, Shunsuke Nozawa, Shinichi Adachi, Ryo Fukaya, Masahiro Kuramochi, Hiroshi Sekiguchi, Kazuhiro Mio, Yuji C. Sasaki

278-Pos
BOARD B109
CORRELATION OF HIGH-SPEED AFM AND ELECTROPHYSIOLOGY MEASUREMENTS TO STUDY ION CHANNEL STRUCTURE-FUNCTION RELATIONSHIPS. Raghavendar Reddy Sanganna Gari, George R. Heath, Crina M. Nimigean, Simon Scheuring

279-Pos
BOARD B110
CARDIOLIPIN’S DOUBLE LIFE AS A SUBSTRATE AND DYNAMIC REGULATOR IN PRO-APOTOTIC LIPID PeroXIDATION. Mingyue Li, Abhishek Mandal, Vladimir A. Tyurin, Maria DeLucia, Jinwoo Ahn, Valerian Kagan, Patrick C.A. van der Wel

280-Pos
BOARD B111
EXPLORING THE PROTEIN-MEMBRANE INTERACTIONS ON THE INTRACELLULAR SIDE OF PRLR. Raul Araya-Secchi, Katrine Bugge, Birthe B. Kragelund, Lise Arleth

281-Pos
BOARD B112
RAS FAMILY MEMBER RIT1 INTERACTS WITH THE MEMBRANE VIA C TERMINAL PEPTIDE TAIL WITHOUT LIPID ANCHOR. Amy Migliori

282-Pos
BOARD B113
SINGLE MOLECULE IMAGING OF HIV-1 ENVELOPE DYNAMICS AND GAG LATTICE ASSOCIATION EXPOSES DETERMINANTS RESPONSIBLE FOR VIRUS INCORPORATION. Nairi Pezeshkian, Nicholas S. Groves, Schuyler B. van Engelenburg

283-Pos
BOARD B114
AN INVESTIGATION OF THE INFLUENZA HEMAGGLUTININ MEMBRANE FUSION PROCESS USING MICROSECOND-LEVEL MD SIMULATIONS. Vivek Govind Kumar, Dylan S. Ogden, Adithya Polasa, Mahmoud Moradi

284-Pos
BOARD B115
PROBING THE FUNCTIONAL RELEVANCE OF THE TIP-TO-TIP ACRA-TOLC STRUCTURAL MODEL. Isoiza Ojo, Yinan Wei

285-Pos
BOARD B116
STRUCTURAL DYNAMICS OF SINGLE METABOTROPIC GLUTAMATE RECEPTOR DIMERS. Robert Quast, Anne-Marinette Cao, Fatanneh Fatemi, Linnea Olofsson, Philippe Rondard, Jean Philippe Pin, Emmanuel Margeat

286-Pos
BOARD B117
INVESTIGATING THE CONFORMATIONAL ENSEMBLES OF INTRINSICALLY-DISORDERED PROTEINS WITH A SIMPLE PHYSICS-BASED MODEL. Yani Zhao, Robin Cortes-Huerto, Kurt Kremer, Joseph F. Rudzinski

287-Pos
BOARD B118
COOPERATIVE INHIBITION OF SNARE-MEDIATED VESICLE FUSION BY ALPHA-SYNUCLEIN MONOMER AND OLIGOMER. Gyeongji Yoo, Youn Jung Cho, Soojin Park, Nam Ki Lee

288-Pos
BOARD B119
MULTIVALENCY OF PROTEINS AND THEIR INTERACTIONS PREDICT THEIR PHASE SEPARATION. Dan Devi, Amy R. Strom, Gary Karpen, Samuel Safran

289-Pos
BOARD B120
TRAVEL Awardee
BIOPHYSICAL CHARACTERIZATION OF COVALENTLY MODIFIED PROTEIN TAU: OLIGOMERS, AGGREGATION, AND TUBULIN INTERACTIONS. Diana M. Acosta, David Eliezer

290-Pos
BOARD B121
TRAVEL Awardee
EXPLORING SERUM PROTEINS TO STABILIZE THE CONFORMATION OF THE PRECURSOR PROTEIN OF ANP. Yuji Hidaka, Hayato Ueda, Shigeru Shimamoto

291-Pos
BOARD B122
UNRAVELING THE MECHANISM OF FUNCTIONAL AND PATHOLOGICAL AMYLOID FORMATION FROM INTRINSICALLY DISORDERED PROTEINS. Mily Bhattacharya, Anjali Giri, Jaspreeet Kaur, Priyanka Dogra, Samrat Mukhopadhyay

292-Pos
BOARD B123
EFFECT OF FAMILIAL ALZHEIMER’S DISEASE MUTATIONS OF THE FOLDING FREE ENERGY OF AMYLOID BETA-PEPTIDE. Darcy S. Davidson, Joshua A. Kraus, Julia M. Montgomery, Justin A. Legleiter

293-Pos
BOARD B124
DOMAIN SWAPPING IN CRYSTALLIN PROTEINS CAN DRIVE EARLY STAGES OF CATARACT FORMATION. Govardhan Reddy Patluri, Balaka Mondal

294-Pos
BOARD B125
HUNTINGTIN AGGREGATION AND LIPID BINDING ARE INFLUENCED BY PHYSICOCHEMICAL PROPERTIES OF MEMBRANES. Maryssa Beasley, Sharon E. Groover, Nicolas C. Frazee, Blake Mertz, Stephen J. Valentine, Justin A. Legleiter

295-Pos
BOARD B126
THE DYNAMISM OF INTRINSICALLY DISORDERED PROTEINS IN LIQUID-LIQUID PHASE SEPARATION. Samrat Mukhopadhyay, Anupa Majumdar, Priyanka Dogra, Shiny Maiti, Ashish Joshi

296-Pos
BOARD B127
STRUCTURE AND FUNCTION IMPLICATIONS OF CONFORMATIONAL ENSEMBLES CONSISTENT WITH NMR, SAXS, AND SMFRET DATA. THE DISORDERED PROTEIN SIC1 BEFORE AND AFTER MULTISITE PHOSPHORYLATION. Gregory W. Gomes, Mickael Krzeminski, Erik W. Martin, Tanja Mittag, Julie D. Forman-Kay, Claudiu C. Gradinaru

297-Pos
BOARD B128
INTRINSICALLY DISORDERED HAX-1 REGULATES PHOSPHOLAMBAN IN MEMBRANES. Erik K. Larsen, Daniel Weber, Songlin Wang, Seth L. Robia, Gianluigi Veglia

298-Pos
BOARD B129
THE EFFICACY OF DESIGNED ANTI-MEASLES VIRUS PEPTIDES DEPENDS ON THE STABILITY OF SELF-ASSEMBLED CLUSTERS. Diogo A. Mendonça

299-Pos
BOARD B130
SOLUTION SPACE FINGERPRINTS OF INTRINSICALLY DISORDERED REGIONS. David Moses, Nora Shamoon, Shahar Sukenik

300-Pos
BOARD B131
METHIONINE OXIDATION ALTERS THE MECHANISM OF AB INTERACTION WITH DMPC BILAYERS. Christopher Lockhart, Amy K. Smith, Dmitri K. Klimov

301-Pos
BOARD B132
STRUCTURAL AND PHYSICAL BASIS FOR THE HIGHER AFFINITY TO ONCOPEPTIDE MM2 OF A PEPTIDE SELECTED WITH MRNA DISPLAY OVER TUMOR SUPPRESSOR PS3. Takashi Nagata, Tatsuya Yamada, Tomohiko Hayashi, Simon Hikiri, Nachiro Kobayashi, Mitsunori Ikeguchi, Masato Katahira, Masahiro Kinoshita, Hiroshi Yanagawa
302-Pos BOARD B137 SOLUTION STRUCTURE DETERMINATION OF ARABIDOPSIS THALIANA RALF8 ILLUSTRATES THE USE OF CUTTING-EDGE SOFTWARE DEVELOPED AT THE NATIONAL MAGNETIC RESONANCE FACILITY AT MALDI-SON. Woonghee Lee, Marco Tonelli, Ronnie O. Frederick, Mhioshi Haruta, Gabriel Cornilescu, Claudia C. Cornilescu, Michael R. Sussman, John L. Markley

303-Pos BOARD B138 REGULATING THE ACTIVATION OF ASH1/ASH1L HISTONE METHYLTRANSFERASE BY INTRINSICALLY DISORDERED REGIONS. Jing Yang, Meng Gao, Yongqi Huang

304-Pos BOARD B139 NEAREST NEIGHBOR EFFECTS IN HOMOPEPTIDE SEGMENTS OF SHORT PEPTIDES EXPLORED BY CIRCULAR DICHROISM AND NMR SPECTROSCOPY. Bridget Milorey, Harald Schwalbe, Reinhard Schwetzer-Stenner

305-Pos BOARD B140 ENTROPIC LIMITS OF SIMULTANEOUS BINDING TO T CELL RECEPTOR DISORDERED DOMAINS. Lara Clemens, Omer Dushek, Jun F. Allard

DNA Structure and Dynamics I (Boards B141 - B160)

310-Pos BOARD B141 HIGH-RESOLUTION SINGLE-CELL MODELS OF ENSEMBLE CHROMATIN STRUCTURES DURING DROSOPHILA EMBRYOGENESIS FROM POPULATION HI-C. Qiu Sun

311-Pos BOARD B142 RESTRICTED MOBILITY OF DNA PACKAGED IN PHAGE PH129 VIRAL PROHEADS ASSESSED BY SINGLE-MOLECULE OPTICAL TWEETERS MEASUREMENTS OF DNA EXIT. Mounir Fizari, Douglas E. Smith

312-Pos BOARD B143 BACTERIAL NUCLEIC ACID QUADRUPLEX FORMATION. Lucille H. Tsao, Amelia Cecere, Hikari Murayama, Sally Shepardson-Fungairino, Megan E. Nunez

313-Pos BOARD B144 LOOP EXTRUSION IN CHROMATIN: A QUESTION OF TIME! Ajoy Maji, Ranjith Padinhateeri, Mithun K. Mitra

314-Pos BOARD B145 INVESTIGATION OF THE SPIROIMINODIHYDANTOIN LESION’S STRUCTURAL AND DYNAMIC EFFECTS ON AN 11-MER DEOXYRIBONUCLEOTIDE DUPLEX. Laurie C. Brutus, Elizabeth Jamieson, Cristina Suarez, Megan E.unez

315-Pos BOARD B146 NON-ERGODIC TRANSPORT AND CONFORMATIONAL DYNAMICS OF DNA IN BIOMIMETIC CYTOSKELETON NETWORKS. Jonathan Garamella, Gina Aguirre, Ryan McGorty, Rae Anderson

316-Pos BOARD B147 DYNAMIC INTERCONVERSIONS BETWEEN G-QUADRUPLEX CONFIGURATIONS IN THE HUMAN BCL-2 PROXIMAL PROMOTER REVEALED BY SINGLE-MOLECULE SPECTROSCOPY. I-Ren Lee, Hao-Yi Hsu, Chiao-Ying Chen

317-Pos BOARD B148 TBA MARKEDLY ALTERS A-TRACT Oligos. Earle Stellwagen

318-Pos BOARD B149 INTEGRATIVE MODELING OF NUCLEOSOMES AND SUPERNUCLEOSOMAL STRUCTURES. Grigoriy Armeev, Anna Panchenko, Alexey Feofanov, Alexey K. Shytan

319-Pos BOARD B150 TWO-METAL ION MECHANISM OF DNA CLEAVAGE IN CRISPR-CAS9. Giulia Palermo, Lorenzo Casalino, Martin Jinek

320-Pos BOARD B151 SINGLE-MOLECULE STUDIES OF SUPRAMOLECULAR DNA STRUCTURE AT 1-NM RESOLUTION. Phil Haynes

321-Pos BOARD B152 MAPPING LATERAL LOOP CONFORMATIONAL SWITCHING OF THE TELOMERIC DNA G-QUADRUPLEX ON NMM PROPHYRIN BINDING USING FLUORESCENT GUANINE ANALOGS. Jessica Desamero, Lesley Davenport

322-Pos BOARD B153 CONFORMATIONAL PREFERENCES OF DNA STRANDS FROM C-MYC PROMOTER REGION. Lutan Liu, Congshan Ma, James W. Wells, Tigran V. Chalkian

323-Pos BOARD B154 AN IMAGE-BASED APPROACH TO THE EVALUATION OF ONCOGENE ACTIVATION EFFECTS ON CELL’S GENOMIC STABILITY. Elena Cerutti, Isotta Cainero, Gaetano Ivan Dellino, Mario Faretta, Pier Giuseppe Pelicci, Alberto Diaspro, Luca Lanza

324-Pos BOARD B155 DYNAMICS OF THE 1:2:1 AND 1:6:1 C-MYC G-QUADRUPLEXES WITH THE DRUDE POLARIZABLE FORCE FIELD. Tanner Dean, Anna M. Salsbury, Justin A. Lemkul

325-Pos BOARD B156 THE INCLUSION OF A GCAT TETRALOOP AFFECTS THE UNFOLDING THERMODYNAMICS OF INTRAMOLECULAR DNA STRUCTURES. Irene Khutsishvil, Carolyn E. Carr, Luis A. Marky

326-Pos BOARD B157 USE OF MICROCT SCANNER TO CHARACTERIZE THE HISTOTECHNOLOGICAL PROCESSING OF BONE USING DIFFERENT TISSUE FIXATIVES: RELATIONSHIP TO DNA PRESERVATION (IMMUNOHISTOCHEMISTRY). Francis G. DeOcampo, Claude E. Gagna, Anthony N. Yodice, Shaheryar M. Gill, Zabi Khwaja, Megha Gupta, Ilaha Jalilova, Mina Ahsan, Alisha Malhotra, Peter Lambert, Clark Lambert
RNA Structure and Dynamics (Boards B161 - B179)

327-Pos BOARD B158
SINGLE-MOLECULE MEASUREMENT OF SHORT DSDNA AND A_7-TRACT STIFFNESS AND BENDING USING DNA NUNCHUCKS. Xinyue Cai, Deborah K. Fygenson

328-Pos BOARD B159
A SIMPLE THERMODYNAMIC MODEL FOR DNA-STRAND DISPLACEMENT REACTIONS IN PRESENCE OF BASE-PAIR MISMATCHES. Patrick Irmisch, Marius Rutkauskas, Ralf Seidel

329-Pos BOARD B160 TRAVEL Awardee
INHOMOGENEOUS FORCES IN SEMIFLEXIBLE BIOPOLYMERS. Ananya Mondal, Gregory Morrison

330-Pos BOARD B161

331-Pos BOARD B162
SINGLE-MOLECULE THREE-COLOR FRET REVEALS MULTI-STATE CONFORMATIONAL DYNAMICS OF RNA FOUR-WAY JUNCTIONS. Anders Barth, Christian A. Hanke, Oleg Opanasyuk, Hayk Vardanyan, Simon Sindbert, Stanislav Kalinin, Claus A. Seidel

332-Pos BOARD B163
RNA STRUCTURAL ENSEMBLES ACT AS A GATE KEEPER OF 3’ ALTERNATIVE SPICING. Robb S. Welty, Nils G. Walter

333-Pos BOARD B164
STRUCTURAL DETERMINANTS OF MRNA TRANSPORT SPECIFICITY IN OLGODENDROCYTES. Ved V. Topkar

334-Pos BOARD B165
BIOPHYSICAL CHARACTERIZATION OF G-QUADRUPLEX STRUCTURE IN LONG NONCODING RNA NEAT1. Emily M. Benner, Mihaela-Rita Mihailescu

335-Pos BOARD B166

336-Pos BOARD B167
COMPETITION BETWEEN LIGAND BINDING AND TRANSCRIPTION RATE MODULATES RIBOSWITCH-MEDIATED REGULATION OF TRANSCRIPTION. Adrien Chauvier, Pujan Ajmera, Nils G. Walter

337-Pos BOARD B168
SOLVATION EFFECTS IN RNA SYSTEMS. Clark Templeton

338-Pos BOARD B169
CAPTURING THE INFLUENCE OF SOLVENT AND NEIGHBORING RESIDUES IN A FIXED-CHARGE FORCE FIELD FOR RNA. Chapin E. Cavender, Louis G. Smith, Alan Grossfield, David H. Mathews

339-Pos BOARD B170
QUANTITATIVE ANALYSIS OF SALT-INDUCED RNA DUPLEX VARIATIONS BY WIDE-ANGLE X-RAY SCATTERING (WAXS). Yen-Lin Chen, Lois Pollack

340-Pos BOARD B171
EXPLORING THE ION-MEDIATED RNA INTERACTIONS OF A HELIX-JUNCTION-HELIX RNA MODEL THROUGH WELL-TEMPERED METADYNAMICS SIMULATIONS. Diego E. Kleiman, Nawawi Naleem, Serdal Kirmizialtin

341-Pos BOARD B172 TRAVEL Awardee
ROLE OF METAL IONS IN RNA TETRALOOP HAIRPIN MOTIF FORMATION. Antarip Halder, Sunil Kumar, Govardhan Reddy Patluri

342-Pos BOARD B173
PROBING Mg^2+-MEDIATED RNA-RNA INTERACTIONS IN THE PRESENCE OF METABOLITES. Derrick R. Lin, Suzette A. Pabit, Lois Pollack

343-Pos BOARD B174
EFFECT OF Mg^2+ IONS ON TPP RIBOSWITCH APTAMER FOLDING. Sunil Kumar, Govardhan Reddy

344-Pos BOARD B175
EFFECT OF PRESSURE ON RNA G-QUADRUPLEX STRUCTURES. Balasubramanian Harish, Roland Winter, Catherine A. Royer

345-Pos BOARD B176
UNDERSTANDING THE SHAPE REAGENT BINDING FROM RNA DYNAMICS. Fengfei Wang, Xiaojun Xu

346-Pos BOARD B177
QUANTIFYING STRUCTURAL DIVERSITY OF CNG TRINUCLEOTIDE REPEATS USING DIAGRAMMATIC ALGORITHMS. Ethan Phan, Chi H. Mak

347-Pos BOARD B178
DISCOVERING DESIGN PRINCIPLES TO RE-ENGINEER FUNCTIONAL RNA ELEMENTS. Alex Plumridge, Lois Pollack

348-Pos BOARD B179
FUNCTIONAL AND TEMPLATING ABILITY OF FLUORESCENT RNA APATAMERS IN POSSIBLE PREBIOTIC CONDITIONS. Ranajay Saha, Samuel Verbanic, Irene A. Chen

Protein-Nucleic Acid Interactions I (Boards B180 - B212)

349-Pos BOARD B180
EXPLORATION OF CONFIGURATIONAL AND TOPOLOGICAL PROPERTIES OF MINICHROMOSOMES USING ELASTIC ENERGY OPTIMIZATIONS AT THE DNA BASE-PAIR LEVEL. Robert T. Young, Wilma K. Olson

350-Pos BOARD B181 E.COLI SINGLE STRANDED BINDING PROTEIN (SSB) SELF-REGULATES WRAPPING OF SSDNA THROUGH COMPETITIVE BINDING. M. Nabuan Naufer, Michael Morse, Gudfridur B. Moller, James McIsaac, Iouila Rouzina, Penny J. Beuning, Mark C. Williams

351-Pos BOARD B182 REGULATION OF NEAREST-NEIGHBOR COOPERATIVE BINDING OF E.COLI SSB PROTEIN TO SSDNA BY ITS INTRINSICALLY DISORDERED REGIONS. Alexander G. Kozlov, Min Kyung Shinn, Timothy M. Lohman

352-Pos BOARD B183 SINGLE MOLECULE BINDING DYNAMICS OF LINE-1 ORF1P TO SSDNA. Benjamin A. Cashen, M. Nabuan Naufer, Charlie E. Jones, Anthony V. Furano, Mark C. Williams

353-Pos BOARD B184 SLIDING, FAST AND SLOW: DISTINCT DIFFUSION MECHANISMS OF EUKARYOTIC AND PROKARYOTIC DNA CLAMPS. Jejoong Yoo, Sang Hak Lee

354-Pos BOARD B185 SINGLE-MOLECULE IMAGING OF PAF15-PCNA USING DNA SKYBRIDGE. Daehyung Kim, Alfredo D. biasio, Amaia Gonzalez-Magaña, Gayun Bu, Fahad Rashid, Samir Hamdan, Francisco Blanco, Jong-Bong Lee Lee
Membrane Physical Chemistry I
(Boards B213 - B237)

382-Pos BOARD B213
SULFOLOBUS ACIDOCALDARIUSMICROVESICLES EXHIBIT UNUSUAL PHYSI-
CAL PROPERTIES. Alexander P. Bonanno, Parkson L-G. Chong

383-Pos BOARD B214
THERMODYNAMIC AND MORPHOLOGICAL PROPERTIES OF TRASTU-
ZUMAB REGULATED BY THE LIPID COMPOSITION OF CELL MEMBRANE
MODELS AT THE AIR-WATER INTERFACE. Luciano Caselli, Andrei Sakai, Ana
Paula de Sousa Mesquita, Helena B. Nader, Carla C. Lopes, Waka Nakan-
ishi, Katsukiho Aniga

384-Pos BOARD B215
FAR FROM INERT - DRUG LIPIDATION IN MEMBRANES. Hannah M. Britt,
Jackie A. Mosely, John M. Sanderson

385-Pos BOARD B216
HIGH CONTENT IMAGING TO IDENTIFY MODULATORS OF MEMBRANE
PHASE BEHAVIOR. Nico Frick, Aijit Tiwari, Krishnan Raghunathan, Hui
Hang, Ricardo F. Capone, Charles R. Sanders, Anne K. Kenworthy

386-Pos BOARD B217
HOMEOVISCOUS ADAPTATION IN MAMMALIAN CELL MEMBRANES IN
RESPONSE TO DIETARY LIPID PERTURBATIONS IS NECESSARY FOR CELL
SURVIVAL. Kandice R. Levental, Jessica L. Symons, Yang-Yi Fan, Robert
Chapkin, Robert Ernst, Ilya Levental

387-Pos BOARD B218
PARTIALLY AUTOMATED IDENTIFICATION OF CURVATURE-SENSITIVE COL-
LECTIVE LIPID STRUCTURE. Andrew H. Bean, Kayla Sapp, Alexander J. Sodt

388-Pos BOARD B219
EFFECT OF DIPOLE MOMENT ON AMPHIPHILE SOLUBILITY AND PARTI-
TION INTO LIQUID ORDERED AND LIQUID DISORDERED PHASES IN LI-
PIYLAYERS. Renato M.S. Cardoso, Patricia A.T. Martins, Ricardo J.B. Leote,
Kalbe Razi naqvi, Winchil L.C. Vaz, Maria Joao Moreno

389-Pos BOARD B220
 ADSORPTION AND PERMEATION OF PORPHYRINS THROUGH LIPID
MEMBRANE. Irene Jiménez Munguía, Arsenii Fedorov, Ivan Meshkov, Yuri
Ermakov, Yulia Gorbunova, Valerij Sokolov

390-Pos BOARD B221
FUNCTIONALIZED POLYSTYRENE NANOPARTICLES ALTER THE STRUCTURE
AND STABILITY OF MODEL CELL MEMBRANES. Paige Ashey, David Van
Doren, Shelli L. Frey

391-Pos BOARD B222
SPHINGOMYELIN NANODOMAINS MAINLY CONSTITUTE LIQUID-OR-
DERED PHASE OF TERNARY MODEL MEMBRANE. Michio Murata, Shin
y Hanashima, Yo Yano, Tomokazu Yasuda, Hiroshi Tsuchikawa, Nobuaki
Matsumori, Masanao Kinoshita, J.P. Slote

392-Pos BOARD B223
CO-EXISTING GEL AND FLUID PHASES IN BILAYERS CONTAINING CE-
RAMIDE AND CHOLESTEROL. Alicia Alonso, Emilio González-Ramírez,
Aritz B. García- Arribas, Felix M. Goni

393-Pos BOARD B224
COMPUTATIONAL INSIGHTS INTO THE MECHANISM AND REGULATION
OF MEMBRANE DOMAIN REGISTRATION/ANTI-REGISTRATION. Xubo Lin,
Siya Zhang

394-Pos BOARD B225
BODIPY-BASED PHOTOSENSITIZER FOR PHOTODYNAMIC THERAPY - PHO-
TOPHYSICS AND MEMBRANE LOCALISATION VIA CLASSICAL MOLECULAR
DYNAMICS AND SURFACE HOPPING. Lukasz Cwilkik, Marek Pedezolz,
Mirza Wasif Baig, Mojmir Kvyala, Jifi Jifi Pittner

395-Pos BOARD B226
DROPLET INTERFACE BILAYERS AS A PHYSICO-CHEMICAL TOOL TO ASSESS
AND INVESTIGATE THE CELLULAR MEMBRANE CROSSING OF SMALL
MOLECULES. Vincent Faugeras, Olivier Duclos, Didier Bazile, Abdou
Rachid Thiam

396-Pos BOARD B227
ATOMIC FORCE MICROSCOPY REVEALS STRUCTURES OF DRIED FATTY
ACIDS AND CONNECTIONS TO AMINO ACID POLYMERIZATION. Brenda L. Kessenich,
Zachary R. Cohen, James J. De Yoreo, Sarah L. Keller,
Roy A. Black

397-Pos BOARD B228
HOW UREA COUNTERACTS TRIMETHYLAMINE N-OXIDE INDUCED AT-
TRACTION BETWEEN LIPID MEMBRANES. Yuri Shakhaman, Christoph
Allolio, Shahar Sukenik, Daniel Harries

398-Pos BOARD B229
TRAVEL AWARDEE
WATER AND MEMBRANE LIPIDS GOVERN G-PROTEIN ACTIVATION. Anna R.
Eitel, Nipuna Weerasinghe, Steven D. Fried, Suchihranga M.
Perera, Emily L. Cosgriff, Gabrielle I. Fitzwater, Helen F. Mann, Andrey V.
Struts, Michael F. Brown

399-Pos BOARD B230
BALANCING ADEPTION AND DIFFUSION IN FLOW TRANSPORT OF
MEMBRANE PROTEINS. Aurelia R. Honerkamp-Smith, Amanda Ratajczak,
Xaymara Rivera Gonzalez, Autumn Anthony

400-Pos BOARD B231
CRYOPROTECTANTS DISRUPT HYDROGEN-BOND NETWORKS AT THE
LIPID-WATER INTERFACE. Ravi K. Venkatraman, Carlos R. Baiz

401-Pos BOARD B232
INORGANIC NANOPARTICLES CHALLENGING LAMELLAR AND NON-LA-
MELLAR MODEL MEMBRANES. Lucrezia Caselli, Costanza Monits, Andrea
Ridolfi, Emil Gustafsson, Nina-Juliane Steinke, Debora Berti, Tommy
Nylander

402-Pos BOARD B233
FINE TUNING OF BILAYER-SUBSTRATE SEPARATION.
David P. Hoogerheide, Dennis J. Michalak, Mathias Loesche

403-Pos BOARD B234
ELECTROSTATICS AT PEPTIDE-LIPID INTERFACE IN NANO-BIO HYBRID
SYSTEMS BY SPIN-LABELING EPR. Tatyana I. Smirnova, Erkang Ou, Maxim
A. Voinov, Alex Irving, Alex Smirnov

404-Pos BOARD B235
QUANTIFIED EFFICIENCY OF MEMBRANE LEAKAGE EVENTS RELATES TO
ANTIMICROBIAL SELECTIVITY. Anja Stulz, Stefan Braun, Shuai Shi, Ndjali
Quarta, Maria Hoernke

405-Pos BOARD B236
NANOSECOND LIFE CYCLE OF BIOMEMBRANE ELECTROPORATION: EX-
PERIMENTAL VALIDATION OF MOLECULAR MODEL. Esin B. Sozer,
Sourav Haldar, Federica Castellani, P. Thomas Vernier, Joshua Zimmerberg

406-Pos BOARD B237
THE ROLE OF DISORDERED PROTEINS IN MEMBRANE CURVATURE SENS-
ING DURING ENDOCYTOSIS. Wade F. Zeno, Wilton T. Snead, Liping Wang,
Ajay S. Thatte, Jacob B. Hochfelder, Eileen M. Lafer, Jeanne C. Stachowiak
Membrane Dynamics I (Boards B238 - B262)

407-Pos BOARD B238
SPONTANEOUS COMPARTMENTALIZATION IN ADHERENT ARTIFICIAL CELLS. Karolina Spustova, Elf S. Koksal, Alar Ainla, Irep Gozen

408-Pos BOARD B239
SURFACE-ASSISTED SELF-ASSEMBLY OF FATTY ACIDS TO CELL-LIKE COMPARTMENTS. Inga Põldsalu, Elf S. Koksal, Irep Gozen

409-Pos BOARD B240 TRAVEL Awardee
MILD TEMPERATURE GRADIENTS MAY HAVE ENHANCED THE GROWTH AND FUSION OF PROTOCELLS ON THE EARLY EARTH. Elf S. Koksal, Lauri Viitala, Irep Gozen

410-Pos BOARD B241
VESICLE BUDDING INDUCED BY THE ASYMMETRIC MEMBRANE INSERTION OF A SURFACTANT IS LIMITED BY AN OSMOTIC BARRIER. Michael Kaiser, Ndjali Quarta, Annette Meister, Heiko Heerklotz

411-Pos BOARD B242
ASYMMETRIC MEMBRANES AND THE STUDY OF LIPID MOVEMENT ACROSS SINGLE LIPID BILAYERS. Ursula A. Perez-Salas, Yangmingyue Liu, Lionel Porcar

412-Pos BOARD B243 EXTENSIONAL TEST OF HYDROGEN MASS REPARTITIONING ON MD SIMULATIONS OF LIPID MEMBRANES. Chun Hon Lau, Yi Wang

413-Pos BOARD B244 TRAVEL Awardee
GENERALIZATION OF THE KELVIN EQUATION AND MACROMOLECULAR SURFACES. David V. Sviridtszade

414-Pos BOARD B245
ALL-ATOM MOLECULAR DYNAMICS SIMULATIONS OF GALACTOSIDE GM1 AND ITS DEGRADATION PRODUCTS. Andrew H. Beaven, Alexander J. Sodt

415-Pos BOARD B246
CHARACTERIZATION OF SPECIFIC ION EFFECTS ON P(4,5)P2 CLUSTERING USING MOLECULAR DYNAMICS SIMULATIONS AND GRAPH-THEORETIC ANALYSIS. Kyungreem Han, Arne Gericke, Richard W. Pastor

416-Pos BOARD B247
A MICROSCOPIC PICTURE OF CALCIUM-ASSISTED LIPID DEMIXING AND MEMBRANE REMODELING USING MULTI-SCALE SIMULATIONS. Abhilash Sahoo, Silvina Matysiak

417-Pos BOARD B248
CONTINUUM-MODELING SOFTWARE FOR MODELING THE DYNAMICS OF ARBITRARY TOPOLOGY MEMBRANES. Kayla Sapp, Alexander J. Sodt

418-Pos BOARD B249
TRANSMEMBRANE PEPTIDE INSERTION AFFECTS MEMBRANE INTERFACIAL DYNAMICS. Jennifer C. Flanagan, Carlos R. Baiz

419-Pos BOARD B250
MEMBRANE VISCOSITY AND LIPID DIFFUSION IN A MODEL BILAYER MEASURED AT MOLECULAR SCALES. Michihiro Nagao, Elizabeth G. Kelley, Takeshi Yamada, Antonio Faraone, Kaoru Shibata, Paul D. Butler

420-Pos BOARD B251
HIERARCHICAL MEMBRANE DYNAMICS IN PHASE-SEPARATED MODEL MEMBRANES. Saptarshi Chakraborty, Jan Michael Y. Carrillo, Elizabeth G. Kelley, Frederick A. Heberle, John Katsaras, Bobby G. Sumpter, Michihiro Nagao, Rana Ashkar

421-Pos BOARD B252
BREAKDOWN OF THE COUPLING BETWEEN THE LIPID MEMBRANE DYNAMICS OF DIFFERING HIERARCHICAL LEVELS. Cheng-Zhi Xie, Shih-Ming Chang, Eugene Mamontov, Laura R. Stingaciu, Yi-Fan Chen

422-Pos BOARD B253
FAST DYNAMICS OF LIPID MIXTURES INVESTIGATED WITH VIBRATIONAL SPECTROSCOPY. Mason L. Valentine, Alfredo E. Cardenas, Ron Elber, Carlos R. Baiz

423-Pos BOARD B254

424-Pos BOARD B255
SCALING RELATIONSHIPS FOR THE MECHANICAL PROPERTIES OF MIXED LIPID MEMBRANES. Elizabeth G. Kelley, Paul D. Butler, Michihiro Nagao

425-Pos BOARD B256 THE RELATIONSHIP BETWEEN THE COMPRESSIBILITY MODULI OF THE BILAYER AND ITS LEAFLETS - NOT SIMPLE BUT IMPORTANT. Milka Doktorova, Faezeh Darbaniyan

426-Pos BOARD B257
STIFFENING OF PHOSPHOCHOLINE MEMBRANES BY CHOLESTEROL. Saptarshi Chakraborty, Trivikram R. Molugu, Milka Doktorova, Frederick A. Heberle, Haden L. Scott, Elizabeth G. Kelley, Michihiro Nagao, Boris G. Dzikovskii10, Robert F. Staedtner11, Francisco N. Barrera, John Katsaras12, George Khelashvili11, Michael F. Brown, Rana Ashkar

427-Pos BOARD B258
LPS-INDUCED BILAYER DEFORMATION IS MODULATED WITH INCREASING LIPID MEMBRANE COMPLEXITY. Loreen R. Stromberg, James H. Werner, Gabriel A. Montano, Harshini Mukundan

428-Pos BOARD B259
MECHANISTIC INSIGHTS IN THE INTERACTION OF CHEMICALS WITH SURFACTANT MEMBRANE MODELS IN VITRO. Emilie Da Silva, Chiara Autillo, Karin S. Hougaard, Anders Baun, Antonio Cruz, Jesus Perez-Gil, Jorid Birkelund Sørl

429-Pos BOARD B260 TRAVEL Awardee
MILD HYPOTHERMIA ENHANCES LUNG SURFACTANT ACTIVITY: DELVING INTO THE MOLECULAR MECHANISMS. Chiara Autillo, Mercedes Echaide, Cristina Garcia-Mouton, Alberto Hidalgo, Antonio Cruz, Daniele De Luca, Jesus Perez-Gil

430-Pos BOARD B261
USING A MODEL LYSOSOME MEMBRANE TO STUDY NANOMATERIAL-MEMBRANE INTERACTIONS. Donald S. Anderson, Matthew J. Sydor, Harmen B. Steele, Becky Kendall, Sandy Ross, Andrij Holian

431-Pos BOARD B262
DYNAMIC NANOSCALE REORGANIZATION OF LIPID MOLECULES AND NANOPARTICLES REVEALED BY PLASMONIC GAP RESONANCE SPECTROSCOPY. Matthew R. Cheetham, Dart de Nijs, Jack P. Griffiths, Stephen D. Evans, Jeremy J. Baumberg, Rohit Chikkaraddy

Membrane Structure I (Boards B263 - B287)

432-Pos BOARD B263
THE STRUCTURAL BASIS FOR STABILIZATION OF PULMONARY SURFACTANT FILMS BY SUBPHASE MATERIAL. Konstantin Andreev, Michael W. Martynowycz, Ivan Kuzmenko, Stephen B. Hall, David Gidalevitz
Membrane Receptors and Signal Transduction I (Boards B288 - B313)

447-Pos Board B278 COUPLING OF LEAFLET STRUCTURE IN ASYMMETRIC LIPID VESICLES. Moritz P. Frewein, Haden L. Scott, Milka Doktorova, Frederick A. Heberle, Yuri Gerelli, Lionel Porcar, Georg Pabst

448-Pos Board B279 PLASMA MEMBRANE PACKING ASYMMETRY DRIVES TRANSMEMBRANE PROTEIN LOCALIZATION. Joseph H. Lorent, Lakshmi Ganesan, Edward R. Lyman, Kandice R. Levental, Ilya Levental

449-Pos Board B280 LIPID BILAYERS INFLUENCED BY TAU RIN AND BETAIN. Sergio D. Funari, Alexander Schoekel, Sigrid Bernstorff

450-Pos Board B281 VITAMIN E’S AFFINITY FOR POLYUNSATURATED PHOSPHOLIPIDS STUDIED BY ALL-ATOM MD SIMULATIONS. Samuel W. Canner, Alexander Q. Phillips, Scott I. Feller, Stephen R. Wassall

451-Pos Board B282 SPONTANEOUS CURVATURE, DIFFERENTIAL STRESS, AND BENDING MODULUS OF ASYMMETRIC LIPID MEMBRANES. Amirali Hossein, Markus Deserno

452-Pos Board B283 CELL-DERIVED PLASMA MEMBRANE VESICLES ARE PERMEABLE TO HYDROPHILIC MACROMOLECULES. Blanca B. Díaz-Rohrer, Allison Skinke, Kandice R. Levental, Ilya Levental

453-Pos Board B284 PROBING THE PHASE BEHAVIOR OF HYBRID LIPID/BLOCK COPOLYMER BIOMEMBRANES. Naomi Hamada, Sukriti Gakhar, Marjorie L. Longo

454-Pos Board B285 X-RAY AND NEUTRON REFLECTIVITY STUDIES OF STYRENE-MALEIC ACID POLYMER INTERACTIONS WITH GALACTOLIPID-CONTAINING MONOLAYERS. Minh D. Phan, Olina I. Korotych, Nathan Brady, Madeline M. Davis, Sushil K. Satija, John F. Ankner, Barry D. Bruce

455-Pos Board B286 UNRAVELING THE MYSTERY OF MEMBRANE PERMEABILITY OF ANTICANCER DRUGS. Neetu S. Yadav

456-Pos Board B287 TRAVEL AWARDEE THE TILTED HELIX MODEL OF DYNAMIN OLIGOMERS. Avihay Kadosh

457-Pos Board B288 ATOMIC-LEVEL CHARACTERIZATION OF THE DISTINCT METHADONE-INDUCED CONFORMATIONAL SAMPLING AND ACTIVATION KINETICS OF THE μ-OPIOID RECEPTOR BY MOLECULAR SIMULATIONS. Abhiijet Kapoor, Davide Provasio, Marta Filizola

458-Pos Board B289 MECHANISMS OF B-ARRESTIN-DEPENDENT PI(4,5)P2 SYNTHESIS FOR GPCR ENDOCYTOSIS. Seung-Ryoung Jung, Yifei Jiang, Bertl Hille, Duk-Su Koh

460-Pos Board B291 EFFICIENT PREDICTION OF THE EFFECT OF MUTATIONS ON THE ACTIVATION KINETICS OF G PROTEIN-COUPLED RECEPTORS USING A MAXIMUM CALIBER APPROACH. Steven Ramsey, Davide Provasio, Jan Moeller, Martin Lohse, Marta Filizola
461-Pos BOARD B292 FUNCTIONAL RELEVANCE OF ORTHOSTERIC BINDING SITE OF 5-HYDROXYTRYPTAMINE 2A RECEPTOR AND THE MECHANISM OF RECEPTOR ACTIVATION.
 Yu Xu, Guoqing Xiang, Takeharu Kawano, Diomedes E. Logothetis

462-Pos BOARD B293 INVESTIGATING THE MECHANISM OF STRA6-MEDIATED CELLULAR RETINOL UPTAKE.
 Brianna K. Costabile, Yun-Ting Chen, Jonathan Kim, Youn-Kyung Kim, Oliver B. Clarke, Paul T. Wilder, David J. Weber, Loredana Quadro, Hui Sun, Filippo Mancia

463-Pos BOARD B294 NEUROTRANSMITTER RECEPTORS AS KEY PHYSIOLOGICAL REGULATORS OF EPITHELIAL MORPHOGENESIS.
 Fnu Nilay Kumar, Francisco Huizar, Maria Unger, Dharsan Soundararajan, Vijay Velagala, John Koren, Jeremiah J. Zartman

464-Pos BOARD B295 SINGLE MOLECULE FORCE SPECTROSCOPY OF CHONDROCYTE ASB1 AND A1B1 INTEGRINS.
 Divya Kota, Ishara S. Ratnayake, Lin Kang, Phil Ahrenkiel, Congzhou Wang, Scott Wood, Steve Smith

465-Pos BOARD B296 SIGNALING THROUGH IONS IS ESSENTIAL FOR CHEMOTROPISM AND REPRODUCTION.
 Jose A. Feijo

466-Pos BOARD B297 TUNING OF METABOTROPIC GLUTAMATE RECEPTOR ASSEMBLY AND ACTIVATION BY INTERACTIONS BETWEEN TRANSMEMBRANE DOMAINS.
 Jordana K. Thibado, Vanessa Gutzeit, Josh T. Levitz

467-Pos BOARD B298 ELUCIDATING THE ADHESIVE MECHANISM OF THE ATYPICAL CADHERIN CELSR1 INVOLVED IN PLANAR CELL POLARITY.
 Elakkiya Tamilselvan, Marcos M. Sotomayor

468-Pos BOARD B299 A FLUORESCENCE-BASED BIOSENSOR FOR MONITORING CONFORMATIONAL DYNAMICS IN GPCRS.
 Anthony D. Shumate, Christopher T. Schafer, David L. Farrrens

Excitation-Contraction Coupling I
(Boards B314 - B331)

469-Pos BOARD B300 REVEALING THE MECHANISTIC DETAILS OF GROWTH HORMONE RECEPTOR AND PROLACTIN RECEPTOR INTERACTIONS ON THE CELL MEMBRANE.
 Chen Chen, Jing Jiang, Tejeshwar C. Rao, Stuart J. Frank, André Leier

470-Pos BOARD B301 EFFECTS OF LUTEINIZING HORMONE RECEPTOR EXPRESSION LEVEL ON RECEPTOR AGGREGATION AND FUNCTION.
 Duaa Althumairy, Deborah A. Roess, B. George Barisas

471-Pos BOARD B302 PHARMACOLOGICAL IMPLICATIONS OF ADENOSINE 2A AND DOPAMINE TYPE 2 RECEPTOR HETEROMERIZATION.
 Yuchen Yang, Candice N. Hatchel-Solis, Maria P. Papakonstantinou, Albert A. Steiner, Takeharu Kawano, Leigh D. Plant, Diomedes E. Logothetis

472-Pos BOARD B303 GPCR STIMULATION MODULATES CAMKII TRANSLOCATION AND TARGETING IN CARDIOMYOCYTES.
 Chidera C. Alim, Maura Ferrero, Sonya Baidar, Donald M. Bers, Julie Bossuyt

473-Pos BOARD B304 UNNATURAL AMINO ACID RECEPTOR INCORPORATION AS A NOVEL PHOTOPAFFINITY TOOL FOR GPCR HETEROMER SIGNALING STUDIES.
 Brenda T. Winn, Chungsik Kim, Meng Cui, Roman Manetsch, Diomedes E. Logothetis

474-Pos BOARD B305 DECIPHERING THE NATURE OF M1R TRANSIENT CURRENTS.
 Verena Burtscher, Peter S. Hasenhuetl, Matej Hotka, Michael Freissmuth, Walter Sandtner

475-Pos BOARD B306 SEEKING THE INTERFACES OF EPH RECEPTOR INTERACTIONS.
 Taylor P. Light, Kelly Karl, Jeffrey J. Gray, Kalina Hristova

476-Pos BOARD B307 INTEGRIN-DEPENDENT DIFFERENCE IN CELL ADHESION AND FORCE EXERTION.
 Myung Hyun Jo, Jing Li, Timothy A. Springer, Taekjip Ha

477-Pos BOARD B308 TRAVEL Awardee
 PROBING THE HOMO- AND HETERO-DIMERIZATION PROPENSITIES OF METABOTROPIC GLUTAMATE RECEPTORS.
 Joon Lee, Vanessa Gutzeit, Josh T. Levitz

478-Pos BOARD B309 TRAVEL Awardee
 BETTA-ADRENERGIC SIGNALING MODULATES CANCER CELL MECHANOTYPE THROUGH A RHOA-ROCK-MYOSIN II AXIS.
 Tae-Hyung Kim, Esteban Vazquez-Hidalgo, Alexander Abdou, Xing Haw Marvin Tan, Alexei Christodoulides, Carly Farris, Pei-Yu Chiou, Erica Sloan, Parag Katira, Amy Rowat

479-Pos BOARD B310 DIFFERENT FGFS STIMULATE FGFR1 IN DIFFERENT WAYS.
 Kelly A. Karl, Kalina Hristova

480-Pos BOARD B311 FUNCTIONAL OLIGOMERIZATION OF THE EPHA2 RECEPTOR TYROSINE KINASE.
 Xiaojun Shi, Ryan Lingrak, Carmelle Cuizon, Paul Toth, Ji Zheng, Adam Smith, Bingcheng Wang

481-Pos BOARD B312 STUDYING THE INTERACTION OF RECEPTOR TYROSINE KINASES AND ADAPTOR PROTEINS AT THE SINGLE-MOLECULE LEVEL WITH SINGLE-PARTICLE TRACKING.
 Tim Niklas Baldering, Johanna Rahm, Sebastian Maukus, Marina S. Dietz, Mike Heilemann

482-Pos BOARD B313 SINGLE-MOLECULE IMAGING REVEALS CHEMOKINE RECEPTOR CONTRIBUTIONS TO THE T CELL IMMUNOLOGICAL SYNAPSE.
 James H. Felce, Michael L. Dustin

483-Pos BOARD B314 INVESTIGATING DUAL CA++ MODULATION OF THE RYANODINE RECEPTOR 1 BY MOLECULAR DYNAMICS SIMULATION.
 Wenjun Zheng, Han Wen

484-Pos BOARD B315 MOLECULAR DYNAMICS AND CA++ IMAGING OF MUTANT TYPE 1 RYANO-DINE RECEPTOR.
 Yoshiko Yamazawa, Haruo Ogawa, Takashi Murayama, Maki Yamaguchi, Hideto Oyamada, Junji Suzuki, Nagomi Kurebayashi, Kanemaru Kazunori, Takashi Sakurai, Masamitsu Iino

485-Pos BOARD B316 CHARACTERIZATION OF NOVEL RYR1-SELECTIVE INHIBITORS IDENTIFIED BY HIGH-THROUGHPUT SCREENING USING ER CA++ MEASUREMENT.
 Hiroyuki Kagechika, Takashi Sakurai

486-Pos BOARD B317 THERAPEUTIC EFFECTS OF A NOVEL RYR1 INHIBITOR ON MALIGNANT HYPERTHERMIA-SUSCEPTIBLE MODEL MICE.
 Takashi Murayama, Yoshiko Yamazawa, Takuya Kobayashi, Nagomi Kurebayashi, Satoru Noguchi, Ichizo Nishino, Shuichi Mori, Hiroyuki Kagechika, Jose R. Lopez, Paul D. Allen
487-Pos BOARD B318 DIRECT VISUALIZATION OF TYPE 2 RYANODINE RECEPTORS USING DSTORM. David R. Scriven, Anne Berit Johnsen, Parisa Ashghar, Keng Chang Chou, Edwin D. Moore

488-Pos BOARD B319 TOTAL CALCIUM CONTENT OF SARCOPLASMIC RETICULUM AND MYOCHONDRIA IN RYANODINE RECEPTOR VARIANT MUSCLE. Cedric R. Lamboley, Luke Pearce, Bradley S. Laukonikis

489-Pos BOARD B320 STIM1 AFFECTS INTRACELLULAR Ca²⁺ MOVEMENT AS WELL AS EXTRACELLULAR Ca²⁺ ENTRY IN SKELETAL MUSCLE. Jun Hee Choi, Mei Huang, Changdo Hyun, Mi Ri Oh, Keon Jin Lee, Chung-Hyun Cho, Eun Hui Lee

490-Pos BOARD B321 MULTIPLE SEQUENCE VARIANTS IN STAC3 AFFECT INTERACTIONS WITH CAV1.1 AND EXCITATION-CONTRACTION COUPLING. Brittany Rufenach

492-Pos BOARD B323 NEURONAL JUNCTOPHILIN 3 CAN REPLACE MUSCLE JUNCTOPHILIN 2 IN VOLTAGE-INDUCED CALCIUM RELEASE. Stefano Perni, Kurt G. Beam

493-Pos BOARD B324 WITHDRAWN

494-Pos BOARD B325 DIFFERENTIAL IMPACT OF SELECTIVE DE-ADHESION WITHIN NAV1.5-RICH INTERCALATED DISK NANODOMAINS ON ATRIAL ARRHYTHMIA RISK. Heather L. Struckman, Louisa Mezache, Anna Phillips, Celine Dagher, Amara Greer-Short, Przemyslaw Radwanski, Thomas J. Hund, Rengasayee Veeraraghavan

495-Pos BOARD B326 CARDIOPROTECTION CONFERRED BY A CRISPR/CAS9 SINGLE AMINO ACID SUBSTITUTION OF NCX1 (H165A): THE PH INSENSITIVE NCX MOUSE. Rui Zhang, Sabine Lotteau, Adina T. Hazan, Stephan Aynaszyan, Devina Gonzalez, Liang Li, Kenneth D. Philipson, Michelotta Ottolia, Joshua I. Goldhaber

496-Pos BOARD B327 GENETIC ABLATION OF NCX1.1 NA⁺-DEPENDENT INACTIVATION IMPACTS CARDIAC ACTION POTENTIAL AND Ca²⁺ TRANSIENT. Federica Stecannella, Kyle Scranton, Namuna Panday, Marina Angelini, Rui Zhang, Sabine Lotteau, Scott A. John, Riccardo Olcese, Joshua I. Goldhaber, Michelotta Ottolia

497-Pos BOARD B328 THE NA⁺-DEPENDENT INACTIVATION OF NCX1.1 IS PHYSIOLOGICALLY RELEVANT TO CARDIAC FUNCTION. Kyle Scranton, Soban Umar, Guil-laueme Calmettes, Mansouregh Eghbal, Joshua I. Goldhaber, Scott A. John, Riccardo Olcese, Ariel L. Escobar, Michelotta Ottolia

498-Pos BOARD B329 SHAPING ACTION POTENTIAL REPOLARIZATION PHASE I BY STOICHIOMETRIC EXPRESSION OF KV4.3/KCHIP2.1. Nan Wang, Eef Dries, Ewan D. Fowler, Jules C. Hancox, Mark B. Cannell

499-Pos BOARD B330 AUTOSOMAL-DOMINANT CASQ2-K180R CAUSES CPVT BY A DIFFERENT MECHANISM THAN AUTOSOMAL-RECESSIVE CASQ2 MUTATIONS. Matthew Wleklinski, Shan Parikh, Bjorn C. Knollmann

500-Pos BOARD B331 TRAVEL Awardee DIMINISHED β-ADRENERGIC RESPONSE IN PROTEIN KINASE D KNOCKOUT CARDIOMYOCYTES. Juliana Mira Hernandez, Christopher Y. Ko, Bruno Jacobsen, Erin Y. Shen, Benjamin W. Van, Avery Mandel, Zhong Jian, Sabine J. van Dijk, Donald M. Bers, Ye Chen-Izu, Julie Bossuyt

Cardiac, Smooth, and Skeletal Muscle Electrophysiology I (Boards B332 - B344)

501-Pos BOARD B332 SERCA2A IS CRITICAL FOR ARRHYTHMIC RISK IN NONISCHEMIC CARDIOMYOPATHY. An Xie, Zhen Song, Gyeoung-Jin Kang, Feng Feng, Zhilin Qu, Samuel C. Dudley

502-Pos BOARD B333 MUTATIONS IN KCNE1 PROMOTE CARDIAC ALTERNANS IN LONG QT SYNDROME TYPE 5 RABBITS. Tae Yun Kim, Anatoli Kabakov, Radmila Terentyeva, Dmitry A. Terentyev, Yichun Lu, Katja E. Odening, Andras Varro, Zsuzsanna Bőszé, Gideon Koren, Bum-Rak Choi

503-Pos BOARD B334 MOLECULAR MECHANISMS UNDERLYING CARDIAC L-TYPE CHANNEL REGULATION BY LRRC10. Pedro del Rivero Morfin, Manu B. Johny

504-Pos BOARD B335 IMPAIRED PARASYMPATHETIC NERVOUS SYSTEM REGULATION OF HEART RATE AND SINOATRIAL NODE FUNCTION IN TYPE 2 DIABETES MELLITUS. Yingjie Liu, Hailey J. Jansen, Robert A. Rose

505-Pos BOARD B336 INTRINSIC SINOATRIAL NODE DYSFUNCTION IMPAIRS AUTONOMIC REGULATION OF HEART RATE VARIABILITY IN HYPERTENSIVE HEART DISEASE. Tristan W. Dorey, Motahareh Moghtadaei, Adam Kirkby, Robert A. Rose

506-Pos BOARD B337 HYPOKALEMIA PROMOTES ARRHYTHMIA BY DISTINCT MECHANISMS IN ATRIAL AND VENTRICULAR MYOCYTES. Kirarsh Tazmini, Michael Frisk, Martin Laasmaa, Alexandre Lewalle, Stefano Morotti, David B. Lipsett, Ornella Manfra, Jonas Skogested, Jan Magnus Aronsen, Ivar Sjaastad, Andrew G. Edwards, Eleonora Grandi, Steven A. Niederer, Erik Øie, William E. Louck

507-Pos BOARD B338 DISRUPTING THE CIRCADIAN CLOCK MECHANISM IN CARDIOMYOCYTES EXACERBATES THE LQT3-RELATED PHENOTYPE IN SNC5AΔKPQ/+ MICE. Jennifer Wayland, Fiaz Shah, Kaitlyn Samuels, Tanya Seward, Elizabeth Schroder, Brian R. Delisle

508-Pos BOARD B339 CARDIAC OVEREXPRESSION OF ADENYLYL CYCLASE TYPE VIII AUGMENTS FUNCTION OF THE COUPLED OSCILLATORY SYSTEM AND ACTION POTENTIAL FIRING RATE OF SINOATRIAL NODAL CELLS. Syevda Tagirova, Khalid Chakir, Dongmei Yang, Bruce D. Ziman, Yelena Tarasova, Kirill Tarasov, Pedro del Rivero Morfin, Zhang Huan, Yuqi Yang, Hailey J. Jansen, Robert A. Rose

509-Pos BOARD B340 O-GLYCOSYLATION OF CAMKI AT SERINE 280 PROMOTES CARDIAC ARRHYTHMIAS IN DIABETIC HYPERGLYCEMIA. Bence Hegyi, Anna Fasoli, Christopher Y. Ko, Marisa M. Ciccozzi, Srinivas Tapa, Benjamin W. Van, Erin Y. Shen, Sonya Baidar, Julie Bossuyt, Crystal M. Ripplinger, Donald M. Bers

510-Pos BOARD B341 IMAGING AND ELECTROPHYSIOLOGICAL BIOMARKERS IN A NOVEL PRECLINICAL PIG MODEL OF ANTHRACYCLINE-INDUCED CARDIOTOXICITY. Peter Lin, Terenz Escartin, Melissa Larsen, Jennifer Barry, Xiuling Qi, Matthew Ng, Susan Camilleri, Idan Roifman, Mihaela Pop
Voltage-gated Ca Channels
(Boards B345 - B356)

511-POS BOARD B342
UBIQUITIN LIGASE RIFIFYLIN (RRFL) HAS YIN-YANG EFFECTS ON RABBIT CARDIAC TRANSIENT OUTWARD (Ito) POTASSIUM CHANNELS. Anatoli Y. Kabakov, Karim Roder, Karni S. Moshal, YiChun Lu, Mingwang Zhong, Saroj Dhakal, Alain Karma, Gideon Koren

512-POS BOARD B343
POTENT SUPPRESSION OF VENTRICULAR ARRHYTHMIA BY SELECTIVELY TARGETING LATE L-TYPE CALCIUM CURRENT. Marina Angelini, Arash Pezhouman, Nicoletta Savalli, Marvin Chang, Guillaume Calmettes, Federica Steccanella, Antonios Pantazis, Hrayr S. Karagueuzian, James N. Weiss, Riccardo Olcese

513-POS BOARD B344

Voltage-gated K Channels I
(Boards B357 - B385)

514-POS BOARD B345
PROBING THE EFFECTS OF CALMODULINOPATHY MUTATIONS ON CA,2.1 CHANNELS. John W. Hussey, Helene H. Jensen, Mette Nyegaard, Michael T. Overgaard, Ivy E. Dick

515-POS BOARD B346
MYOCARDIAL RAD DELETION INCREASES EARLY L-TYPE CALCIUM CURRENT WITHOUT AFFECTING LATE CALCIUM CURRENT THROUGH MULTIPLE MECHANISMS. Brooke Ahern, Andrea Sebastian, Douglas A. Andres, Jonathan Satin

516-POS BOARD B347
NON-CANONICAL ROLE OF CA,A2D1 IN CARDIAC HYPERTROPHY. Aya Al Katat, Angelino Calderone, Lucie Parent

517-POS BOARD B348
THE CONTRIBUTION OF THE INDIVIDUAL VOLTAGE SENSORS TO THE ACTIVATION OF SKELETAL CA,1.1 CHANNELS. Nicoletta Savalli, Marina Angelini, Federica Steccanella, Fenfen Wu, Marbella Quinonez, Alan Neely, Steve C. Cannon, Riccardo Olcese

518-POS BOARD B349
NEURONAL NITRIC OXIDE SYNTHASE REGULATION OF CALCIUM CYCLING IN VENTRICULAR CARDIOMYOCYTES IS INDEPENDENT OF CA,1.2 CHANNEL MODULATION. Janine Michaela Ebner, Michal Cagalinec, Helmut Kubista, Hannes Todt, Petra L. Szabo, Attila Kiss, Bruno K. Podesser, Henrietta Cserne Szappano, Livia C. Hool, Karlheinz Hilber, Xaver Koenig

519-POS BOARD B350
A POTENT VOLTAGE-GATED CALCIUM CHANNEL INHIBITOR ENGINEERED FROM A NANOBODY TARGETED TO AUXILIARY CAVB SUBUNITS. Travis J. Morgenstern

520-POS BOARD B351
PHENYLALKYLAMINES IN CALCIUM CHANNELS. EXPERIMENTAL STRUCTURES AND COMPUTATIONAL MODELS. Denis B. Tikhonov, Lianyun Lin, Daniel S. Yang, Zhiguang Yuchi, Boris S. Zhvorov

521-POS BOARD B352
TWO CAV3.3 (CACNA1I) GAIN-OF-FUNCTION MUTATIONS LINKED TO EPILEPSY AND INTELLECTUAL DISABILITY AFFECT GATING PROPERTIES AND THE WINDOW CURRENT. Yousra El Ghaleb, Pauline E. Schneeberger, Abeltje M. Polstra, Johanna M. van Hagen, Marta Campiglio, Jonas Denecke, Monica Fernandez-Quintero, Klaus R. Liedl, Kerstin Kutsche, Bernhard E. Flucher

522-POS BOARD B353
ARRHYTHMOGENIC CALMODULIN MUTATIONS CAN DISRUPT THE GLOBULAR STRUCTURE AND UNCOUPLE CA2+ BINDING COOPERATIVITY. Kaiqian Wang, Malene Brohus, Christian Holt, Michael T. Overgaard, Reinhard Wimmer, Filip Van Petegem

523-POS BOARD B354
STRUCTURAL DETERMINANTS OF VOLTAGE-GATED CALCIUM CHANNEL GATING PROPERTIES. Monica L. Fernandez-Quintero

524-POS BOARD B355
UNICELLULAR CAVB SUBUNIT MODULATES CALCIUM CHANNELS. Emilie Segura, Amrit Mehta, Mireille Marsolais, Xuan R. Quan, Juan Zhao, Rémy Sauvé, John D. Spafford, Lucie Parent

525-POS BOARD B356
EXPLORING THE ROLE OF THE FIRST EXTRACELLULAR LOOP OF CA,2.3 IN MEDIATING THE INTERACTION WITH AUXILIARY SUBUNITS. Juan Zhao, Mireille Marsolais, Emilie Segura, Lucie Parent
535-Pos BOARD B366
HYPOXIA INHIBITS KV1.5 CURRENTS THROUGH REACTIVE OXYGEN SPECIES-MEDIATED DISULFIDE BOND FORMATION. Nancy You, Wentao Li, Jun Guo, Tonghua Yang, Shetuan Zhang

536-Pos BOARD B367
PROBING THE MOLECULAR BASIS OF OPPOSING PUFA EFFECTS ON KV7 CHANNELS. Damon J.A. Frampton, Louise C. Abrahamsson, Johan E. Larsson, Sara I. Lin

537-Pos BOARD B368
CHOLESTEROL-INDUCED TRAFFICKING OF BETAl SUBUNITS SWITCHES MODULATION OF BK FUNCTION BY THIS STEROID FROM INHIBITION TO ACTIVATION. Anna N. Bukiya, M. Dennis Leo, Jonathan H. Jaggar, Alex M. McNally, Alfred L. George

538-Pos BOARD B369
FUNCTIONAL CONSEQUENCES OF INCIDENTAL DISCOVERED KCNQ1 VARIANTS DETERMINED BY AUTOMATED ELECTROPHYSIOLOGY. Carlos G. Vanoye, Reshma R. Desai, Sneha Adusumilli, Jens Meiler, Charles R. Sanders, Tooraj Mirshahi, Megan J. Puckelwartz, Elizabeth M. McNally, Alfred L. George

539-Pos BOARD B370
A FOCUSED ELECTRIC FIELD IN THE BK CHANNEL VOLTAGE SENSOR. Ignacio A. Segura, Willy R. Carrasquelo-Ursulaez, Ramon Latorre

540-Pos BOARD B371
CORRECTION OF HERG FUNCTIONAL EXPRESSION AND DEFECTIVE PERIPHERAL PROCESSING IN INHERITED AND ACQUIRED LQT2 SYN-DROMES. Brian Foo, William C. Valinsky, Josua Solomon, Jeemventh Kaur, Elya Quesnel, Camille Barbier, Gergely L. Lukacs, Alvin Shrier

541-Post BOARD B372
TETHERED PEPTIDE NEUROTOXINS FACILITATE BIOPHYSICAL STUDY AND REVEAL TWO VOLTAGE-DEPENDENT BLOCKING MECHANISMS FOR SAK1 TOXINS IN THE K+ CHANNEL POPE. Ruiming Zhao, Hui Dai, Netanel Mendlman, Jordan H. Chill, Steve A. Goldstein

542-Pos BOARD B373
EXTRACELLULAR HEME MODULATES VOLTAGE-GATING IN CNBD SUPERFAMILY CATION CHANNELS. Timothy J. Jegla, Yuning Zhou, Aditya Pisupati, Benjamin T. Simonson, Kathryn King, Damian B. van Rossum, Andriy Anishkin

543-Pos BOARD B374
RATIONALLY DESIGNED PROTON CHANNEL INHIBITORS REVEAL A DRUG-GABLE POCKET IN A VOLTAGE-SENSING DOMAIN. Chang Zhao, Liang Hong, Saleh Riahi, Jason D. Galpin, Christopher A. Ahern, Douglas J. Tobias, Francesco Tombola

544-Pos BOARD B375
MOLECULAR DETERMINANTS OF C-TYPE INACTIVATION FOR THE HERG CHANNEL AND ITS DISEASE-ASSOCIATED MUTANTS. Jing Li, Rong Shen, Young Hoon Koh, Eduardo Perozo, Benoit Roux

545-Pos BOARD B376
CADMIUM AND PROTONS ACTIVATE THE PLANT HYPERPOLARIZATION-GATED K+ CHANNEL KAT1 THROUGH A CONSERVED BINDING SITE IN THE VOLTAGE SENSOR DOMAIN. Yunqing Zhou, Sarah M. Assmann, Timothy J. Jegla

546-Pos BOARD B377
PROBING ION CHANNEL THERMODYNAMICS WITH TEMPERATURE JUMPS IN OOCYTES. Bernardo Pinto, Carlos Alberto Z. Bassetto Jr, Francisco Bezanilla, Ramon Latorre

547-Pos BOARD B378
RAPID CHARACTERISATION OF R56Q MUTANT HERG CHANNEL KINETICS USING SINUSOIDAL VOLTAGE PROTOCOLS. Dominic G. Whittaker, Jake M. Kemp, Gary R. Mirams, Tom W. Claydon

548-Pos BOARD B379
ELECTROSTATIC INTERACTIONS OF NEGATIVELY CHARGED DHAA DERIVATIVES WITH THE VOLTAGE-GATED POTASSIUM CHANNEL Kv1.7/1.3. Argel Estrada-Mondragon, Nina E. Ottosson, Xiongyu Wu, Peter Konradsson, Fredrik Elinder

549-Pos BOARD B380
MOVING GATING CHARGE WITH TEMPERATURE JUMPS. Carlos Alberto Z. Bassetto Jr, Bernardo Pinto, Ramon Latorre, Francisco Bezanilla

550-Pos BOARD B381
DOES PHYSICS EXPLAIN THE ACTIVATION OF VOLTAGE-GATED ION CHANNELS? Henry Richard Leuchtag

551-Pos BOARD B382
VOLTAGE SENSOR MOVEMENT OF NEURONAL K7 CHANNELS. Michaela Edmond, Rene Barro-Soria

552-Pos BOARD B383
A NEW APPROACH TO STUDY NON-CONDUCTING KV2 CHANNELS. Emily E. Maverick, Michael M. Tamkun

553-Pos BOARD B384

554-Pos BOARD B385

Ion Channels, Pharmacology, and Disease I
(Boards B386 - B410)

555-Pos BOARD B386

556-Pos BOARD B387
CHARACTERIZATION OF NEW HUMAN KCNMA1 LOSS-OF-FUNCTION MUTATIONS. Hans J. Moldenhauer, Su Mi Park, Andrea L. Meredith

557-Pos BOARD B388
FUNCTIONAL AND PHARMACOLOGICAL CHARACTERIZATION OF C. ELEGANS DEG/ENAC/ASIC CHANNELS. Sylvia Fechner, Isabel D’Alessandro, Lingxin Wang, Calvin Tower, Li Tao, Miriam B. Goodman

558-Pos BOARD B389
ZEBRAFISH HEART AS A MODEL FOR EARLY-SCREENING OF HUMAN ANTARRHYTHMIC DRUGS. Alicia de la Cruz, Marta E Perez-Rodriguez, Quinn C. Rainer, Sara I. Liin, Peter H. Larsson

559-Pos BOARD B390
ALTERED CYTOSOLIC CA2+ SIGNALING AND MITOCHONDRIAL POTENTIAL IN LYMPHOCYTES FROM MICE CARRYING THE GAIN-OF-FUNCTION MUTATION IN RYANODINE RECEPTOR TYPE 1. Lukun Yang, Elena N. Dedkova, Paul D. Allen, Alla F. Fomina

560-Pos BOARD B391
RELATIVE AFFINITIES OF GENERAL ANESTHETICS FOR EXPERIMENTALLY-IDENTIFIED BINDING SITES IN RYANODINE RECEPTORS (RyR1). Sruthi Murilidaran, Weiming Bu, Roderic G. Eckenhoff, Grace H. Brannigan, Thomas T. Joseph
561-Pos BOARD B392

562-Pos BOARD B393
CYSTEINE-MODIFICATION OF K,7 CHANNELS AS ANALGESIC MECHANISM OF ACTION OF ACETAMINOPHÈN. Isabella Salzer, Sutirtha Ray, Stefan Boehm

563-Pos BOARD B394
ELUCIDATING THE MOLECULAR DETERMINANTS OF PRO-ARRHYTHMIC PROCLIVITIES OF BETA-BLOCKING DRUGS. John R. Dawson, Kevin DeMarco, Pei-Chi Yang, Slava Bekker, Vladimir Yarov-Yarovoy, Colleen E. Clancy, Igor V. Vorobyov

564-Pos BOARD B395
EARLY AFTERDEPOLARIZATION IN DRUG-INDUCED ARRHYTHMIAS CAN BE PREDICTED BY VOLTAGE-DEPENDENCE IN I_{ CAL} BLOCK. Akira Kimura, Shingo Murakami

565-Pos BOARD B396
DISCRIMINATING MECHANISMS OF DRUG ACTION FROM OPTICAL RECORDINGS OF VOLTAGE AND CALCIUM IN HI-PSC CARDIOMYOCYTES. Andrew G. Edwards, Stefano Morotti, Eleonora Grandi

566-Pos BOARD B397
DIASTOLIC SODIUM CURRENT IN CARDIOMYOCYTES ASSESSED WITH LITHIUM. Kenneth S. Ginsburg, Yanyan Jiang, Daniel C. Bartos, Sanda I. Despa, Donald M. Bers

567-Pos BOARD B398
RELIABLE IDENTIFICATION OF HERG LIABILITY IN DRUG DISCOVERY BY AUTOMATED PATCH CLAMP. Michael George, Rodolfo Haedo, Nina Brinkwirth, Nadine Becker, Claudia S. Haarmann, Alison Obergrusssberger, Ronald Knox, Martin Hampl, Niels Fertig

568-Pos BOARD B399
PREDICTING ARRHYTHMOGENICITY: STRUCTURAL MODELING OF SAFE AND UNSAFE HERG BLOCKERS. Aiyana M. Emigh, Kevin DeMarco, Kazuharu Furutani, Colleen E. Clancy, Igor V. Vorobyov, Vladimir Yarov-Yarovoy

569-Pos BOARD B400
CELLULAR AND FUNCTIONAL DEFECTS IN ALDOSTERONISM-LINKED CYTOSOLIC DOMAIN MUTATIONS IN GIRK4 (KCNJ5). Reem Handklo Jamal, Boris Shalomov, Haritha P. Reddy, Neta Theodor, Mariam Ashkar, Amal K. Bera, Nathan Dascal

570-Pos BOARD B401
INHIBITORY MECHANISMS OF G-PROTEIN-GATED INWARDLY RECTIFYING K' CHANNEL BY ANTIHISTAMINES. I-Shan Chen, Chang Liu, Michihiro Tateyama, Izhar Karbat, Motonari Uesugi, Eitan Reuveny, Yoshihiro Kubo

571-Pos BOARD B402
PIEZO MECHANORECEPTORS CHANNELS CONTROL CENTRIOLE ENGAGEMENT VIA CALCIUM SIGNALING AT THE CENTROSOME. Liron David

572-Pos BOARD B403
PROTON DEPENDENT INHIBITION AND THE SLOW GATING MECHANISM OF CLC-0 CHLORIDE CHANNEL. Hwoi Chan Kwon

573-Pos BOARD B404
IMPAIRMENT OF HUMAN K,4.3 PROTEIN BIOSYNTHESIS AND CHANNEL GATING BY NOVEL SCA19/22-ASSOCIATED MUTATIONS. Ssu-Ju Fu, Cheng-Tsung Hsiao, Bing-Wen Soong, Chih-Yung Tang, Chung-Juian Jeng

574-Pos BOARD B405
THE KC3.1 POTASSIUM CHANNEL MEDIATES THE TAMOXIFEN-DEPENDENT ANTICANCER EFFECTS IN BREAST CANCER. Vitaly Senyuk, Rudy Calderon, Daniel R. Sauter, Saverio Gentile

575-Pos BOARD B406
DIFFERENTIAL ROLES OF SK CHANNEL SUBTYPES IN VASCULAR ENDOTHELIAL CELLS. Young-Woo Nam, Taibah Aldakhil, Dong Wang, Adam Viegas, Miao Zhang

576-Pos BOARD B407
KINETIC AND PHARMACOLOGICAL PROPERTIES OF P2X AND P2X_{2/3} RECEPTORS. James L. Costantin, Timothy Strassmaier, Giustina M. Rotordam, Tom Goetzte, Nadine Becker, Alison Obergrusssberger, Andrea Bruggemann, Michael George, Niels Fertig

577-Pos BOARD B408
VOLTAGE DEPENDENT ANION CHANNELS REGULATE PROLIFERATION OF CANCER STEM CELLS. Amandine M. Rovini, Elizabeth Hunt, Kareem A. Heslop, Shenghui Qin, Monika Gooz, Gavin Wang, Eduardo N. Maldonado

578-Pos BOARD B409
HUMAN A4B2 AND A7 NICOTINIC ACETYLCHELONE RECEPTOR PROFILES OF NS3861 REVEAL ITS BROAD ACTIVITY IN FUNCTIONAL ELECTROPHYSIOLOGY ASSAYS. Damian Mc Hugh, Omar Aljiljevic, Julia Hoeng

579-Pos BOARD B410
PHARMACOLOGICAL CHARACTERIZATION OF NATURAL TOBACCO ALKALOIDS IN THE PRESENCE OF POSITIVE ALLOSTERIC MODULATORS AGAINST HUMAN A4B2 AND A7 NICOTINIC ACETYLCHELONE RECEPTORS. Omar Aljiljevic, Damian Mc Hugh, Anatoly Mazurov, Julia Hoeng, Manuel Peitsch

Skeletal and Smooth Muscle Mechanics, Structure, and Regulation (Boards B411 - B426)

580-Pos BOARD B411
A CATCH BOND SUPPRESSES FLUCTUATIONS IN THE COORDINATED ACTIONS OF MYOSIN II MOTORS. Jason A. Wagoner

581-Pos BOARD B412
CHARACTERIZATION OF THE FUNCTIONAL DIVERSITY OF THE SYNTHETIC NANOMACHINE POWERED BY DIFFERENT MUSCLE MYOSIN ISOFORMS. Irene Pertici, Giulio Bianchi, Lorenzo Bongini, Vincenzo Lombardi, Pasquale Bianco

582-Pos BOARD B413
RECONSTRUCTION OF REAL-SPACE 3-D STRUCTURE FROM X-RAY FIBER DIFFRACTION PATTERN: APPLICATION TO MUSCLE PROTEIN FIBRES. Hiroyuki Iwamoto

583-Pos BOARD B414
A NOVEL MECHANISM TO REDUCE FORCE LOSS DURING PROLONGED USE OF SLOW-TWITCH MUSCLE FIBERS. Chad R. Straight, Kaylyn M. Bell, Jared N. Slosberg, Mark S. Miller, Douglas M. Swank

584-Pos BOARD B415
FACTORS THAT MODULATE THE STABILITY OF THE SUPER RELAXED STATE OF MYOSIN IN SKELETAL MUSCLE FIBERS. Nariman Naber, Clyde F. Wilson, Roger Cooke

585-Pos BOARD B416
IN SITU CHARACTERIZATION OF THE WORKING STROKE OF THE SLOW AND FAST ISOFORMS OF MUSCLE MYOSIN. Marco Caremani, Irene Pertici, Valentia Percario, Vincenzo Lombardi, Marco Linari

586-Pos BOARD B417
SUB-MAXIMALLY ACTIVATED RAT SOLEUS FIBERS EXHIBIT STRETCH ACTIVATION. Faruk H. Moonschi, Kenneth S. Campbell
Actin Structure, Dynamics, and Associated Proteins (Boards B427 - B442)

596-Pos BOARD B427 CPI-MOTIF REGULATION OF BIOCHEMICAL FUNCTIONS OF ACTIN CAPPING PROTEIN. Patrick McConnell, Marlene Mekel, Alexander G. Kozlov, Olivina L. Mooren, Timothy M. Lohman, John A. Cooper

597-Pos BOARD B428 QUANTIFICATION OF SURFACE RECEPTOR - ACTIN CORTEX INTERPLAY VIA MULTIPLEXED TWO-COLOR IMAGING. Aparajita Dasgupta, Huong Tra Ngo, Deryl Tschoerner, Nicolas Touret, Bruno Da Rocha-Azevedo, Khuloud Jqaman

598-Pos BOARD B429 ACTOMYOSIN CONTRACTILITY DRIVES INWARD BLEBBING BY CORRALING MEMBRANE PROTEINS. John Xiaole Li, Bill Brieher

599-Pos BOARD B430 MYOSIN REGULATION OF ACTIN TURNOVER DYNAMICS. Danielle Scheff, Margaret L. Gardel

600-Pos BOARD B431 DESIGN AND OPTIMIZATION OF TROPOMYOSIN FRAGMENTS FOR TROPOMODULIN INTERACTION STUDIES. Balaganesh Kuruba, Dmitrii Tolkatchev, Alla S. Kostyukova, Kyle Swain, Natalia Moroz, Trenton Williams, Kaifin A. Smith

601-Pos BOARD B432 MONITORING PALLADIN'S EFFECT ON ACTIN DYNAMICS AND ORGANIZATION WITH TIRF MICROSCOPY. Abby Jurgensmeier, Moriah R. Beck

602-Pos BOARD B433 VISUALIZING DYNAMIC ACTIN CROSSLIGHTING PROCESSES DRIVEN BY THE ACTIN BINDING PROTEIN ANILIN. Kyohel Matsuda, Mitsuhiro Sugawa, Masahiko Yamagishi, Noriyuki Kodera, Junichiro Yamja

603-Pos BOARD B434 ALTERATION OF MESENCHYMAL STEM CELLS POLARITY BY LAMINAR SHEAR STIMULATION PROMOTING B-CATENIN NUCLEAR LOCALIZATION. Jennifer Ho, Oscar K. Lee

604-Pos BOARD B435 DEEP LEARNING REVEALS THE LINK BETWEEN FILAMENT ARCHITECTURE AND SUBUNIT CONFORMATION IN BENT ACTIN. Matthew J. Reynolds, Rui Gong, Santiago Espinosa de los Reyes, Gregory M. Alushin

605-Pos BOARD B436 MICRORHEOLOGY OF ACTIVE ACTIN-MICROTUBULE NETWORKS. Gloria Lee, Michael J. Rust, Moumita Das, Jennifer L. Ross, Rae Anderson

606-Pos BOARD B437 THE FORMIN INHIBITOR, SMIFH2, INHIBITS MEMBERS OF THE MYOSIN SUPERFAMILY. James R. Sellers, Shidong Shi, Yukako Nishimura, Fang Zhang, Rong Liu, Yasuharu Takagi, Virgile Viasnoff, Alexander D. Bershady

607-Pos BOARD B438 TALIN ROD MECHANICAL UNFOLDING: IN SILICO STUDY USING BOTH BOXED AND STEERED MOLECULAR DYNAMICS. Vasyl V. Mykuliak, Jonathan J. Booth, Dmitrii V. Shalashilin, Vesa P. Hytönen

608-Pos BOARD B439 ACTIN CONTROLS THE DYNAMICS AND MICROTUBULE CROSSLIGHTERS TUNE CO-LOCALIZATION IN CROSSLIGHTED COMPOSITE ACTIN-MICROTUBE NETWORKS. Jennifer L. Ross, Shea N. Ricketts, Leila Farhadi, Moumi Das, Michael Rust, Rae Anderson

609-Pos BOARD B440 CONSERVED TRYPHTHEN MATION LEADS TO DISCOVERY OF OBSCURE TYROSINATE FLUORESCENCE IN IMMUNOGLOBULIN DOMAIN. Ravi Vattepu, Allan Ayella, Rahul Yadav, Joseph Dille, Moriah R. Beck

610-Pos BOARD B441 CYTOSKELETAL REGULATION OF THREE-DIMENSIONAL EPITHELIAL CELL SHAPE. Theresa A. Chmiel, Margaret L. Gardel

611-Pos BOARD B442 ACTIN DEPOLYMERIZATION AND COFILIN BINDING INDUCED BY DIELLETRIC ALLOSTERY. Jun Ohnuki, Mitsunori Takano

Bacterial Mechanics, Cytoskeleton, and Motility (Boards B443 - B455)

612-Pos BOARD B443 THE BACTERIAL TUBULIN HOMOLOG FTSZ FORMS 2D-SHEETS THAT SUS- TAIN ELECTRICAL OSCILLATIONS. Julieta Bonacina, Monica P. Carabajal, María del Rocío Cantero, Horacio F. Cantillo
613-Pos BOARD B444 SILVER IONS AFFECT THE MOTILITY OF E. COLI BY DISRUPTING THE MAR-KOVIAN RUN-AND-TUMBLE PROCESS. Benjamin P. Russell, Yong Wang

614-Pos BOARD B445 ROTATIONAL AND TRANSLATIONAL DRAG COEFFICIENTS OF A HELICAL BACTERIAL CELL. Liu Yu, Lucas Le Nagard, Cécile Fradin

615-Pos BOARD B446 COMPARISON OF THE DYNAMIC PROPERTIES OF THE BACTERIAL TUBULIN HOMOLOG FTSS FROM BACTERIA TO CHLOROPLAST. Yaqdong Chen, Xueqin Ma, Na Wang, Mugee U. Rahman

616-Pos BOARD B447 INVESTIGATION OF ADHESION OF EXTRACELLULAR POLYMERIC SUBSTANCES VIA MAGNETIC TWEEZERS. Yu-Ying Hsieh, Yujia Cui, Yu-Tung Weng, Lihan Chung, Shin-Yi Lin, Chi-Shuo Chen

617-Pos BOARD B448 STRUCTURAL AND FUNCTIONAL INVESTIGATION OF THE MYCOBACTERIAL TYPE VII SECRETION ATPASE ECCA. Tom Crosskey, Kate Beckham, Annabel Parret, Matthias Wilmanms

618-Pos BOARD B449 ANISOTROPIC SWIMMING M Des IN HELICOBACTER PYLORI. Jyt D. Antani, Pushkar P. Lele

619-Pos BOARD B450 TRAVEL Awardee PREDATION STRATEGIES OF BDELOVIBRIO BACTERIOVORUS. Mikayla Carlson, Sean L. Seyler, Steve Pressé

620-Pos BOARD B451 SYNTHETIC CELL-CELL ADHESION MEDIATES AGGREGATION AND BOUNDARY FORMATION IN SWARMING E. COLI. Jung Kim, Ingmar H. Riedel-Kruse

621-Pos BOARD B452 MECHANICAL STRESS PROMOTES DISASSEMBLY OF THE ANTIBIOTIC EF-FLUX COMPLEX MACAB-TOLC. Christine E. Harper, Wenyao Zhang, Peng Chen, Christopher J. Hernandez

622-Pos BOARD B453 COMPETITIVE SUBSTRATE BINDING COORDINATES THE TWO ANTAGONISTIC MOTORS OF THE BACTERIAL TYPE IV PILUS. Matthias D. Koch, Cheryn Fei, Ned S. Wingreen, Zemer Gitai, Joshua W. Shaevitz

623-Pos BOARD B454 GEOMETRIC ENRICHMENT OF ENHANCED CELL WALL SYNTHESIS AND CYTOSKELETAL PROTEINS IN STRAIGHT, CURVED, AND HELICAL RODS. Benjamin P. Bratton, Jennifer A. Taylor, Nicholas R. Martin, Edith S. Blackman, Nina R. Salama, Zemer Gitai, Joshua W. Shaevitz

624-Pos BOARD B455 MECHANISTIC ORIGIN OF CELL-SIZE CONTROL AND HOMEOSTASIS IN BACTERIA. Fangwei Si, Guillaume Le Treut, John T. Sauls, Stephen Vadla, Petra Anne Levin, Suckjoon Jun

Membrane Pumps, Transporters, and Exchangers I (Boards B456 - B471)

625-Pos BOARD B456 THE ION-TRANSPORTER NKCC1 AS A TARGET FOR BRAIN DISEASES. Corinne Portioli, Annalis Savardi, Zhenning Ren, Marco De Vivo, Ming Zhou, Laura Cancedda

626-Pos BOARD B457 K⁺-DRIVEN ATP SYNTHESIS IN ISOLATED HEART MITOCHONDRIA. Miguel A. Aon, Sonia Cortassa, Magdalena Juhaszova, Evgeny Kobrinsky, Dmitry B. Zorov, Steven J. Sollott

627-Pos BOARD B458 INSIGHT INTO SODIUM PUMP REGULATION IN THE FAILING HUMAN HEART. Jaroslava Seifova, Marsha Prabadi, Jonathan Kirk, Alain Heroux, Aleksey V. Zima, Seth L. Robia

628-Pos BOARD B459 ELECTROPHYSIOLOGICAL MEASUREMENT OF MITOCHONDRIAL NA⁺-CA²⁺ EXCHANGE IN MOUSE HEART. Mohammed M. Islam, Ayako Takeuchi, Satoshi Matsuoka

629-Pos BOARD B460 A NOVEL APPROACH TO DETECT ELECTROGENIC TRANSPORTER ACTIVITY IN INTACT CELLS APPLIED TO INVESTIGATE IPSC DERIVED CARDIOMYO-CYTES AND NEURONS. Maria Barthmes, Riccardo Rizzetto, Anna Mondini, Andre Bazzone, Jean-Francois Rolland, Niels Fertig, Michael George, Andrea Bruggemann

630-Pos BOARD B461 RETHINKING THE BOUNDS OF ION-COUPL ED TRANSPORT. Nathan E. Thomas, Grant Hussey, Katherine A. Henzler-Wildman

631-Pos BOARD B462 UNRAVELING THE MOLECULAR DETERMINANTS FOR GABA TRANSPORTER SUBTYPE SELECTIVITY. Stefanie Kickinger, Anas Al-Khawaja, Anne S. Haugaard, Maria E.K. Lie, Francesco Bavo, Rebekka Löffler, Maria Damgaard, Bente Frlund, Gerhard Franz Ecker, Petrine Wollendorph

632-Pos BOARD B463 OVERLAPPING SUBSTRATE SPECIFICITIES IN THE SMALL MULTIDRUG RESISTANCE (SMR) FAMILY OF TRANSPORTERS. Christian B. Macdonald, Ali A. Kermami, Randy B. Stockbridge

634-Pos BOARD B465 BACTERIAL ION HOMEOSTASIS THROUGH BIOCHEMICAL ASSAYS OF ION TRANSPORTERS. Rachael M. Lucero, Randy Stockbridge

635-Pos BOARD B466 FUNCTIONAL SIGNIFICANCE OF SLC26A6 IN CARDIAC PH REGULATION REVEALED BY EX VIVO CONFOCAL IMAGING. Phung Thai, Lu Ren, Yankun Lyu, James Overton, Wilson Xu, Nipavan Chiamvimonvat, Xiao-Dong Zhang

636-Pos BOARD B467 DEVELOPMENT OF A HIGH-THROUGHPUT ASSAY USING R-CEPIA1ER FLUORESCENCE TO ASSESS SMALL-MOLECULE MODULATORS OF SERCA ACTIVITY IN LIVING CELLS. Roman Nikolaienko, Elisa Bovo, Samantha Yuen, Joseph M. Autry, Seth L. Robia, Razvan L. Cornea, David D. Thomas, Aleksey V. Zima

637-Pos BOARD B468 WHEN TWO’S COMPANY: NEW EVIDENCES ON DUAL F⁺/E LOCATION OF THE INTRACELULAR pH REGULATION FACILITATORS (C⁺,Ca⁺) FAMILY. Daniel C. Raimunda, Isidro Abreu, Paula Mihelj, Manuel González-Guerrero

638-Pos BOARD B469 RECONSTITUTION OF RESPIRATORY ENZYMES IN PDMS-G-PEO POLYMER AND POLYMER/LIPID HYBRID VESICLES. Niko Marusić, Lado Otrin, Zilang Zhao, Rafael B. Lira, Tanja Vidaković-Koch, Ivan Ivanov, Rumiana Dimova, Kai Sundmacher

639-Pos BOARD B470 CONSTITUTIVE ACTIVITY OF THE DUAL-CHROMOPHORE PHOTORECEPTOR ARCHAEHODOPSIN 4. Xiaoyan Ding, Sijin Chen, HaoLin Cui, Chao Sun, Dongxue Liu, Qixi Mi, Xiao He, Anthony Watts, Xin Zhao
Light Energy Harvesting, Trapping, and Transfer (Boards B472 - B476)

641-Pos BOARD B472
INTERACTION OF FNR WITH THE CYTOCHROME B₅F COMPLEX: THERMO-
DYNAMIC PARAMETERS. Stanislav Zakharov, Yuko Misumi, Genji Kurisu,
William A. Cramer

642-Pos BOARD B473
SPECTROSCOPIC AND COMPUTATIONAL ANALYSIS OF MN₃Ca CLUSTER
TRANSFORMATIONS IN THE OXYGEN EVOLVING COMPLEX OF PHOTOSY-
TEM II. Yulia Pushkar, Scott C. Jensen, Alireza K. Ravari

643-Pos BOARD B474
FINITE TEMPERATURE ANALYSIS OF INTER-CHROMOPHORE ELECTRONIC
COUPLINGS IN DIFFERENT FORMS OF THE PERIDININ-CHLOROPHYLL A
PROTEIN. Dalia M. Hassan, Matthew Guberman-Pfeffer, José A. Gascón

644-Pos BOARD B475
COMPARISON OF THE ENERGY TRANSFER DYNAMICS IN STRUCTURAL
AND SPECTRAL VARIANTS OF THE LIGHT-HARVESTING COMPLEX 2 OF
PURPLE BACTERIA. Olivia C. Flebig, Ashley L. Tong, Marcel Giansily, James
N. Sturgis, Gabriela S. Schlau-Cohen

645-Pos BOARD B476
SPONTANEOUS CELL LUMINESCENCE AND OXIDATIVE METABOLISM.
Ibtissame Khaoa, François Amblard

Cellular Signaling and Metabolic Networks
(Boards B477 - B488)

646-Pos BOARD B477
BCL-2 OVEREXPRESSION STIMULATES CELL PROLIFERATION AND LACTIC
FERMENTATION WITHOUT AFFECTING WHOLE CELL RESPIRATION.
Laurent M. Dejean, Bushra Mahmood, Nawras Saaman, Lucineh Kas-
kajian, Krish Krishnan, Fabian V. Filipp

647-Pos BOARD B478
THERMODYNAMIC BOUNDS ON THE RANGE AND SENSITIVITY OF COVA-
LENT SWITCHING. Jeremy A. Owen, Pranay Tallia, John W. Biddle, Jeremy
Gunawardena

648-Pos BOARD B479
DEDUCED ROLES OF THE CARDIAC 14-3-3 PROTEIN INTERACTOME IN
HEART METABOLISM, PROTEIN SYNTHESIS AND PROTEOSTASIS.
Jia-Hua Qu, Kirill V. Tarasov, Khalid Chakir, Yelena S. Tarasova, Edward G.
Lakatta

649-Pos BOARD B480
ISLET COMPLEXINS ARE COMPLEX. Michael R. DiGruccio, Xue Wen Ng,
David W. Piston, Rebecca Rooks

650-Pos BOARD B481
TUNABLE FLUORESCENT IONIC NANOMATERIALS WITH SELECTIVE TOXIC-
ITY TOWARD CANCER CELLS. Shalise A. Burch, Luis Arrioja, Ariela Jannes
Javier, David Bwambok, Carlos Luna Lopez

651-Pos BOARD B482
VISCOADAPTATION CONTROLS DIFFUSION AND INTRACELLULAR REAC-
TION RATES IN RESPONSE TO HEAT AND ENERGY AVAILABILITY.
Laura Persson, Vardhhaan Ambati, Onn Brandman

652-Pos BOARD B483
UNDERSTANDING TISSUE BEHAVIOUR INCORPORATING DIFFERENT
KINDS OF CELLULAR INTERACTIONS. Debangana Mukhopadhyay

653-Pos BOARD B484
LEARNING REGULATION AND OPTIMAL CONTROL OF ENZYME ACTIVI-
TIES. William R. Cannon, Samuel R. Britton, Mark Alber

654-Pos BOARD B485
A NOVEL STOCHASTIC SIMULATION APPROACH ENABLES EXPLORATION
OF MECHANISMS TO REGULATE POLARIZATION DYNAMICS.
Samuel A. Ramirez, Michael Pablo, Sean Burk, Daniel J. Lew, Timothy C.
Elston

655-Pos BOARD B486
A PREDICTIVE MODEL OF MULTICELLULAR MECHANICS AND INTRA-
CELLULAR SIGNALING DURING EPITHELIAL-MESENCHYMAL TRANSI-
TION. Shreyas U. Hirway, Lewis E. Scott, Christopher A. Lemmon, Seth H.
Weinberg

656-Pos BOARD B487
A CONTROLLABLE PROTEIN TRANSLATION STRATEGY FOR EXPLORING
CELLULAR SIGNAL TRANSMISSION BASED ON READING THROUGH
PREMATURE TERMINATION CODONS. Cheryl X. Y. Cheng, Jingjing Zhou,
Yongqi Huang, Zhengding Su

657-Pos BOARD B488
THE APPLICATION OF NMR METABOLICOMICS IN THE STUDY OF THE
WOUND HEALING PROCESS. Juliana F. Floriano, Icaro P. Caruso, Angelica
M. Barbosa, Carlos F. Graeff, Fatima Pereira de Souza, Marilza V. Rudge

Diffraction and Scattering Techniques
(Boards B489 - B500)

658-Pos BOARD B489
LABEL FREE QUANTITATIVE PHASE IMAGING OF CELLULAR STRUCTU-
RES. Nicholas Anthony, Alberta Trianni, Paolo Bianchini, Alberto
Diaspro

659-Pos BOARD B490
MODELING OF CHROMATIN DNA BY POLARIZED LIGHT SCATTERING.
Muhammad Waseem Ashraf, Aymeric Le Gratiet, Riccardo Marongiu,
Alberto Diaspro

660-Pos BOARD B491
POLARIZATION-RESOLVED LIGHT SCATTERING SPECTROSCOPY (PLSS) TO
STUDY CHROMATIN-DNA ORGANIZATION. Riccardo Marongiu, Aymeric
Le Gratiet, Muhammad W. Ashraf, Alberto Diaspro

661-Pos BOARD B492
PROTEIN CONFORMATIONAL DYNAMICS PROBED CORRELATION SPEC-
TROSCOPY OF MULTIPLY SCATTERED LIGHT. Guillaume Graciani, Loic Le
Goff, François Amblard

662-Pos BOARD B493
QUANTIFICATION OF WATER FLUX IN LARGE UNILAMELLAR VESI-
CLES. Christof Hannesschläger, Anna Eckerstorfer, Armin Speletz, Thomas
Barta, Johann Wachlmayr, Andreas Horner

663-Pos BOARD B494
STUDYING WEAK MACROMOLECULAR INTERACTIONS BY SEDIMENTA-
TION VELOCITY OF HIGHLY CONCENTRATED SOLUTIONS. Peter Schuck,
Sumit K. Chaturvedi, Tony Rosales, Chandra Critchelow, Calvin Steussy, Tim
Schmidt, Olaf Wiest, Paul Helquist, Cynthia V. Stauffer

664-Pos BOARD B495
DEVELOPING A PH-JUMP CHEMICAL TRIGGERING METHOD FOR TIME-
RESOLVED DIFFRACTION IN BACTERIAL HMG-COA REDUCTASE.
Vatsal Purohit, Tony Rosales, Chandra Critchelow, Calvin Steussy, Tim
Schmidt, Olaf Wiest, Paul Helquist, Cynthia V. Stauffer

665-Pos BOARD B496
SINGLE MOLECULAR OBSERVATION OF AFP AND ICE-CRYSTAL DYNAMICS
IN CAENORHABDITIS ELEGANS BY TIME-RESOLVED X-RAY DIFFRACTION
MEASUREMENTS. Yige Dong, Masahiro Kuramochi, Chiaki Takanashi,
Kazuhiro Mio, Motomichi Doi, Kouki Aoyama, Hiroshi Sekiguchi, Sakae
Tsudo, Yuji C. Sasaki
Molecular Dynamics I
(Broads B501 - B531)

670-Pos BOARD B501
A VERSATILE LAMBDA-DYNAMICS MODULE FOR GROMACS.
R. Thomas Ullmann, Helmut Grubmueller

671-Pos BOARD B502
THE ROLE OF RAPID PROTEIN DYNAMICS IN ARTIFICIAL ENZYME DESIGN. Joseph Schafer, Ioanna Zoi, Dimitri Antoniou, Steven D. Schwartz

672-Pos BOARD B503
LOOS: A SUITE OF TOOLS TO ANALYZE MOLECULAR DYNAMICS SIMULATIONS. Alan Grossfield, Tod D.romo

673-Pos BOARD B504
IMPROVED ESTIMATES OF FOLDING STABILITIES AND KINETICS FROM MULTIENTLENS MODEL. Si Zhang, Vincent Voelz

674-Pos BOARD B505
A SCALING RELATION BETWEEN ACCESSIBLE PHASE SPACE VOLUME AND ESCAPE RATES FOR RANDOM WALKS IN HIGH-DIMENSIONAL HIERARCHICAL ENERGY LANDSCAPES - IMPLICATIONS FOR PROTEIN DYNAMICS. Andreas Volkhardt, Helmut Grubmueller

675-Pos BOARD B506
TEMPERATURE DRIVEN SHAPE TRANSFORMATION OF NANODISCS BY COARSE-GRAINED MOLECULAR DYNAMICS SIMULATIONS. Warin Rangubpit, Ras Pandey, Pornthep Sompornpisut

676-Pos BOARD B507
ENHANCED SAMPLING OF PEPTIDE BINDING TO PROTEINS THROUGH GAUSSIAN ACCELERATED MOLECULAR DYNAMICS SIMULATIONS. Jinan Wang, Andrey Alekseenko, Dima Kozakov, Yinglong Miao

677-Pos BOARD B508
BICEPS 2.0: NEW TOOLS FOR BAYESIAN INFERENCE OF CONFORMATIONAL POPULATIONS FROM THEORY AND EXPERIMENT. Yunhui Ge, Robert M. Raddi, Vincent A. Voelz

678-Pos BOARD B509
PROBING THE ACCURACY OF EXPLICIT SOLVENT CONSTANT PH MOLECULAR DYNAMICS SIMULATIONS FOR PEPTIDES. Plamen N. Dobrev, Sahithya Vermulapalli, Nilamoni Nath, Christian Griesinger, Helmut Grubmueller

679-Pos BOARD B510
EFFICIENT ESTIMATION OF BINDING KINETICS USING SCALED NONBONDED INTERACTIONS AND HARMONIC RESTRAINTS. Yunhui Ge, Vincent A. Voelz

680-Pos BOARD B511
HYBRID KINETIC MONTE CARLO / MOLECULAR DYNAMICS SIMULATIONS OF BOND SCISSIONS IN PROTEINS. Benedikt Rennekamp, Fabian Kutski, Agnieszka Obarska-Kosinska, Christopher Zapp, Frauke Gräter

681-Pos BOARD B512
NANOPORE CONFINED SPACE TOWARD PRECISION ASYMMETRIC SYNTHESIS OF SINGLE MOLECULES. Bo Yuan, Yuanjie Li, Hongyan Niu, Xueyuan Wu, Yilun Ying, Yi-Tao Long

682-Pos BOARD B513
COMPUTING SPATIALLY RESOLVED ROTATIONAL HYDRATION-SHELL ENTROPIES FROM MD SIMULATIONS USING AN ORIENTATIONAL K-NEAREST-NEIGHBOR DENSITY ESTIMATOR. Leonard P. Heinz, Helmut Grubmueller

683-Pos BOARD B514
NANOWAVEGUIDE-ILLUMINATED FLUORESCENCE CORRELATION SPECTROSCOPY FOR STUDYING MOLECULAR DYNAMICS ON CELL MEMBRANES. Joseph M. Chandler, Patrick DeLear, Brian Le, Chelsea Howard, Arstanbek Tulekeyev, Oskar Garcia, Huizhong Xu

684-Pos BOARD B515
DETERMINING PROTEIN STRUCTURES USING ACCELERATED MD SIMULATIONS AND NOISY DATA. Roy Nassar, Alberto Perez, James C. Robertson, Cong Liu, Emiliano Brini, Ken A. Dill

685-Pos BOARD B516
IMPROVED FLOODING MOLECULAR DYNAMICS ANALYSIS. Leonardo Cirqueira, Leticia Stock, Werner Treptow

686-Pos BOARD B517
DATA-DRIVEN DEVELOPMENT OF LIPID FORCE FIELDS FOR MOLECULAR DYNAMICS SIMULATIONS. Hanne S. Antila, Markus S. Miettinen

687-Pos BOARD B518
TESTING AND IMPROVING ALCHEMICAL METHODS FOR PROTEIN-PROTEIN BINDING AFFINITY CALCULATION. Dharmeshkumar J Patel, Jagdish Suresh Patel, F. Marty Ytreberg

688-Pos BOARD B519
PROBING THE CONFORMATIONAL CHANGE OF CONTRACTILE TAILS USING COARSE-GRAINED NORMAL MODE ANALYSIS. Moises E. Romero, Ioan Andricioaei

689-Pos BOARD B520
EXPLICIT IONS FOR COARSE-GRAINED SIMULATIONS OF INTRINSICALLY DISORDERED PROTEINS VIA HYDROPHOBICITY/HYDROPHILICITY SCALES. Thomas P. Dannenhofer-Lafage, Robert B. Best

690-Pos BOARD B521
ACCURATE DETERMINATION OF MEMBRANE PENETRATION OF PROTEINS USING FLUORESCENCE QUENCHING AND MOLECULAR DYNAMICS SIMULATIONS. Oleksandr V. Kyrychenko, Alexey S. Ladokhin

691-Pos BOARD B522
NOVEL SIMULATION METHODS FOR ELECTRIC FIELD-INDUCED DYNAMICS OF PROTEIN CRYSTALS. Justin S. Kim, Lauren McGough, Eugene Klyshko, Rama Ranganathan, Sarah Rauscher

692-Pos BOARD B523
USING DIHEDRAL STATISTICS TO CHARACTERIZE PROTEIN FOLDING TRANSITIONS. David Wang, Piotr E. Marszalek

693-Pos BOARD B524
AUTOMATIC PARTITION OF PROTEIN MOLECULAR DYNAMICS USING COUPLED HIDDEN MARKOV-ISING MODELS. Ka Chun Ho, Donald Hamelberg
Optical Microscopy and Superresolution Imaging I (Boards B532 - B566)

694-Pos BOARD B525
FORCE FIELD ERROR DIAGNOSIS AND STRUCTURE-DRIVEN CORRECTION FOR THE ATP-MAGNESIUM COMPLEX. Floris Buelens, Bert L. de Groot, Helmut Grubmueler

695-Pos BOARD B526
AN INTEGRATIVE APPROACH TO SINGLE-MOLECULE FRET SPECTROSCOPY AND MOLECULAR DYNAMICS SIMULATIONS FOR THE STUDY OF INTRINSICALLY DISORDERED PROTEINS. Mahmoud Moradi

696-Pos BOARD B527
USING MOLECULAR DYNAMICS SIMULATIONS TO UNDERSTAND IR SPECTROSCOPY RESULTS IN GREEN FLUORESCENT PROTEIN. Nia Huggins, Tracey Ng, Nicole Cruz, Scott H. Brewer, Christine M. Phillips-Pirio, Paul S. Nerenberg

697-Pos BOARD B528
EQUILIBRATION OF BURIED WATER MOLECULES TO ENHANCE PROTEIN-LIGAND BINDING FREE ENERGY CALCULATIONS. Idy O. Ben-Shalom, Charles Lin, Tom Kurtzman, Ross Walker, Michael K. Gilson

698-Pos BOARD B529
A COMPUTATIONAL STUDY OF FREE-ENERGY CHANGES UPON PROTEIN MUTATIONS. Shun Sakuraba

699-Pos BOARD B530
IDENTIFICATION OF BINDING MODES IN MOLECULAR RECOGNITION PROCESSES VIA NON-HEURISTIC CLUSTERING OF COMPUTATIONAL DATA. Danna De Boer

700-Pos BOARD B531
NAMD AS A TOOL FOR IN SILICO FORCE SPECTROSCOPY. Rafael C. Bernardi, Lukas F. Milles, Hermann E. Gaub

701-Pos BOARD B532
DEVELOPING INVERSELY RESPONDING GENETICALLY ENCODED SUPERRESOLUTION REPORTERS. Kriti Srivastava, Gary Mo

702-Pos BOARD B533
3D SUPERRESOLUTION FLUORESCENCE MICROSCOPY ON T-CELLS. Lukas Velas, Philipp Zeiger, Alexander Jesacher, Mario O. Bramshuber, Gerhard J. Schütz

703-Pos BOARD B534
SUPERRESOLUTION ORIENTATION IMAGING: A MICROSCOPIC TECHNIQUE FOR MEASURING DYNAMICS IN BIOLOGICAL SYSTEMS. Duncan P. Ryan, Somak Majumder, Jennifer A. Hollingsworth, Peter M. Goodwin, James H. Werner

704-Pos BOARD B535
MULTIPLEXED DNA-PAINT USING A HIGH-SPEED LINE-SCANNING HYPER-SPECTRAL MICROSCOPE. Elton D. Jhamba, Hanjieh Mazloom-Farsiba, Diane S. Lidke, Keith A. Lidke

705-Pos BOARD B536
SUPERRESOLUTION IMAGING OF LIVE CELLS WITH GENETICALLY ENCODED SILICON RHODAMINE-BINDING RNA APTAMERS. Peng Gao, Regina Wirth, Jens Lackner, Murat Sunbul, Andres Jaeschke, G. Ulrich Nienhaus

706-Pos BOARD B537
SUPERRESOLUTION 3D MICROSCOPY OF THE NUCLEAR PORE. Rajdeep Chowdhury, Abhishek Sau, Siegfried M. Musser

707-Pos BOARD B538
SIMULTANEOUSLY CAPTURING THE STRUCTURE AND MECHANICAL PROPERTIES OF CHROMOSOME USING STED NANOSCOPY AND OPTICAL TWEZERS. Tianlong Man, Anna E.C. Meijering, Iddo Heller, Kata Sarlós, Ian D. Hickson, Gijs J. Wuite, Erwin J.G. Peterman

708-Pos BOARD B539
CHARACTERIZATION OF DCA9 INTERACTION KINETICS AND LOCAL CHROMATIN STRUCTURE IN LIVE HUMAN CELLS USING PALM SUPERRESOLUTION MICROSCOPY. Dushyant Mehra, Chiranjib Banerjee, Santosh Adhikari, Karl J. Clark, Stephen C. Ekker, Elias M. Puchner

709-Pos BOARD B540
SINGLE-MOLECULE IMAGING AND LABELLING WITH DNA-BASED SUPERRESOLUTION MICROSCOPY. Mingjie Dai, Ningning Liu, Sinem K. Saka, Peng Yin

710-Pos BOARD B541
QUANTIFYING THE OLGOMERIC STATES OF MEMBRANE PROTEINS IN CELLS THROUGH SUPERRESOLUTION LOCALIZATIONS. Xihong Xie, Yu-Shan Cheng, Meng-Hsuan Wen, Aparna Calindi, Tai-Yen Chen

711-Pos BOARD B542
HIGH-THROUGHPUT AUTOMATED SEQUENTIAL SUPERRESOLUTION IMAGING OF MEMBRANE PROTEINS. David J. Schodt, Farzin Farzam, Keith A. Lidke

712-Pos BOARD B543
TRACKING RETROVIRUS PARTICLES AT DIFFERENT STAGES OF THE VIRAL LIFE CYCLE USING 3-DIMENSIONAL SUPERRESOLUTION MICROCOPY. Rayna M. Addabbo, John Kohler, Isaac Angert, Louis M. Mansky, Joachim D. Mueller

713-Pos BOARD B544
OPEN-SOURCE TOOLS FOR AUTOMATED LOCALIZATION MICROSCOPY. Joran Deschamps, Markus Mund, Daniel Schroeder, Jonas Ries

714-Pos BOARD B545
A MODULAR PLATFORM TO ENABLE COMBINATORIAL MICROCOPY. Aaron Au, Ziyang Yu, Christopher M. Yip

715-Pos BOARD B546
A ROBUST, FIDUCIAL FREE DRIFT CORRECTION FOR SUPERRESOLUTION IMAGING. Michael J. Wexter, Sandeep Pallikkuth, Hanjieh Mazloom-Farsiba, Mohamadreza Fazel, David Schodt, Keith A. Lidke

716-Pos BOARD B547
TOWARD SINGLE-MOLECULE LOCALIZATION MICROSCOPY (SMLM) ACQUISITIONS ASSISTED BY REAL-TIME QUALITY CONTROL. Sébastien Mailfert, Nicolas Bertaux, Didier A. Marguet

717-Pos BOARD B548
STED SUPERRESOLUTION IMAGING OF DUOX1 AND CEN2 REVEALS SUBSTRUCTURE OF MEMBRANE MACROMOLECULAR COMPLEXES IN HUMAN BRONCHIAL EPITHELIAL CELLS. Kamila R. Mustafina, Yukiko Sato, John W. Hanahan, Paul W. Wiseman

718-Pos BOARD B549
LIVE-CELL SUPERRESOLUTION MICROSCOPY OF FAA4 RE-DISTRIBUTION ON LIPID DROPLETS DURING METABOLIC TRANSITIONS IN YEAST. Santosh Adhikari, Joe Moscatelli, Elias M. Puchner

719-Pos BOARD B550
QUANTITATIVE SUPERRESOLUTION MICROSCOPY REVEALS THE CRITICAL ROLE OF ULK1 OLIGOMERIC STATES AND SUB-CELLULAR LOCALIZATION IN PHAGOPHORE MATURATION. Chiranjib Banerjee, Daihyun Song, Do-Hyung Kim, Elias M. Puchner

720-Pos BOARD B551
STRUCTURAL CHANGES TO DESMOSOME ARCHITECTURE DURING ASSEMBLY AND MATURATION. Reena R. Beggs, Tejeshwar C. Rao, William F. Dean, Rose M. Albert, Alexis L. Matthesyes

721-Pos BOARD B552
USING CORRELATIVE SUPERRESOLUTION FLUORESCENCE AND ELECTRON MICROSCOPY TO UNRAVEL DIATOM MORPHOGENESIS. Adeeba Fathima Valiya Thodiyil, André Ohara, Nicole Poulsen, Nils Kröger, Michael Schlierf
<table>
<thead>
<tr>
<th>Page</th>
<th>Board</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>722-Pos</td>
<td>B553</td>
<td>IN DEPTH 3D SINGLE MOLECULE LOCALIZATION MICROSCOPY WITH TIME MODULATED EXCITATION. Pierre Jouchet, Clement Gabriel, Nicolas Bourg, Marion Bardou, Christian Pois, Emmanuel Fort, Sandrine Lévéque-Fort</td>
<td></td>
</tr>
<tr>
<td>723-Pos</td>
<td>B554</td>
<td>DEVELOPING SINGLE-MOLECULE AND SUPERRESOLUTION TECHNIQUES TO CHARACTERISE ALPHA-SYNUCLEIN AGGREGATION. Alexandre Chappard, Mathew Horrocks</td>
<td></td>
</tr>
<tr>
<td>724-Pos</td>
<td>B555</td>
<td>VISUALISING A-SYNUCLEIN OLIGOMERS USING SUPERRESOLUTION MICROSCOPY. Craig Leighton, Mathew Horrocks, Tilo Kunath</td>
<td></td>
</tr>
<tr>
<td>725-Pos</td>
<td>B556</td>
<td>ENHANCED TRANSIENT AMYLOID BINDING MICROSCOPY USING SINGLE-MOLECULE ORIENTATION MEASUREMENTS. Tianben Ding, Tingting Wu, Hesam Mazlidi, Oumeng Zhang, Matthew D. Lew</td>
<td></td>
</tr>
<tr>
<td>726-Pos</td>
<td>B557</td>
<td>QUANTITATIVE IMAGING OF BACTERIAL EFFLUX PUMPS THROUGH SINGLE-MOLECULE LOCALIZATION MICROSCOPY. Tiziano Vignolini, Lucia Gardini, Francesco S. Pavone, Marco Capitanio</td>
<td></td>
</tr>
<tr>
<td>727-Pos</td>
<td>B558</td>
<td>VERSATILE UNIFORM ILLUMINATION FOR QUANTITATIVE WIDE-FIELD FLUORESCENCE AND SINGLE-MOLECULE LOCALIZATION MICROSCOPIES. Adrien Mau, Nicolas Bourg, Sandrine Lévéque-Fort</td>
<td></td>
</tr>
<tr>
<td>728-Pos</td>
<td>B559</td>
<td>APPLICATIONS OF LABEL-RETENTION EXPANSION MICROSCOPY ON BIOLOGICAL SYSTEMS AT VARIOUS SCALES. Xiaoyu Shi, Ian Seiple, Bo Huang</td>
<td></td>
</tr>
<tr>
<td>729-Pos</td>
<td>B560</td>
<td>APPLICATION OF SUPERRESOLUTION RADIAL FLUCTUATION (SRRF) IMAGING TO MEASUREMENT OF SINGLE-MOLECULE DNA HYBRIDIZATION KINETICS. Justin T. Cooper, Adam Wise</td>
<td></td>
</tr>
<tr>
<td>730-Pos</td>
<td>B561</td>
<td>NUCLEAR PORES AS VERSATILE REFERENCE STANDARDS FOR QUANTITATIVE SUPERRESOLUTION MICROSCOPY. Jervis V. Thevathasan, Maurice Kahnwald, Robin Diekmann, Jan Ellenberg, Jonas Ries</td>
<td></td>
</tr>
<tr>
<td>731-Pos</td>
<td>B562</td>
<td>THE EFFECT OF CRYO TEMPERATURE ON COMMONLY USED FLUOROPHORES. Lauren Ann Metksas, Samuel Ho, Sara J. Weaver, Grant J. Jensen, David A. Tirrell</td>
<td></td>
</tr>
<tr>
<td>732-Pos</td>
<td>B563</td>
<td>SYNERGIC COMBINATION OF STIMULATED EMISSION DEPLETION MICROSCOPY WITH STIMULATED RAMAN SCATTERING. Wenlong Yang, Nate Jowett, Iván Coto Hernández</td>
<td></td>
</tr>
<tr>
<td>733-Pos</td>
<td>B564</td>
<td>3D SUPERRESOLUTION STUDIES OF THE EFFECT OF SERINC5 ON ENV GLYCOPROTEIN DISTRIBUTION ON HIV-1 PARTICLES. Yen-Cheng Chen, Chetan Sood, Mariana Marin, Jesse Aaron, Teng-Leong Chew, Khalid Salaita, Gregory B. Melikyan</td>
<td></td>
</tr>
<tr>
<td>734-Pos</td>
<td>B565</td>
<td>INTERFEROMETRIC SCATTERING MICROSCOPY TO CHARACTERIZE NANOMETRIC OBJECTS AND SUBCELLULAR STRUCTURES: TOWARDS FAST 3D IMAGING AT NANOSCALE. Il-Buem Lee, Jin-Sung Park, Hyeon-Min Moon, Katerina Zambochova, Kyoung-Hoon Kim, Jong-Hyeon Joo, Jin-Sun Ryu, Sun-Young Kong, Seok-Cheol Hong, Minhaeng Cho</td>
<td></td>
</tr>
<tr>
<td>735-Pos</td>
<td>B566</td>
<td>SCANNING FCS AND SUPERRESOLUTION MICROSCOPY ON 2D LIPID MEMBRANES. Marcele Koennig, Mariano Gonzalez Pisfil, Rhys Dowler, Benedikt Krämer, Sumeeet Rohilla, Christian Oelsner, Felix Koberling, Rainer Erdmann</td>
<td></td>
</tr>
<tr>
<td>736-Pos</td>
<td>B567</td>
<td>TOWARD TAILORED BIOSTABILITY OF DNA NANOSTRUCTURES. Javier Vilcapoma</td>
<td></td>
</tr>
<tr>
<td>737-Pos</td>
<td>B568</td>
<td>DNA NANOSWITCHES AS VERSATILE RNA BIOSENSORS. Arun Richard Chandrasekaran</td>
<td></td>
</tr>
<tr>
<td>738-Pos</td>
<td>B569</td>
<td>ISOTHERMAL DNAZYM- MEDIATED BICYCLIC ROLLING CIRCLE AMPLIFICATION ENABLES SIMPLE COLORIMETRIC DETECTION OF A TARGET SEQUENCE. Alessandra C. Zimmermann, Jason D. Kahn, Ian M. White</td>
<td></td>
</tr>
<tr>
<td>739-Pos</td>
<td>B570</td>
<td>PREPARATION OF PEPTIDES WITH HIGH AFFINITY TO CANCER TARGETS IN MRNA DISPLAY VIA CONTINUOUS-FLOW MICROFLUIDICS. Wan-Zhen Lin, William E. Evenson, Kenmond Pang, Richard Roberts, Noah Malmstadt</td>
<td></td>
</tr>
<tr>
<td>740-Pos</td>
<td>B571</td>
<td>SENSING MIXED LINEAGE LEUKEMIA WIN MOTIF PEPTIDE-WD REPEAT PROTEIN-5 ASSOCIATION WITH AN ENGINEERED BIOSENSOR. Lauren A. Mayse, Ashley Canning, Ali Imran, Michael Cosgrove, Liviu Movileanu</td>
<td></td>
</tr>
<tr>
<td>741-Pos</td>
<td>B572</td>
<td>PHOTO-CONTROL OF RAS NUCLEOTIDE EXCHANGE REACTION USING PEPTIDE INHIBITOR MODIFIED WITH SPIROPYRAN DERIVATIVE. Kenichi Taii, Nobuyuki Nishibe, Kei Sadakane, Shinsaku Maruta</td>
<td></td>
</tr>
<tr>
<td>742-Pos</td>
<td>B573</td>
<td>THE EFFECT OF DIFFERENT FLUOROPHORES ON FLUORESCENCE-BASED TECHNIQUES. Marco Cavaco, Diana Gaspar, Vera Neves, Miguel A. Castanho</td>
<td></td>
</tr>
<tr>
<td>743-Pos</td>
<td>B574</td>
<td>ENGINEERING A MAGNETIC PROTEIN CRYSTAL. Thomas Li, Zegao Wang, He You, Qunxiang Ong, Vamsi Varanasi, Mingdong Dong, Bai Lu, Sergiu Pastca, Blanxiaoxia Cui</td>
<td></td>
</tr>
<tr>
<td>744-Pos</td>
<td>B575</td>
<td>PAPER-SUPPORTED LIPID BILAYERS THAT CAN BE STORED BEFORE USE. Gabriella R. Kimmerly, Khadijah T. Thibodeaux, Jazmyn Juarez, Lauren Trihy, Babak Sanii</td>
<td></td>
</tr>
<tr>
<td>745-Pos</td>
<td>B576</td>
<td>OUTER LEAFLET LIPID COMPOSITION AFFECT THE INTERNALIZATION OF NANOPARTICLE IN LIVE CELLS. Saeed Nazemidashtarjandi, Amir Farndon</td>
<td></td>
</tr>
<tr>
<td>746-Pos</td>
<td>B577</td>
<td>A PIPELINE FOR HIGH-THROUGHPUT ASSESSMENT OF ELECTROPHYSIOLOGY AND PROTEIN QUANTIFICATION IN SMALL SAMPLES OF IPS-CM. WeiZhen Li, Emilia Entcheva</td>
<td></td>
</tr>
<tr>
<td>747-Pos</td>
<td>B578</td>
<td>FABRICATION OF A MICROFLUIDIC DEVICE TO STUDY THE INTERACTIONS BETWEEN HUMAN CHORDOMA UCH-1 AND HUMAN ADIPOSE-DERIVED STEM CELLS. Holly Day, Rosaline Kumar, Carlos Luna</td>
<td></td>
</tr>
</tbody>
</table>
748-Pos BOARD B579 ENGINEERING THE MICROENVIRONMENT FOR HEART MUSCLE CELL MECHANOBIOLOGY. Erica A. Castillo, Kerry Lane, Orlando Chirikian, Samuel Feinstein, Cheavar Blair, Alison Schroer, Gaspard Pardon, Tanya Grancharova, Ru Gunawardane, Sarah Heilshorn, Beth L. Pruitt

749-Pos BOARD B580 PHENOTYPING OF PHAGOCYTOSING NEUTROPHIL POPULATIONS USING DEFORMABILITY CYTOMETRY. Cody Combs, Matthew J. Boyan, Rocelle Radzynski, Daniel Spalinski, Jun F. Allard, Steven Gross, Xiaohui Xie, Zuzanna S. Siwy

750-Pos BOARD B581 HAIR REGENERATION INDUCED BY MECHANICAL STRETCH THROUGH THE ALTERNATIVE ACTIVATION OF MACROPHAGES. Oscar K. Lee

751-Pos BOARD B582 PERIODIC BIOMECHANICAL STRESSES AND STRAINS AT NEURAL INTERFACES MODULATE MITOCHONDRIAL AND METABOLIC FUNCTIONALITY. Arati Sridharan, Vladislav Voziyanov, Jit Muthuswamy

752-Pos BOARD B583 SIMULATED MICROGRAVITY AFFECTS NUMB LOCALIZATION IN HUMAN ADIPOSE-DERIVED STEM CELLS. Areli Jannes Javier, Daniel Roufiael, Shalise Burch, Rosaline Kumar, Holly Day, Carlos Luna

753-Pos BOARD B584 A MULTI-SCALE MODELING APPROACH TO DETERMINE 3D HEART VALVE INTERSTITIAL CELL BIOPHYSICAL BEHAVIOR IN A HYDROGEL ENVIRONMENT. Michael S. Sacks, Emma Lejeune, Alex Khang

754-Pos BOARD B585 PHYSICAL CONFINEMENT INDUCES MALIGNANT TRANSFORMATION IN MAMMARY EPITHELIAL CELLS. Yen-Chun Lu

755-Pos BOARD B586 TRAVEL Awardee MOUSE MELANOMA B16 TUMORS ARE SOFT AND ENGULFABLE WHEN TARGETED IN COMBINATION WITH MACROPHAGE CHECKPOINT BLOCKADE. Lawrence J. Dooling, Brandon H. Hayes, Jason C. Andrechak, Siddhant Kadu, Dennis E. Discher

Micro- and Nanotechnology I
(Boards B587 - B606)

756-Pos BOARD B587 STRUCTURAL AND FUNCTIONAL PROPERTIES OF SYNTHETIC TRANSMEMBRANE PEPTIDE PORES. Puthumadathil Neethu Narayanan Anitha, Smrithi Krishnan R., Kozhinjampara R. Mahendran

757-Pos BOARD B588 IMMobilization of bioengineered portal protein within a solid-state nanopore for molecular sensing. Mehrnaz Mojtabavi, Sandra Greive, Alfred Antson, Meni Wanunu

758-Pos BOARD B589 Simulating resistive pulses from the translocation of arbitrarily shaped single proteins through nanopores using spherical clusters of beads. Shuran Xu, Cuifeng Ying, Marco Latтуda, Michael Mayer

759-Pos BOARD B590 Single protein trapping on ultrathin asymmetric solid-state nanopores. Hirohito Yamazaki, Fanjun Li, Abdelkrim Benabbes, Benjamin Cressiot, Paul M. Champion, Min Chen, Meni Wanunu

760-Pos BOARD B591 Protein trapping in a nanopore well. Jiali Li, Cuifeng Ying, Saubh Ashasthi, Trevor Kalkus, Mitu C. Acharjee, Michael Mayer

761-Pos BOARD B592 Two protein dynamics through a nanopore in an electrically biased solid-state membrane. Craig C. Wells, Dmitriy V. Melnikov, Maria E. Gracheva

762-Pos BOARD B593 Orientation-dependent electric potential and ionic current model of a nucleotide in a silicon dioxide nanopore. Arjun Verma, Maria E. Gracheva

763-Pos BOARD B594 Electronic detection of nucleotides in multi-layered MOS-HBN nanopore FET devices. Nagendra Athreya, Jean-Pierre Leburton

764-Pos BOARD B595 Investigating C-KIT G-quadruplex stability using nanopore. Trang Vu, Joel Martinez-Goyco, Sun Min Kim, Tae-Joon Jeon, Jiwook Shim

765-Pos BOARD B596 Repeated sensing of single DNA molecules in a dual nanopore device. Philip Zimny, Yuning Zhang, Ankit Rana, Roland Nagel, Walter Reisner, William B. Dunbar, Xu Liu

766-Pos BOARD B597 Recent progress in solid-state nanopore DNA sequencing. Paul Masih Das

768-Pos BOARD B599 Optical observation of DNA translocation dynamics in sin nanopores. Katsuyuki Enomoto, Yuki Ishikawa, Keiko Esashika, Toshiharu Saiti

769-Pos BOARD B600 Unbalanced ion flushing effect in MOS, nanopore biosensors. Mingye Xiong, Michael Graf, Nagendra Athreya, Aleksandra Radenovic, Jean-Pierre Leburton

770-Pos BOARD B601 Gating of hydrophobic nanopores with large anions. Jake Polster, Elif T. Acar, Tuan Anh Pham, Zuzanna S. Siwy

771-Pos BOARD B602 Ionic amplifying circuits inspired by electronics and biology. Rachel A. Lucas, Chih-Yuan Lin, Lane A. Baker, Zuzanna S. Siwy

772-Pos BOARD B603 Biomimetic signal propagation in a two-pore solid-state system. Cody Combs, Rachel A. Lucas, Jenny Zhou, Nick Teslich, Elif Turker Acar, Francesco Fornasiero, Zuzanna S. Siwy, Steven F. Buchsbaum

773-Pos BOARD B604 Electrode-free nanopore sensing by diffusiophotophysics (DOP). Yuqin Wang

774-Pos BOARD B605 TRAVEL Awardee Direct observation of single biomolecule hidden behaviors by an electro-optical nanopore. Rui Gao, Yilun Ying, Yi-Tao Long

775-Pos BOARD B606 Dynamics of laser-assisted silicon nitride dielectric breakdown for deterministic fabrication of solid-state nanopore. Zifan Tang, Xiaodong He, Weihua Guan
Student Research Achievement Award (SRAA) Poster Competition

These posters will be displayed for judging on Sunday, February 16, 6:00 PM–9:00 PM, in the SRAA poster board area marked S1–S133, in the Exhibit Hall. S board numbers before each title indicate where the posters will be assigned during the Sunday evening competition.

The posters will also be presented during the regular daily sessions as programmed below. Note that only the applicant’s name is listed. Please refer to the full abstract for all authors. Please also note that only applicants and judges will be allowed in S poster area on Sunday evening.

Bioenergetics, Mitochondria & Metabolism (Boards S1 – S4)

Board S1
DYNAMIC PLASTICITY OF MITOCHONDRIAL VDAC2 REVEALED BY SINGLE-MOLECULE ELECTROPHYSIOLOGY William M. Rosencrans (1337-Pos / B405)

Board S2
STUDY OF WATER AND PROTON CHANNELS NEAR TO THE OXYGEN EVOLVING COMPLEX OF PHOTOSYSTEM II Divya Kaur Matta (2977-Pos / B523)

Board S3
MAMMALIAN STEAROYL-COA DESATURASE FORMS A STABLE TERNARY COMPLEX WITH CYTOCHROME B5 AND CYTOCHROME B5 REDUCTASE Jiemin Shen (2568-Pos / B114)

Board S4
LIVE-CELL SUPERRESOLUTION MICROSCOPY OF FAA4 RE-DISTRIBUTION ON LIPID DROPLETS DURING METABOLIC TRANSITIONS IN YEAST Santosh Adhikari (718-Pos / B549)

Bioengineering (Boards S5 – S12)

Board S5
CHROMATIN FOLDING UNDER DIFFERENT NUCLEAR CONFINEMENT. Samira Mali (378-Pos / B209)

Board S6
PREPARATION OF PEPTIDES WITH HIGH AFFINITY TO CANCER TARGETS IN MRNA DISPLAY VIA CONTINUOUS-FLOW MICROFLUIDICS. Wan-Zhen Lin (739-Pos / B570)

Board S7
DUAL EFFECTS OF SUBCELLULAR CALCIUM HETEROGENEITY AND HEART RATE VARIABILITY ON CARDIAC ELECTROMECHANICAL DYNAMICS. Vrishi Phadumdeo (1994-Pos / B264)

Board S8
RATIONALIZING THE EFFECT OF MUTATIONS ON THE EDITING EFFICIENCY OF ADENINE BASE EDITORS. Kartik Lakshmi Rallapalli (1455-Pos / B523)

Board S9
CONSTRUCTION OF PROGRAMMABLE NANOPORE USING DE NOVO DESIGNED B-SHEET PEPTIDE Keisuke Shimizu (2323-Pos / B593)

Board S10
ANALYZING SINGLE-MOLECULE BEHAVIOR OF A SMALL PROTEIN IN CONFINED NANOSPACE OF A BIOLOGICAL NANOPORE. Misa Yamaji (2322-Pos / B592)

Board S11
ALLOSTERIC REGULATION OF GLUTamate DEHYDROGENASE DEAMINATION ACTIVITY. Soumen Bera (2538-Pos / B84)

Board S12
MULTIMODAL NONLINEAR OPTICAL IMAGING OF PLASMA MEMBRANE BY DYE-BASED SUM-FREQUENCY GENERATION USING A COHERENT ANTI-STOKES RAMAN SCATTERING MICROSCOPE. Takaha Mizuguchi (2293-Pos / B563)

Biological Fluorescence (Boards S13 – S24)

Board S13
AO-DIVER ADVANCES THE DEPTH LIMITS OF MULTIPHOTON MICROSCOPY IN SCATTERING MEDIA. Simon W. Leemans (1504-Pos / B572)

Board S14
BLUE-CONVERSION OF ORGANIC DYES PRODUCES THE ARTIFACTS OF MULTI-COLOR FLUORESCENT IMAGING. Yeonho Chang (1527-Pos / B595)

Board S15
DEFINING THE FLEXIBLE CARDIAC TROPONIN T LINKER REGION IN RELATIONSHIP TO ACTIN AND DETERMINING EFFECTS OF PATHOGENIC POINT MUTATIONS. Andrea E. Deranek (2077-Pos / B347)

Board S16
INVESTIGATING NOVEL HETERO-FRET BIOSENSORS FOR ENVIRONMENTAL IONIC STRENGTH USING EXPERIMENTAL AND THEORETICAL APPROACHES. Cody P. Aplin (2485-Pos / B31)

Board S17
A NOVEL TARGETING APPROACH FOR CANCER TREATMENT BASED ON PHOTODYNAMIC THERAPY. Eleonora Uriati (1533-Pos / B601)

Board S18
COTRANSCRIPTIONAL MOONLIGHTING OF RSMC AS AN RNA CHAPERONE PROTEIN. Keshav G C (1102-Pos / B170)

Board S19
STRUCTURAL CHANGES TO DESMOSOME ARCHITECTURE DURING ASSEMBLY AND MATURATION. Reena R. Beggs (720-Pos / B551)
Biopolymer in vivo (Boards S25 – S32)

Board S25
THE ROLE OF RAPID PROTEIN DYNAMICS IN ARTIFICIAL ENZYME DESIGN.
Joseph Schaefer (671-Pos / B502)

Board S26
MULTIDIMENSIONAL PHASE DIAGRAMS FOR MULTICOMPONENT SYSTEMS COMPRISING MULTIVALENT PROTEINS.
Furqan Dar (1041-Pos / B109)

Board S27
INHOMOGENEOUS FORCES IN SEMIFLEXIBLE BIOPOLYMERS.
Ananya Mondal (329-Pos / B160)

Board S28
COMPUTATIONAL EVALUATION OF POINT MUTATION PERTURBATIONS TO THE RECOVERY STROKE OF DICTYOSTELIUM MYOSIN II WITH METADYNAMICS.
Anthony Baldo (2138-Pos / B408)

Board S29
INFERRING RADIAL ORGANIZATION OF CHROMOSOMAL TERRITORIES FROM HI-C DATA.
Priyojit Das (2689-Pos / B235)

Board S30
DYNAMICAL METRICS TO FINGERPRINT PROTEINS AND PROTEIN-PROTEIN INTERACTIONS.
Sanjoy Paul (1498-Pos / B566)

Board S31
IN CELL KINETIC FRET ASSAY TO JUDGE SUITABILITY OF BIOORTHOGONAL DYE LABELLING REACTION.
Christine Koehler (1535-Pos / B603)

Board S32
EFFECT OF NASCENT PROTEINS ON THE STABILITY OF THE RIBOSOME.
Meranda Masse (958-Pos / B26)

Channels, Receptors & Transporters (Boards S33 – S43)

Board S33
FUNCTIONAL UNCOUPLING OF PAIN-LINKED NAV1.7/A1632E DIMERS PARTLY RESCUES ITS PAIN-CAUSING PHENOTYPE.
Annika Ruehlmann (2829-Pos / B375)

Board S34
RELATIVE HERG SUBUNIT ABUNDANCE MODIFIES I_{Ks} KINETICS AND MAGNITUDE DURING CARDIAC MATURATION.
Chiamaka Ukachukwu (1271-Pos / B339)

Board S35
K_{ATP} CHANNELS IN ZEBRAFISH CARDIOVASCULAR SYSTEM: A MODEL TO STUDY CANTÚ SYNDROME.
Soma S. Singareddy (1271-Pos / B339)

Board S36
EFFECT OF BILAYER THICKNESS ON MECHANICAL ACTIVATION OF THE ANGIOTENSIN II TYPE 1 RECEPTOR.
Bharat Poudel (935-Pos / B3)

Board S37
MOLECULAR DYNAMICS SIMULATIONS STUDIES OF THE PROTON CHANNEL OTOPETRIN AND OTHER MECHANICALLY-ACTIVATED ION CHANNELS.
Che Chun (Alex) Tsui (1345-Pos / B413)

Board S38
LIPID-DEPENDENT MODULATION OF CARDIAC ION CHANNEL ACTIVITY AS AN ANTI-ARRHYTHMIC THERAPY IN LONG-QT SYNDROME.
Haydee Mesa Galloso (2719-Pos / B265)

Board S39
MOLECULAR MECHANISMS OF HUMAN ERG1 CHANNEL BLOCKADE BY CERAMIDES.
Williams E. Miranda (2725-Pos / B271)

Board S40
SEEKING THE INTERFACES OF EPH RECEPTOR INTERACTIONS.
Taylor P. Light (475-Pos / B306)

Board S41
MODULATION OF 5-HT1A G PROTEIN COUPLED RECEPTOR MOVEMENT AND INTERNALIZATION.
Austin Baggetta (2579-Pos / B125)

Board S42
INNATE ANTIFUNGAL IMMUNE RECEPTOR, DECTIN-1, UNDERGOES LIGAND-INDUCED OLIGOMERIZATION WITH HIGHLY STRUCTURED B-GLUCANS AND AT FUNGAL CELL CONTACT SITES.
Eduardo U. Anaya (1200-Pos / B268)
Cryo-EM (Boards S44 – S46)

BOARD S44
ACTIN FILAMENTS IN FLIGHT MUSCLE Z-DISKS OF *LETHOCERUS INDICUS* SHOW SCREW SYMMETRY, NOT ROTATIONAL SYMMETRY.
Fatemeh A. Abbasi Yeganeh (1436-Pos / B504)

BOARD S45
INSIGHTS INTO VARIOUS TYPES OF MYOPATHY USING THE ATOMIC MODEL OF *LETHOCERUS* MYOSIN FILAMENTS.
Hamidreza Rahmani (1364-Pos / B432)

BOARD S46
PORE FORMATION MECHANISM OF HUMAN GASDERMIN D.
Shiyu Xia (193-Pos / B24)

Intrinsically Disordered Proteins (Boards S47 – S56)

BOARD S47
DISSECTING THE NUCLEAR PORE-LIKE PERMEABILITY BARRIER FUNCTION OF PHASE SEPARATED LIQUID FG NUCLEOPORIN CONDENSATES.
Panagiotis A. Patsis (303-Pos / B134)

BOARD S48
A-SYNUCLEIN DIMERS AS POTENT INHIBITORS OF FIBRILLIZATION.
Yevhenii Kryiukha (1811-Pos / B81)

BOARD S49
A DOUBLE MUTANT CYCLE INVOLVING THE CHARGED RESIDUES OF AMYLOID BETA.
Anirban Das (1812-Pos / B82)

BOARD S50
DESIGNER MEMBRANELESS ORGANELLES ENABLE HIGHLY SPECIFIC PROTEIN ENGINEERING IN EUKARYOTES.
Christopher D. Reinkemeier (2987-Pos / B533)

BOARD S51
LIPID COMPOSITION, PROTONATION, AND DIVALENT CATIONS AS MODULATORS OF PROTEIN-MEMBRANE INTERACTIONS.
Víctor Vásquez Montes (1153-Pos / B221)

BOARD S52
ENERGETICS OF T-T INTERACTIONS IMPLICATED IN LIQUID-LIQUID PHASE SEPARATION.
Andrea Guljas (2642-Pos / B188)

BOARD S53
SEQUENCE-ENCODED INTERACTIONS MODULATE REENTRANT LIQUID CONDENSATION OF RIBONUCLEOPROTEIN-RNA MIXTURES.
Ibraheem Alshareedah (1821-Pos / B91)

BOARD S55
SEQUENCE-ENCODED INTERACTIONS MODULATE REENTRANT LIQUID CONDENSATION OF RIBONUCLEOPROTEIN-RNA MIXTURES.
Ibraheem Alshareedah (1821-Pos / B91)

BOARD S55
BASE MAPPING METHOD FOR EXTRACTING COMPARATIVE ASSESSMENTS OF PROTEIN PHASE BEHAVIOR FROM *IN VIVO* MEASUREMENTS.
Jared M. Lalmansingh (2636-Pos / B182)

BOARD S56
RATIONAL DESIGN OF CONFORMATION-SPECIFIC ANTIBODIES FOR TAU OLIGOMERS.
Klara Kulenkampff (1814-Pos / B84)

Macromolecular Machines & Assemblies (Boards S57 – S69)

BOARD S57
BICEPS 2.0: NEW TOOLS FOR BAYESIAN INFERENCE OF CONFORMATIONAL POPULATIONS FROM THEORY AND EXPERIMENT.
Yunhui Ge (677-Pos / B508)

BOARD S58
CLOCK OUTPUT SERVES DUAL PURPOSE OF GENE REGULATION AND TIME KEEPING.
Joel C. Heisler (253-Pos / B84)

BOARD S59
IS DODINE A PROTEIN STABILIZER OR DESTABILIZER? IT’S COMPLICATED!
Shriya Mittal (969-Pos / B37)

BOARD S60
ENERGY LANDSCAPE OF UBIQUITIN FAMILY PROTEINS - ELUCIDATING THE ROLE OF PROTEIN SEQUENCE AND SPECIFIC INTERACTIONS SUCH AS SALT-BRIDGES IN DICTATING FOLDING PATHWAYS.
Tathagata Nandi (968-Pos / B36)

BOARD S61
ASSEMBLY AND BINDING OF *E COLI* RECOR PROTEINS TO SSB C-TERMINAL TAILS.
Min Kyung Shinn (1829-Pos / B99)

BOARD S62
MOLECULAR DYNAMICS SIMULATION REVEALS NEW POCKET FOR THE DESIGN OF NOVEL AMINO ACID COUPLED SIRT1 SELECTIVE INHIBITOR.
Mrityunjay Singh (1010-Pos / B78)

BOARD S63
MOLECULAR DYNAMICS INVESTIGATION OF THE PHYSICAL BINDING OF THE NNK DIAZONIUM ION TO TP53 EXON 5.
David Wahl (1460-Pos / B528)

BOARD S64
USING DIHEDRAL STABILITIES TO CHARACTERIZE PROTEIN FOLDING TRANSITIONS.
David Wang (692-Pos / B523)

BOARD S65
HOOGSTEEN BASE PAIRING IN DNA VS RNA: THERMODYNAMICS AND KINETICS FROM ENHANCED SAMPLING SIMULATION AND MARKOV STATE MODELING.
Dhiman Ray (1465-Pos / B533)

BOARD S66
THE ROLE OF BACKBONE AND SIDECHAIN DYNAMICS ON FIMH ALLOSTERY.
Jenny Liu (2546-Pos / B92)

BOARD S67
CHARACTERISTIC INTERACTIONS BETWEEN BRCA2 AND G-QUADRUPLEX STRUCTURES FOR TELOMERE MAINTENANCE.
Keewon Sung (376-Pos / B207)

BOARD S68
THE NUCLlease DOMAIN OF RECBCD INFLUENCES DNA BINDING AND HELICASE ACTIVITY.
Nicole T. Fazio (358-Pos / B189)
Board S69
SINGLE-MOLECULE MECHANICAL MEASUREMENTS OF THE HYALURONAN-AGGREGAN BOTTLEBRUSH.
Sarah Innes-Gold (976-Pos / B44)

Mechanobiology
(Boards S70 – S76)

Board S70
ANALYSIS OF THE LIFETIME OF THE FIMH CATCH BOND UNDER FORCE.
Laura Carlucci (2518-Pos / B64)

Board S71
A PREDICTIVE MODEL OF MULTICELLULAR MECHANICS AND INTRACELLULAR SIGNALING DURING EPITHELIAL-MESENCHYMAL TRANSITION.
Shreyas Hirway (655-Pos / B486)

Board S72
IN-SILICO ELECTROPHYSIOLOGY OF INNER-EAR MECHANOTRANSDUCTION CHANNEL MODELS.
Jeffrey Lotthammer (1350-Pos / B418)

Board S73
SINGLE MOLECULE FORCE SPECTROSCOPY OF CHONDROCYTE ASB1 AND A1B1 INTEGRINS.
Divya Kota (1153-Pos / B255)

Board S74
FINITE TEMPERATURE ANALYSIS OF INTER-CHROMOPHORE ELECTRONIC COUPLINGS IN DIFFERENT FORMS OF THE PERIDININ-CHLOROPHYLL A PROTEIN.
Dalia M. Hassan (643-Pos / B474)

Board S75
DISCRIMINATOR EFFECTS ON OPEN COMPLEX FORMATION, STABILIZATION, AND TRANSCRIPTION INITIATION.
Hao-Che Wang (2652-Pos / B198)

Board S76
EXPLORING THE STRUCTURAL ELEMENTS RESPONSIBLE FOR CIS-HOMODIMERIZATION OF INNER EAR CADHERIN-23.
Joseph C. Sudar (1235-Pos / B303)

Membrane Fusion, Fission & Traffic
(Boards S77 – S84)

Board S77
LIPID MEMBRANE DEFORMATION INDUCED BY TRANSMEMBRANE PEPTIDES.
Kayano Izumi (1136-Pos / B204)

Board S78
SPATIOTEMPORAL ORGANIZATION OF MMP9 AND ITS EXOCYTOTIC ORGANIZING ELEMENTS IN MCF7 BREAST CANCER CELLS.
Dominique C. Stephens (1972-Pos / B242)

Board S79
PLASMA MEMBRANE ORDER REGULATES INSULIN GRANULE EXOCYTOSIS.
Chase Amos (1970-Pos / B240)

Board S80
MILD TEMPERATURE GRADIENTS MAY HAVE ENHANCED THE GROWTH AND FUSION OF PROTOCELLS ON THE EARLY EARTH.
Elif S. Koksal (409-Pos / B240)

Board S81
EFFECT OF SIMPLE ANESTHETICS ON SNARE FUSION PROTEINS AND ON FUSING MEMBRANES.
Robert E. Coffman (1959-Pos / B229)

Board S82
COMPUTATIONAL MODELLING FRAMEWORK TO STUDY CA2+ ACTIVATION OF SYNAPTIC VESICLE FUSION BY DIFFERENT SYNAPTOTAGMIN ISOFORMS.
Christopher A. Norman (1402-Pos / B470)

Board S83
INDUCED MEMBRANE PERMEABILIZATION AND VESICLE FUSION: SYNHETIC ANTIMICROBIALS ACTING ON MODEL MEMBRANES.
Shuai Shi (1880-Pos / B150)

Board S84
A POTENT VOLTAGE-GATED CALCIUM CHANNEL INHIBITOR ENGINEERED FROM A NANOBODY TARGETED TO AUXILIARY CAVβ SUBUNITS.
Travis J. Morgenstern (519-Pos / B350)

Membrane Structure & Function
(Boards S85 – S95)

Board S85
MEMBRANE BINDING OF ALPHA-SYNUCLEIN CONFFERS STERIC STABILIZATION OF NANOPARTICLE-SUPPORTED LIPID BILAYERS.
Hyeondo (Luke) Hwang (2739-Pos / B285)

Board S86
A MICROSCOPIC PICTURE OF CALCIUM-ASSISTED LIPID DEMIXING AND MEMBRANE REMODELING USING MULTI-SCALE SIMULATIONS.
Abhilash Sahoo (416-Pos / B247)

Board S87
MECHANISM OF THE INHIBITORY INTERFERENCE IN HUMAN ANTIMICROBIAL PEPTIDES.
Ewa Drab (1198-Pos / B266)

Board S88
A MOLECULAR SIMULATION METHOD TO PREDICT THE SOLVATION, FOLD, SELF-ASSEMBLY, AND PORATION OF PEPTIDES AND PROTEINS IN MEMBRANES.
Jingjing Huang (1922-Pos / B192)

Board S89
MILD HYPOTHERMIA ENHANCES LUNG SURFACTANT ACTIVITY: DELVING INTO THE MOLECULAR MECHANISMS.
Chiara Autilio (429-Pos / B260)

Board S90
MOLECULAR BASIS OF CHOLESTEROL-DEPENDENT BINDING AND SELECTIVITY OF A CHOLESTEROL SENSOR.
Defne Gorgun (1191-Pos / B259)

Board S91
DIMERIZATION OF B2-ADRENERGIC RECEPTOR IS RESPONSIBLE FOR THE BASAL ACTIVITY SUBJECTED TO INVERSE AGONISM.
Min Gyu Jeong (1519-Pos / B587)

Board S93
MODULATION OF EGFR ACTIVATION BY DIRECT INTERACTION WITH CHOLESTEROL IN THE PLASMA MEMBRANE.
Triet Ming Hong (1524-Pos / B592)
BOARD S94
DIRECT DETECTION AND CHARACTERIZATION OF A PHOSPHOINOSITIDE DEPENDENT KINASE-1 (PDK1) HOMODIMER ON A TARGET MEMBRANE SURFACE VIA SINGLE MOLECULE FLUORESCENCE.
Moshe T. Gordon (2733-Pos / B279)

BOARD S95
José C. Castillo-Sanchez (1889-Pos / B159)

Membrane Transport
(Boards S96 – S103)

BOARD S96
COMPUTATIONAL STUDY OF THE MOLECULAR DETAILS OF EBOLA VIRUS MATRIX PROTEIN VP40 AND HUMAN SEC24C PROTEIN INTERACTION.
Nisha Bhattarai (2474-Pos / B20)

BOARD S97
SMALL MOLECULE INTERACTIONS WITH BACTERIAL CELL MEMBRANES: ASSESSING INSERTION BARRIERS FOR ALL THE MEMBRANES USING FREE ENERGY COMPUTATIONS.
Pradyumn Sharma (1451-Pos / B519)

BOARD S98
CLATHRIN-COATED PITS FORM FROM ELASTICALLY LOADED CLATHRIN LATTICES.
Grigory Tagiltsev (1977-Pos / B247)

BOARD S99
EXPLORING THE KINETICS OF THE HCN2 CHANNEL USING A CYCLIC ALLOSTERIC FOUR-STATE MODEL.
Delbert Yip (1329-Pos / B397)

BOARD S100
PHOSPHATE POSITION ON PHOSPHOINOSITIDES IS KEY IN MEDIATING TMEM16A CURRENTS IN XENOPUS LAEVIS OOCYTES.
Malwase Tembo (2716-Pos / B262)

BOARD S101
ANNOTATING ION CHANNEL PORES: STRUCTURES, HYDROPHOBICITY AND THE THRESHOLD FOR PERMEATION.
Shanlin Rao (1333-Pos / B401)

BOARD S102
IDENTIFICATION OF RESIDUES CONTRIBUTING TO THE VSD-PD COUPLING IN IKS CHANNELS.
Xiaohan Wu (526-Pos / B357)

BOARD S103
MOLECULAR DYNAMICS SIMULATION OF LIGAND BINDING AND ION PERMEATION IN A GANGLIONIC NICOTINIC RECEPTOR.
Yuxuan Zhuang (2852-Pos / B398)

Motility & Cytoskeleton
(Boards S104 – S111)

BOARD S104
MONITORING PALLADIN’S EFFECT ON ACTIN DYNAMICS AND ORGANIZATION WITH TIRF MICROSCOPY.
Abby Jurgensmeier (601-Pos / B432)

BOARD S105
DETECTION OF SUPER-RELAXED MYOSIN IN SPECIFIC HUMAN SKELETAL MUSCLE FIBER TYPES.
Lien A. Phung (1355-Pos / B423)

BOARD S106
MECHANISMS UNDERLYING NWASP ACTIVATION BY SYNERGISTIC PAIRS OF SIGNALING MOLECULES.
Aniruddha Chattaraj (2146-Pos / B416)

BOARD S107
ANISOTROPIC SWIMMING MODES IN HELICOBACTER PYLORI.
Jyot Antani (618-Pos / B449)

BOARD S108
PREDATION STRATEGIES OF BDELOVIBRIO BACTERIOVORUS.
Mikayla Carlson (619-Pos / B450)

BOARD S109
MEASUREMENTS OF ACTIN LAYER LINES IN PERMEABILIZED HEART TISSUE REVEAL NEW STRUCTURAL PROPERTIES OF THE CARDIAC THIN FILAMENT.
Maicon Landim Vieira (2089-Pos / B359)

BOARD S110
A NOVEL FUNCTION OF THE POLY-GLUTAMIC ACID SEGMENT OF INSECT TROPOSIN T TESTED IN MOUSE HEART FOR IMPROVING CARDIAC EFFICIENCY.
Tianxin Cao (2896-Pos / B442)

BOARD S111
UNVEILING THE TREND OF CHANGES IN MECHANICAL PHENOTYPES BETWEEN SUBPOPULATIONS OF ISOGENIC CANCER CELLS AT DISTINCT METASTATIC STAGES.
Zhenhui Liu (2950-Pos / B496)

Nanoscale Approaches
(Boards S112 - 123)

BOARD S112
IMMOBILIZATION OF BIOENGINEERED PORTAL PROTEIN WITHIN A SOLID-STATE NANOPORE FOR MOLECULAR SENSING.
Mehrnaz Mojtabavi (757-Pos / B588)

BOARD S113
NANOIMPACT BASED SINGLE-ENTITY DETECTION OF PROTEINS USING A NANOPORE-NANOELECTRODE NANOPIPETTE.
Popular Pandey (2313-Pos / B583)

BOARD S114
COMPARISON OF IN-VITRO AND IN-VIVO DNA HYBRIDIZATION KINETICS USING 3D SINGLE-MOLECULE TRACKING METHOD.
Yuan-I Chen (3012-Pos / B558)
Board S116	STED Superresolution Imaging of DUOX1 and CEN2 Reveals Substructure of Membrane Macromolecular Complexes in Human Bronchial Epithelial Cells.	Kamila R. Mustafina (717-Pos / B548)
Board S117	Polarization-Resolved Light Scattering Spectroscopy (PLSS) to Study Chromatin-DNA Organization.	Riccardo Marongiu (660-Pos / B491)
Board S118	Structural and Functional Properties of Synthetic Trans-Membrane Peptide Pores.	Puthumadathil Neethu Narayanan Anitha (756-Pos / B587)
Board S119	Physical Characterization of Silver Nanoparticles for Nano-Detection.	Joanna P. Patalas (3050-Pos / B596)
Board S120	Silver Nanorods Stabilised by Gemini Surfactant as Components for NanoSensing Applications.	Karolina Rucinska (3051-Pos / B597)
Board S121	Single-Molecule Investigation of PRC2 Non-Adjacent Nucleosome Bridging.	Rachel Leicher (1862-Pos / B132)
Board S122	Direct Measurement of Stepping Dynamics of E. Coli UVRD Helicase.	Sean Carney (356-Pos / B187)
Board S123	Temperature Driven Shape Transformation of Nanodiscs by Coarse-Grained Molecular Dynamics Simulations.	Warin Rangubpit (675-Pos / B506)

Physical Cell Biology (Boards S124 – S133)

Board S124	Determinants of Influenza A Diffusion through the Mucus Barrier to Infection.	Logan Kaler (2210-Pos / B480)
Board S125	RNA Trafficking Between Membraneless Organelles at Single-Molecule Resolution in Live Cells.	Guoming Gao (2288-Pos / B558)
Board S126	Elucidating the Role of Phosphorylated Regulatory Light Chain Proteins (RLC) During Heart Failure Progression.	Kasturi Markandran (1266-Pos / B334)
Board S127	Study of Self-Association of Human CSTF-64 RNA Recognition Motif.	Elahe Masoumzadeh (2549-Pos / B95)
Board S128	Single Molecule Imaging of HIV-1 Envelope Dynamics and Gag Lattice Association Exposes Determinants Responsible for Virus Incorporation.	Nairi Pezeshkian (282-Pos / B113)
Board S129	Mathematical Modeling of Cell Volume Control.	Maria Jesus Munoz Lopez (2259-Pos / B529)
Board S130	SIM-Enhanced Ptychography Imaging of HeLa Cells.	Alberta Trianni (1529-Pos / B597)
Board S132	Single Molecules Dynamics Learned from Single Photons- Flim and FCS with Bayesian Nonparametrics.	Meysam Tavakoli (1534-Pos / B602)
Board S133	Structure-Function Analysis of E-Cadherin Dimerization at the Plasma Membrane.	Vinh H. Vu (1775-Pos / B45)
Monday, February 17, 2020

Daily Program Summary

All rooms are located in the San Diego Convention Center unless noted otherwise.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 AM–8:30 AM</td>
<td>Graduate Student Breakfast</td>
<td>Room 28CDE</td>
</tr>
<tr>
<td>7:30 AM–5:00 PM</td>
<td>Registration/Exhibitor Registration</td>
<td>Lobby G</td>
</tr>
<tr>
<td>8:00 AM–10:00 PM</td>
<td>Poster Viewing</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Symposium: Molecular Motors</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>Chair: Bik-Kwoon Tye, Hong Kong University of Science and Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAD52 DNA REPAIR PROTEIN IS A GATEKEEPER THAT PROTECTS DNA REPLICATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FORKS FROM REGRESSION BY FORK REVERSAL MOTORS. Maria Spies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNA HELICASES AND SWITCHES: MOLECULAR MOTORS IN RNA BIOLOGY. Anna Marie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROCESSIVE CHITINASE, A BURNT-BRIDGE BROWNIAN MOTOR HYDROLYZING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRYSTALLINE POLYSACCHARIDE. Ryota lino</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVOLUTION OF THE EUKARYOTIC ORIGIN RECOGNITION COMPLEX. Bik-Kwoon Tye</td>
<td></td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Symposium: Pharmaceutical Biophysics</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td></td>
<td>Chair: Jeanne Hardy, University of Massachusetts Amherst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDENTIFYING AND EXPLOITING CRYPTIC POCKETS. Greg R. Bowman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BITOPIC AND PERIPHERAL MEMBRANE PROTEINS AS DRUG TARGETS: BROADER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOPHYSICAL INSIGHT FROM BIOMEM-BRANE SIMULATIONS THAT TRANSCENDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE “LOCK AND KEY” PARADIGM. Alex Bunker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE CHEOREOGRAPHY OF A PROTEIN’S DANCE AT THE HEART OF DRUG DESIGN.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dorothée Kern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TARGETING RARE CONFORMATIONAL STATES TO ACHIEVE SELECTIVE CASPASE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROTEASE INHIBITION. Jeanne Hardy</td>
<td></td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Membrane Receptors and Signal Transduction</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Bioengineering, Biosurfaces, and Biomaterials</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Membrane Dynamics</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Optical Microscopy and Superresolution Imaging II</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Voltage-gated K Channels</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Protein Dynamics and Allostery I</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>8:30 AM–10:00 AM</td>
<td>Exhibitor Presentation: Beckman Coulter Life Sciences</td>
<td>Room 33C</td>
</tr>
<tr>
<td></td>
<td>Get the High-Resolution Separation That You Have Been Searching for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Preparative and Analytical Ultracentrifugation</td>
<td></td>
</tr>
<tr>
<td>8:30 AM–10:30 AM</td>
<td>CPOW Committee Meeting</td>
<td>Room 30D</td>
</tr>
<tr>
<td>9:30 AM–11:00 AM</td>
<td>Exhibitor Presentation: Bruker Corporation</td>
<td>Room 33A</td>
</tr>
<tr>
<td></td>
<td>From Single Molecules to Tissues – A New AFM Toolkit for Nanoscopic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investigation of Mechanics, Structures, and Dynamic Processes in Life</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>10:00 AM–11:00 AM</td>
<td>Career Development Center Workshop: Demystifying the Academic Job</td>
<td>Room 26A</td>
</tr>
<tr>
<td></td>
<td>Search II: Preparing your Written Application Materials: CV, Cover</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Letter, and Research Statement</td>
<td></td>
</tr>
<tr>
<td>10:00 AM–5:00 PM</td>
<td>Exhibits</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>10:15 AM–11:00 AM</td>
<td>Coffee Break</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>10:15 AM–11:00 AM</td>
<td>Meet the Editors, The Biophysicist</td>
<td>Society Booth/Lobby G</td>
</tr>
<tr>
<td>10:15 AM–11:15 AM</td>
<td>New Member Welcome Coffee</td>
<td>Room 28CDE</td>
</tr>
<tr>
<td>10:30 AM–12:00 PM</td>
<td>Exhibitor Presentation: Bruker Corporation</td>
<td>Room 33C</td>
</tr>
<tr>
<td></td>
<td>Using NMR (Nuclear Magnetic Resonance) and EPR (Electron Paramagnetic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resonance) in Biophysics</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event Description</td>
<td>Room</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Symposium: Sensational Membrane Proteins
Chair: Emily Liman, University of Southern California</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>FROM STRETCH TO DEFLECTION: FINE TUNING MECHANICAL ACTIVATION OF ION CHANNELS. Kate Poole
STRUCTURE AND MECHANOAGATING OF THE MECHANOSENSITIVE PIEZO CHANNEL. Bailong Xiao
SENSING SCENTS: STRUCTURAL INSIGHTS INTO INSECT Olfactory RECEPTORS. Vanessa Ruta
SENSING SOUR: THE OTOP1 PROTON CHANNEL FROM FUNCTION TO STRUCTURE. Emily Liman</td>
<td></td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Symposium: Biophysical Underpinnings of the Origin of Life
Chair: Ken A. Dill, Stony Brook University</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td></td>
<td>LESSONS FROM EXPERIMENTAL PROTEIN FITNESS LANDSCAPES. Daniel Bolon
RESURRECTED ENZYMES AS PROXIES FOR ANCIENT BIOMOLECULAR PROCESSES. Betul Kacar
LESSONS FROM RIBOZYME EVOLUTION. Irene Chen
A CENTRAL ROLE FOR PEPTIDES AND PROTEINS IN THE CHEMISTRY TO BIOLOGY TRANSITION OF THE ORIGINS OF LIFE. Ken A. Dill</td>
<td></td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Symposium: Future of Biophysics
Co-Chairs: Patricia Clark, University of Notre Dame, William Kobertz, University of Massachusetts Medical School</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td></td>
<td>X-RAY SCATTERING FROM CORRELATED MOTIONS IN PROTEINS. Nozomi Ando
EXPLOITING 3D TO 2D LOCALIZATION TO CONTROL PROTEIN SELF-ASSEMBLY. Margaret Johnson
CONFORMATIONAL DYNAMICS OF SINGLE VIRAL MEMBRANE FUSION MACHINES. James B. Munro
SIGNALING WITH UBIQUITIN - COMMUNICATION BETWEEN METABOLISM AND IMMUNE RESPONSES. Elton Zeqiraj</td>
<td></td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Intracellular Calcium Channels and Calcium Sparks and Waves</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Biosensors</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Cytoskeletal Motors</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Membrane Protein Dynamics and Folding II</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Molecular Dynamics</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>11:00 AM–1:00 PM</td>
<td>Annual Meeting of the Student Chapters</td>
<td>Room 28AB</td>
</tr>
<tr>
<td>11:30 AM–12:30 PM</td>
<td>Career Development Center Workshop: Networking for Nerds: How to Create Your Unicorn Career</td>
<td>Room 26A</td>
</tr>
<tr>
<td>11:30 AM–1:00 PM</td>
<td>Exhibitor Presentation: Leica Microsystems
Leica SP8 FALCON: Applications of FLIM for Functional Imaging and STED Nanoscopy</td>
<td>Room 33A</td>
</tr>
<tr>
<td>12:30 PM–2:00 PM</td>
<td>The Nuts and Bolts of Preparing Your NSF Grant</td>
<td>Room 28CDE</td>
</tr>
<tr>
<td>12:30 PM–2:00 PM</td>
<td>Exhibitor Presentation: Nanion Technologies
Beyond Ion Channels and Transporters: Snapshots of the State-of-the-Art Solutions</td>
<td>Room 33C</td>
</tr>
<tr>
<td>1:00 PM–2:30 PM</td>
<td>How Does Congress Set the Federal Budget for Biomedical Research?</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>1:00 PM–2:30 PM</td>
<td>Careers in Industry: A Q&A Panel</td>
<td>Room 29AB</td>
</tr>
<tr>
<td>1:30 PM–3:00 PM</td>
<td>Biophysics 101:
An Introduction to Molecular Dynamics Simulation and its Application to Biological Systems</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>1:30 PM–3:00 PM</td>
<td>Exhibitor Presentation: Olympus America Inc
Advancements in Lens Manufacturing Technology Develop New X Line Objective Lenses</td>
<td>Room 33A</td>
</tr>
<tr>
<td>1:45 PM–3:00 PM</td>
<td>Snack Break</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>1:45 PM–3:00 PM</td>
<td>Meet the Editors, Biophysical Journal</td>
<td>Society Booth/Lobby G</td>
</tr>
<tr>
<td>1:45 PM–3:45 PM</td>
<td>Poster Presentations and Late Posters</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>2:15 PM–3:45 PM</td>
<td>How to Get Your Scientific Paper Published</td>
<td>Room 29C</td>
</tr>
<tr>
<td>2:30 PM–3:00 PM</td>
<td>Career Development Center Workshop:
Translating Your Credentials: Writing Effective Resumes + Cover Letters and Your LinkedIn Profile</td>
<td>Room 26A</td>
</tr>
<tr>
<td>2:30 PM–4:00 PM</td>
<td>Beyond Reporting: How to be an Ally to Those Experiencing Harassment</td>
<td>Room 28CDE</td>
</tr>
<tr>
<td>2:30 PM–4:00 PM</td>
<td>Exhibitor Presentation: HORIBA Scientific
A New Modular Research Fluorometer Pushes Detection, Stray-Light, and Wavelength Limits of Fluorescence Spectroscopy</td>
<td>Room 33C</td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td>Location</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>3:30 PM–5:00 PM</td>
<td>Exhibitor Presentation: Applied Photophysics Discover When Change is Significant: Latest Developments in Circular Dichroism and Stopped-Flow Kinetics</td>
<td>Room 33A</td>
</tr>
<tr>
<td>3:30 PM–5:30 PM</td>
<td>Membership Committee Meeting</td>
<td>Room 30D</td>
</tr>
<tr>
<td>4:00 PM–5:00 PM</td>
<td>Career Development Center Workshop: Marketing Your Value: Crafting Your Elevator Pitch/30 Second Value Statement/Brand Statement</td>
<td>Room 26A</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Symposium: Kinetic Stability: Controlling Longevity at the Molecular Level</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>Chair: Jonathan King, MIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DESIGNING PROTEIN STABILITY AND STRAIN FOR FOLDING AND FUNCTION. Elizabeth M. Meiering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPETING INTERACTIONS BETWEEN VIRAL RHIM AMYLOID-FORMING PROTEINS AND HOST FUNCTIONAL AMYLOID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STRUCTURES MODULATE THE CELLULAR RESPONSE TO INFECTION. Margaret Sunde</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROTEOMICS ANALYSES OF KINETIC STABILITY: FROM MOLECULAR TO ORGANISM LONGEVITY. Wilfredo Colon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BURIED TRYPTOPHANS CONTRIBUTING TO THE HIGH KINETIC STABILITY OF THE LONG-LIVED GAMMA CRYSTALLINS AND THEIR OXIDATIVE DAMAGE OPENING THE PATHWAY TO THE AGGREGATED STATE ASSOCIATED WITH CATARACTS. Jonathan King</td>
<td></td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Symposium: Translational Control</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td></td>
<td>Chair: Christine Dunham, Emory University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NASCENT POLYPEPTIDE CHAIN-MEDIATED TRANSLATION ELONGATION ARREST IN BACTERIA. Shinobu Chiba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRECISELY QUANTIFYING THE ENERGETICS OF THE RIBOSOME. Paul C. Whitford</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAT TAILS DRIVE DEGRADATION OF STALLED POLYPEPTIDES ON AND OFF THE RIBOSOME. Onn Brandman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROLE OF RNA MODIFICATIONS IN TRNA STRUCTURAL STABILITY AND ACCURATE PROTEIN SYNTHESIS. Christine Dunham</td>
<td></td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platforms: Protein Structure and Conformation II</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Mitochondria and Energy</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Membrane Structure</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Single-Molecule Spectroscopy</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Cell Mechanics, Mechanosensing, and Motility</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Ligand-gated Channels</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>4:30 PM–6:00 PM</td>
<td>Speed Networking</td>
<td>Lobby H</td>
</tr>
<tr>
<td>4:30 PM–6:00 PM</td>
<td>Exhibitor Presentation: Molecular Devices Empower Your Electrophysiology Studies Using New Axon pCLAMP 11 Software and HumSilencer Adaptive Noise Cancellation Technology</td>
<td>Room 33C</td>
</tr>
<tr>
<td>5:30 PM–7:00 PM</td>
<td>Exhibitor Presentation: LUMICKS Breaking the Barriers: Providing the Full Workflow for Dynamic Single-Molecule Research from Sample to Publication</td>
<td>Room 33A</td>
</tr>
<tr>
<td>6:00 PM–6:30 PM</td>
<td>Dinner Meet-Ups</td>
<td>Society Booth/Lobby G</td>
</tr>
<tr>
<td>8:00 PM–9:00 PM</td>
<td>Awards and 2020 Biophysical Society Lecture</td>
<td>Ballroom 20ABCD</td>
</tr>
<tr>
<td>9:30 PM–12:00 AM</td>
<td>Reception and Dance</td>
<td>Hilton, Sapphire</td>
</tr>
<tr>
<td>9:30 PM–12:00 AM</td>
<td>Reception and Quiet Room</td>
<td>Hilton, Indigo AE</td>
</tr>
</tbody>
</table>
Monday, February 17

Graduate Student Breakfast
7:30 AM - 8:30 AM, ROOM 28CDE
Support contributed by the Burroughs Wellcome Fund.

This breakfast presents an opportunity for graduate student Annual Meeting attendees to meet and discuss the issues they face in their current career stage. Limited to the first 100 attendees.

Speaker
Martin Guthold, Wake Forest University
Jeanne Small, NSF

Registration/Exhibitor Registration
7:30 AM - 5:00 PM, LOBBY G

Poster Viewing
8:00 AM - 10:00 PM, EXHIBIT HALL

Symposium
Molecular Motors
8:15 AM - 10:15 AM, BALLROOM 20A

Chair
Bik-Kwoon Tye, Hong Kong University of Science and Technology

776-SYMP
8:15 AM
RAD52 DNA REPAIR PROTEIN IS A GATEKEEPER THAT PROTECTS DNA REPLICATION FORKS FROM REGRESSION BY FORK REVERSAL MOTORS. Masayoshi Honda, Emeleeta A. Paintsil, Maria Spies

No Abstract
8:45 AM
RNA HELICASES AND SWITCHES: MOLECULAR MOTORS IN RNA BIOLOGY. Anna Marie Pyle

777-SYMP
9:15 AM
PROCESSIVE CHITINASE, A BURNT-BRIDGE BROWNIAN MOTOR HYDROLYZING CRYSTALLINE POLYSACCHARIDE. Ryota Iino

778-SYMP
9:45 AM
EVOLUTION OF THE EUKARYOTIC ORIGIN RECOGNITION COMPLEX. Bik-Kwoon Tye, Shuk Kwan C. Lee, Wai Hei H. Lam, Yuanliang Zhai

Symposium
Pharmaceutical Biophysics
8:15 AM - 10:15 AM, BALLROOM 20D

Chair
Jeanne Hardy, University of Massachusetts Amherst

779-SYMP
8:15 AM
IDENTIFYING AND EXPLOITING CRYPTIC POCKETS. Greg R. Bowman

780-SYMP
8:45 AM
BITOPIC AND PERIPHERAL MEMBRANE PROTEINS AS DRUG TARGETS: BROADER BIOPHYSICAL INSIGHT FROM BIOMEMBRANE SIMULATIONS THAT TRANSCENDS THE “LOCK AND KEY” PARADIGM. Alex Bunker

No Abstract
9:15 AM
THE CHOREOGRAPHY OF A PROTEIN’S DANCE AT THE HEART OF DRUG DESIGN. Dorothee Kern

781-SYMP
9:45 AM
TARGETING RARE CONFORMATIONAL STATES TO ACHIEVE SELECTIVE CASPASE PROTEASE INHIBITION. Jeanne Hardy

Platform
Membrane Receptors and Signal Transduction
8:15 AM - 10:15 AM, BALLROOM 20BC

Co-Chairs
Deborah Leckband, University of Illinois at Urbana-Champaign
Carl-Mikael Suomivuori, Stanford University

782-PLAT
8:15 AM
RATIONALIZING THE TRANSPORT OF TROJAN HORSE COMPOUNDS FOR CROSSING THE OUTER MEMBRANE OF GRAM- BACTERIA. Stefan Milenkovic, Igor V. Bodrenko, Mariano Andrea Scorciapino, Matteo Ceccharelli

783-PLAT
8:30 AM
ATOMISTIC MODELING OF NEURO-CARDIOVASCULAR COUPLING MODULATION. Kevin R. DeMarco, John R.D. Dawson, Slava Bekker, Vladimir Yarov-Yarovoy, Colleen E. Clancy, Igor Vorobyov

784-PLAT
8:45 AM
LARGE CONDUCTANCE Ca2+-ACTIVATED K+ CHANNELS REGULATE LPS-INDUCED CYTOKINE SECRETION FROM ALVEOLAR EPITHELIAL AND ENDOTHELIAL CELLS. Tatiana Zyrinova, Benjamin Lopez, Andy Liao, Charles Gu, Leanne Wong, Michela Ottolia, Riccardo Olcese, Andreas Schwingshackl

785-PLAT
9:00 AM
AFFINITY AND STOICHIOMETRY OF E-CADHERIN/EGFR COMPLEXES-RELEVANCE TO PROLIFERATION AND FORCE TRANSDUCTION. Deborah E. Leckband, Taylor P. Light, Vinh H. Vu, Brendan G. Sullivan, Kalina Hristova

786-PLAT
9:15 AM
DISTINCTIVE MECHANO-SENSITIVITY OF FOCAL ADHESION INTEGRINS A5B1 AND AVB3 IN CONFORMATIONAL CHANGES. Yunfeng Chen, Fang Kong, Zhenhai Li, Lining Ju, Steve Park, Andres J. Garcia, Paul Mould, Martin J. Humphries, Cheng Zhu

787-PLAT
9:30 AM
MOLECULAR MECHANISM OF BIASED SIGNALING IN A PROTOTYPICAL G-PROTEIN-COUPLED RECEPTOR. Carl-Mikael Suomivuori, Naomi R. Latorraca, Laura M. Wingler, Stephan Eismann, Matthew C. King, Alissa L.W. Kleinhenz, Meredith A. Skiba, Dean P. Staus, Andrew C. Kruse, Robert J. Leffcowitz, Ron O. Dror

788-PLAT
9:45 AM
CHARACTERIZATION OF A2A R AND G PROTEIN COUPLING BY SURFACE PLASMON RESONANCE. Kirsten S. Koretz, Claire McGraw, Anne S. Robinson

789-PLAT
10:00 AM
INVESTIGATING THE HOMOTYPIC AND HETEROTYPIC INTERACTIONS OF ERBB RECEPTOR TYROSINE KINASES. Soyeon Kim, Adam W. Smith

Platform
Bioengineering, Biosurfaces, and Biomaterials
8:15 AM - 10:15 AM, ROOM 23ABC

Co-Chairs
Henry Brinkerhoff, Delft University of Technology, The Netherlands
Elizabeth Yates, United States Naval Academy

790-PLAT
8:15 AM
SUPRACELLULAR ACTIN CABLES AND ACTOMYOSIN-BASED CONTRACTION IN CARDIAC MORPHOGENESIS. Christopher McFaul, Negar Balaghi, Christopher M. Yip, Rodrigo Fernandez-Gonzalez
791-PLAT 8:30 AM
SINGLE-MOLECLE PROTEIN SEQUENCING USING BIOLOGICAL NANOPORES. Henry Brinkkerhoff, Cees Dekker

792-PLAT 8:45 AM

793-PLAT 9:00 AM
DESIGNING SYNTHETIC BACTERIAL BIOFILMS TO PROBE THE MECHANISMS OF CELL ASSEMBLY. Alex Hamby

794-PLAT 9:15 AM
MEASURING THE PHYSICAL PROPERTIES OF SYNTHETIC CEMENT DERIVED BARNACLE ADHESIVE NANOIMATERIALS FROM THE BARNACLE AMPHIBALANUS AMPHITRITE. Elizabeth A. Yates, Luis A. Estrella, Heonjune Ryoo, Kathryn J. Wahl, Christopher R. So

795-PLAT 9:30 AM

796-PLAT 9:45 AM
NOVEL POLY(ASPARTAMIDE) BASED HYDROGELS FOR CELL CULTIVATION AND TISSUE REGENERATION. David Juriga, Krizstina Tóth, Krizstina S. Nagy, Ágárd Jelóvskzy-Hajdú, Gábor Varga, Miklós Zrínyi

797-PLAT 10:00 AM
ACOUSTOFLUIDIC INTERFEROMETRIC TECHNIQUES FOR SINGLE CELL OPTICAL PHENOTYPING. Julián Mejía Morales, Gian Luca Lippi, Peter Glynne-Jones, Massimo Vassalli

801-PLAT 9:00 AM
DIFFERENTIAL ACTIN BINDING AFFINITY LEADS TO PROTEIN SORTING IN A RECONSTITUTED ACTIVE COMPOSITE LAYER. Abrar A. Bhat, Amit Das, Kabir Husain, Madan Rao, Darius V. Koester, Satyajit Mayor

802-PLAT 9:15 AM
NON-EQUILIBRIUM THERMODYNAMICS AND HYDRODYNAMICS OF LIPID MEMBRANES. Amaresh Sahul, Joel Tchoufag, Yannick Azhari Din Omar, Yulong Pan, Kranti K. Mandadapu

803-PLAT 9:30 AM
MOLECULAR TRANSPORT AND SPATIAL SORTING OF MEMBRANE-BOUND DNA NANOSTRUCTURES BY A BIOLOGICAL REACTION-DIFFUSION SYSTEM. Beatrice Ramm, Alena Khmelinskia, Philipp Blumhardt, Hiromune Eto, Kristina A. Ganzinger, Petra Schwille

804-PLAT 9:45 AM
THE COMBINED HYDRODYNAMIC AND THERMODYNAMIC EFFECTS OF IMMOBILIZED PROTEINS ON THE DIFFUSION OF MOBILE TRANSMEMBRANE PROTEINS. Rohit Singh, Ashok Sangani, Susan Daniel, Donald Koch

805-PLAT 10:00 AM
PHOSPHOLIPID STRUCTURAL FEATURES INFLUENCE LATERAL DIFFUSION. Klaus Gawrisch, Holly C. Gaede, Olivier Soubias, Walter E. Teague

Platform
Optical Microscopy and Superresolution Imaging II
8:15 AM - 10:15 AM, ROOM 24ABC

Co-Chairs
Leone Malacrida, Hospital de Clínicas, Chile
Kaitlin Szedekerkenyi, University of Toronto, Canada

806-PLAT 8:15 AM
INVESTIGATING POLARISATION EFFECTS IN A CONFOCAL TOTAL INTERNAL REFLECTION-SUPERCRITICAL ANGLE FLUORESCENCE (TIR-SAF) GEOMETRY WITH SAMPLE SCANNING. Kaitlin Szedekerkenyi, Bruno Lagarde, Maia Brunstein, Marc Guillon, Christopher M. Yip, Martin Oheim

807-PLAT 8:30 AM
INTERFEROMETRIC SCATTERING MICROSCOPY REVEALS MICROSECOND NANOSECOND PROTEIN MOTION ON A LIVE CELL MEMBRANE. Richard W. Taylor

808-PLAT 8:45 AM
SOVATOCROMIC PROPERTIES OF ACDAN AND SPECTRAL PHASOR ANALYSIS REVEAL THE ROLE OF AQUAPORIN 0A IN REGULATING MACROMOLECULAR CROWDING IN THE ZEBRAFISH LENS IN VIVO. Leonel S. Malacrida, Alexander Vallmitjana, Belén Torrado, Thomas F. Schilling, James E. Hall, Enrico Gratton, Irene Vorontsova

809-PLAT 9:00 AM
STRUCTURED ILLUMINATION MICROSCOPY AS A TOOL TO INVESTIGATE ONCOGENE-INDUCED ALTERATIONS IN CHROMATIN ORGANIZATION. Isotta Cainero, Elena Cerutti, Simone Pellicci, Mario Faretta, Gaetano Ivan Dellino, Pier Giuseppe Pellicci, Alberto Diaspro, Luca Lanzano

810-PLAT 9:15 AM
BINDER/TAG: A VERSATILE APPROACH TO PROBE AND CONTROL THE CONFORMATIONAL CHANGES OF INDIVIDUAL MOLECULES IN LIVING CELLS. Michael Pablo, Bei Liu, Orrin Stone, Onur Dagliyan, Timothy C. Elston, Klaus M. Hahn

811-PLAT 9:30 AM
2-COLOR LOCALIZATION MICROSCOPY AND SIGNIFICANCE TESTING AP-PROACH (2-CLASTA). Magdalena C. Schneider, Andreas M. Arnold, Florian Baumgart, Robert Sablatnig, Christoph Hüsson, Mario O. Brameshuber, Gerhard J. Schütz
812-PLAT 9:45 AM AQUAPORIN 0A IS REQUIRED FOR WATER HOMEOSTASIS IN THE ZEBRAFISH LENS IN VIVO. Irene Vorontsova, Alexander Vallmitjana, Yousef Nakazawa, Belén Torrado, Thomas Schilling, James E. Hall, Enrico Gratton, Leonel S. Malacrida

813-PLAT 10:00 AM TRAVEL Awardee RAPID AND EXTREME LOW-LIGHT SUPERRESOLUTION IMAGING VIA ARTIFICIAL INTELLIGENCE. Bei Liu, Luhong Jin, Bowei Dong, Ruiyan Song, Fenqiang Zhao, Stephen Hahn, Timothy C. Elston, Yingke Xu, Klaus M. Hahn

813-PLAT 10:00 AM TRAVEL Awardee Voltage-gated K Channels

Co-Chairs
Rikard Blunck, Université de Montréal, Canada
Kanchan Gupta, NIH, NINDS

814-PLAT 8:15 AM SIMULATING STREAMING POTENTIALS IN POTASSIUM CHANNELS. Csaba Daday, Wojciech Kopec, Bert L. de Groot

815-PLAT 8:30 AM ASYMMETRIC MUTATIONS IN SELECTIVITY FILTER OF K+ CHANNEL PORE GENERATE C-TYPE INACTIVATION. Marietheres Kleuter, Gerhard Thiel, Oliver Rauh

816-PLAT 8:45 AM REFINEMENT OF HIGH-RESOLUTION CRYO-EM STRUCTURE OF HERG: WHAT CAN WE EXPECT? Hanif Muhammad Khan, Peter D. Tieleman, Sergey Y. Noskov

817-PLAT 9:00 AM IDENTIFICATION OF PUFA INTERACTION SITES ON A CARDIAC POTASSIUM CHANNEL. Samira Yazdji, Johan E. Larsson, Williams E. Miranda, Valentina Corradi, Peter D. Tieleman, Sergey Y. Noskov, Peter H. Larsson, Sara I. Lin

818-PLAT 9:15 AM DYNAMICS OF THE PAS AND CNBH DOMAIN INTERACTION PROBED WITH A FLUORESCENT NONCANONICAL AMINO ACID (L-ANAP) IN HERG POTASSIUM CHANNELS. Ashley A. Johnson, Matt C. Trudeau

819-PLAT 9:30 AM STATE-DEPENDENT PHOTOCROSSLINKING AT THE BK CHANNEL INTER-SUBUNIT INTERFACE. Alberto Jesus Gonzalez Hernandez, Belinda Rivero-Perez, David Bartolome-Martin, Diego Alvarez de la Rosa, Andrew J.R. Plested, Teresa Giráldez

820-PLAT 9:45 AM POSITION OF INACTIVATION PARTICLE OF SHAKER KV CHANNELS IN RESTING STATE. Roshan Pandey, Tanja U. Kalstrup, Rikard Blunck

821-PLAT 10:00 AM EXPLORING STRUCTURAL DYNAMICS OF A MEMBRANE PROTEIN BY COMBINING BIOORTHOGONAL CHEMISTRY AND CYSTEINE MUTAGENESIS. Kanchan Gupta, Gilman E.S. Toombes, Kenton J. Swartz

822-PLAT 8:15 AM UNDERSTANDING ALLOSTERIC INFORMATION TRANSFER ACROSS TIME- AND LENGTH SCALES. Steffen Wolf, Benedikt Sohmen, Bjorn Hellenkamp, Johann Thunn, Thorsten Hugel, Gerhard Stock

823-PLAT 8:30 AM SINGLE MOLECULE DYNAMICS OF AN HSP70 CHAPERONE. Anubhuti Singh, Soumit S. Mandal, Gabriel Žoldák, Matthias Rief

824-PLAT 8:45 AM VISUALIZING DOMAIN MOTIONS IN NF-KB TRANSCRIPTIONAL REGULATION. Wei Chen, Elizabeth A. Komives

825-PLAT 9:00 AM CATCHING FAST PROTEIN FOLDING IN THE ACT: RESOLVING (UN) FOLDING TRANSITION PATHS USING ADVANCED SINGLE-MOLECULE SPECTROSCOPY. Nivin Mothi, Mourad Sadjq, Victor Munoz

826-PLAT 9:15 AM DIRECT DETECTION OF INTRAMOLECULAR DYNAMICS OF MEMBRANE PROTEINS USING TIME-RESOLVED X-RAY SINGLE-MOLECULE TRACKING. Kazuhiro Mio, Shoko Fujimura, Masaki Ishihara, Muneyo Mio, Masahiro Kuramochi, Hiroshi Sekiguchi, Tai Kubo, Yuji C. Sasaki

828-PLAT 9:45 AM TRAVEL Awardee THE EVOLUTIONARY BIOPHYSICS OF A FORCE-CONVEYING PROTEIN COMPLEX REQUIRED FOR VERTEBRATE HEARING. Collin Nisler, Yoshi Narui, Vincent Lynch, Marcos M. Sotomayor

829-PLAT 10:00 AM CONFORMATIONAL DYNAMICS OF THE T-CELL RECEPTOR CHASSIS COORDINATES CDR3 LOOP POSITIONING DURING MECHANOSENSING OF PMHC LIGANDS. Wonmuk Hwang, Robert J. Mallis, Matthew J. Lang, Ellis L. Reinherz

Exhibitor Presentation
Beckman Coulter Life Sciences

8:30 AM - 10:00 AM, Room 33C

Get the High-Resolution Separation That You Have Been Searching for with Preparative and Analytical Ultracentrifugation

Introduction: Purification of biological products, including biotherapeutics, involves the separation of cells from the culture media, followed by extensive processing to isolate the target of interest. Relatively simple separations are often achieved via differential centrifugation (pelleting), though high-resolution separations often utilize density gradient ultracentrifugation to yield high purity. In this presentation, we will discuss the full gamut of preparative (ultra)centrifugation, which permits the isolation and purification of biological components ranging from small peptides and nanoparticles to large nucleic acids, viruses, and organelles. We will then discuss the analytical/characterization aspects of ultracentrifugation, which allow quantitation of size, mass, shape, and density of the biological components that have been purified, along with exploration of their thermodynamic properties and binding interactions. Modern examples will be discussed for both preparative and analytical ultracentrifugation.

Purification: Modern centrifuges reach incredibly high speeds (with centrifugal acceleration sometimes exceeding 1,000,000 x g) to aid the high-resolution separation of particles, typically in the micro- or nanometer range, by size and/or density. Today’s gene therapy products, such as viral vectors, require high-quality purification to ensure...
the consistent production of safe, efficacious therapeutics of the highest quality to further advance this rapidly growing field and deliver solutions to patients in need. Density gradient ultracentrifugation (DGUC) is a centrifuge-based technique for providing superior purification of viral vectors (e.g., isolating full AAV particles from partial and empty capsids), along with other materials (such as plasmid DNA) in gene therapy production workflows. Though a well-established and mature method, DGUC is sometimes viewed as dated, challenging to design and conduct, or only suited for small-scale research applications. In this workshop, we’ll address these perceptions and discuss the premise of DGUC as a modern, high-resolution purification technique for AAVs and plasmid DNA. We’ll also provide guidance on how to get started with DGUC and optimize this technique for gene therapy workflows.

Characterization: Analytical ultracentrifugation (AUC) is one of the most versatile biophysical tools used today for the characterization of biological samples ranging from small drug molecules to intact viruses, vesicles and microparticles. AUC works with biological samples in the native state and does not depend on a reporter species or custom-coated substrates. AUC separates biomolecules based upon both molecular mass and anisotropy and can also be used to quantify interactions between different species. In this talk, we will start with the principles of AUC and take a tour through the technology behind modern AUC, including detection methods. We then look at advancements of the latest gen Optima AUC. Next, we go through experiment design – including the use of simulation tools. Following, we will address the different types of AUC experiments (equilibrium and velocity), compare and contrast their merits with sample data, and touch upon the principles of data processing. Finally, we will explore a variety of applications with a focus on the unique advantages that AUC brings to the study of various biotherapeutics, polymers, nanoparticles, and others – and how AUC compares to and complements other analytical techniques.

Speakers
Ross VerHeul, Senior Applications Scientist, Beckman Coulter Life Sciences
Akash Bhattacharya, Senior Applications Engineer, Beckman Coulter Life Sciences

Career Development Center Workshop
Demystifying the Academic Job Search II: Preparing your Written Application Materials: CV, Cover Letter, and Research Statement

10:00 AM - 11:00 AM, ROOM 26A

Over 90% of the cuts in a typical academic job search are made on the basis of your written application materials. Given the large number of candidates in a typical applicant pool, your documents must convey the most important information about you in the most clear and efficient manner. Learn about how your materials should differ based on the type of institution and/or program, and how to create “glance-able” documents to speak most effectively on your behalf.

Exhibits
10:00 AM - 5:00 PM, EXHIBIT HALL

Coffee Break
10:15 AM - 11:00 AM, EXHIBIT HALL

Meet the Editors, The Biophysicist
10:15 AM - 11:00 AM, SOCIETY BOOTH/LOBBY G

New Member Welcome Coffee
10:15 AM - 11:15 AM, ROOM 28CDE

Calling all new BPS members! Come and mingle with BPS Staff, Society Council, and program members as you learn about the Society’s activities. Current members are welcome to come and meet with new members.

Exhibitor Presentation
Bruker Corporation
10:30 AM - 12:00 PM, ROOM 33C

Using NMR (Nuclear Magnetic Resonance) and EPR (Electron Paramagnetic Resonance) in Biophysics

Magnet Resonance offers many insights into how biological systems function. The two techniques shed light on the identity of species, dynamics, and structures of proteins, peptides, nucleotides, and lipids. The speakers will present an overview of these techniques and applications for people who may be new to the field and wish to incorporate them in their studies.

NMR has long been a valuable tool for the determination of structures, the study of dynamic processes and the investigation of interactions in biological molecules. To conduct these studies on larger molecules higher magnetic fields are required. Bruker BioSpin has successfully installed a 1.1 GHz NMR system in a customer laboratory and the delivery of the first 1.2 GHz system is imminent. To complement the higher magnetic fields Bruker Biospin has also introduced several new probes for liquid and solid state NMR.

NMR has recently been used successfully for the characterization of large proteins such as monoclonal antibodies. The statistical analysis of NMR spectra allows the detection of changes in the high order structure of these molecules.
Another growing area is the use of 19F in bio-molecular NMR. Both the introduction of new accessories and method permit more widespread use of this nucleus in NMR studies.

EPR detects unpaired electrons in free radicals and transition metal ions. One electron transfer reactions result in unpaired electrons. Examples of paramagnetic species encountered in biology are: ROS (Reactive Oxygen Species), RNS (Reactive Nitrogen Species), amino acid radicals such as tyrosine and tryptophan radicals, paramagnetic intermediates in photochemistry, and metalloenzymes.

In addition to these naturally occurring paramagnetic species, spin labels can be incorporated into a number of biomolecules via SDSL (Site Directed Spin Labeling). Applications and techniques are: motional dynamics of proteins, peptides, and nucleotides via linsehape analysis, accessibility studies in membrane proteins or peptides via saturation measurements, and distance measurements (2-8 nm) via DEER (Double Electron-Electron Resonance) to complement other structural methods such as X-ray, NMR, CryoEM and FRET.

Speakers
Clemens Anklin, Vice President, NMR Applications & Training, Bruker Corporation
Ralph Weber, EPR Applications Manager, Bruker Corporation

Symposium
Sensational Membrane Proteins
10:45 AM - 12:45 PM, BALLROOM 20A

Chair
Emily Liman, University of Southern California

830-SYMP 10:45 AM
FROM STRETCH TO DEFLECTION: FINE TUNING MECHANICAL ACTIVATION OF ION CHANNELS. Jessica Richardson, Setareh Sianati, Navid Bavi, Lioba Schroeter, Amrutha Patkunarajah, Kate Poole

831-SYMP 11:15 AM
STRUCTURE AND MECHANOGATING OF THE MECHANOSENSITIVE PIEZO CHANNEL. Bailong Xiao

832-SYMP 11:45 AM
SENSING SCENTS: STRUCTURAL INSIGHTS INTO INSECT OLFATORY RECEPTORS. Vanessa Ruta

833-SYMP 12:15 PM
SENSING SOUR: THE OTOP1 PROTON CHANNEL FROM FUNCTION TO STRUCTURE. Emily Liman

Symposium
Biophysical Underpinnings of the Origin of Life
10:45 AM - 12:45 PM, BALLROOM 20D

Chair
Ken A. Dill, Stony Brook University

834-SYMP 10:45 AM
LESSONS FROM EXPERIMENTAL PROTEIN FITNESS LANDSCAPES. Daniel Bolon

No Abstract 11:15 AM
RESURRECTED ENZYMES AS PROXIES FOR ANCIENT BIOMOLECULAR PROCESSES. Betul Kacar

835-SYMP 11:45 AM
LESSONS FROM RIBOZYME EVOLUTION. Irene Chen

836-SYMP 12:15 PM
A CENTRAL ROLE FOR PEPTIDES AND PROTEINS IN THE CHEMISTRY TO BIOLOGY TRANSITION OF THE ORIGINS OF LIFE. Ken Dill

Support contributed by the Burroughs Wellcome Fund.
Weinstein IN LARGE BIOMOLECLES. INDUCED CONFORMATIONAL CHANGES AND INDIVIDUAL PKA VALUES
A NEW CONSTANT PH METHOD TO SIMULTANEOUSLY PREDICT PH-
SIMULATION: LESSONS AND PROGRESS FROM MARKOV STATE MODEL
Yasuhiro Matsunaga, Yuji Sugita
BUILDING A MACRO-MIXING DUAL-BASIN GO MODEL USING THE MUL
DOCKING.
BE PREDICTED FROM A COMBINATION OF MOLECULAR DYNAMICS AND
MECHANISM OF ACTION OF HBV CAPSID ASSEMBLY MODULATORS CAN
MORPHING.
DETERMINING FREE ENERGY DIFFERENCES THROUGH VARIATIONAL
Anna Pavlova, Georgia Institute of Technology
Gregory Babbitt, Rochester Institute of Technology
Co-Chairs
Siemers, Ana-Nicoleta Bondar
Konstantina Karathanou
MORPHING.
Anna Pavlova, Sarah B. Mertz, John G. Wise
PROTON BINDING AT PROTEIN AND MEMBRANE INTERFACES.
Konstantina Karathanou, Lukas Kemmler, Michalis Lazaratos, Malte
Siemens, Ana-Nicoleta Bondar
Platform
Molecular Dynamics
10:45 AM - 12:45 PM, ROOM 31ABC
Co-Chairs
Gregory Babbitt, Rochester Institute of Technology
Anna Pavlova, Georgia Institute of Technology
11:15 AM
STRUCTURES OF UNFOLDED OUTER MEMBRANE PROTEINS IN COMPLEX
WITH CHAPERONES. Neharika Chamachi, Andreas Hartmann, Georg
Krainer, Michael Schlierf
11:30 AM
CONFORMATIONAL DYNAMICS OF THE MEMBRANE ENZYME LSPA USING
EPR AND MD. Tracy A. Caldwell, Owen N. Vickery, Phillip J. Stansfeld,
Linda Columbus
11:45 AM
DYNAMIC FINGERPRINTING OF THE A2A ADENOSINE RECEPTOR IN DIFFERENT LIGAND-BASED STATES. Dennis D. Fernandes, Chris Neale, Gregory W. Gomes, Yuchong Li, Aditya Pandey, Libin Ye, R. Scott Prosser, Claudiu C. Gradinaru
12:00 PM
INSIGHTS INTO THE DYNAMICS AND ASSEMBLY PROPERTIES OF THE ENIGMATIC TSPO PROTEIN. Rajas Rao, Ibba Dhaybi, Julien Diharce, Catherine Etchebest
12:15 PM
INVESTIGATION OF DRUG TRANSPORT BY MTRD FROM NEISSERIA GON-ORRHOEAE. Lauren Ammerman, Sarah B. Mertz, John G. Wise
12:30 PM
PROTON BINDING AT PROTEIN AND MEMBRANE INTERFACES.
Konstantina Karathanou, Lukas Kemmler, Michalis Lazaratos, Malte
Siemens, Ana-Nicoleta Bondar
12:45 PM
ACCELERATED ESTIMATION OF LONG-TIMESCALE KINETICS BY COMBINING WEIGHTED ENSEMBLE SIMULATION WITH MARKOV MODEL “MICRO-STATES” USING NON-MARKOVIAN THEORY. Jeremy T. Copperman, Daniel M. Zuckerman
1:00 PM
DETERMINATION OF PROTEIN COARSE-GRAINED POTENTIALS BY MACHINE LEARNING APPROACHES. Eric Vazquez, Rachel Thomas, Rafael Zamora-Resendiz, Yu-Hang Tang, Masakatsu Watanabe, Silvia Crivelli

Annual Meeting of the Student Chapters
11:00 AM - 1:00 PM, ROOM 28AB
Join BPS Student Chapters from all over the world for a poster session and workshop. Attendees will meet Student Chapter officers and representatives and learn about each chapter. There will also be an interactive workshop that aims to establish chapter interactions, communications, and planning for future Student Chapter Annual Meeting sessions.

Moderators
Seth Weinberg, Ohio State University
Ashley Carter, Amherst College

Career Development Center Workshop
Networking for Nerds: How to Create Your Unicorn Career
11:30 AM - 12:30 PM, ROOM 26A
Wanna land your dream job? Get ready to network! Most jobs and other game-changing career opportunities are not advertised, and even if they are, there is usually a short-list of candidates already in mind. So how do you find out about and access the 90% of jobs and other opportunities that are “hidden”? In this workshop, we will focus on proven networking strategies and tactics to identify new opportunities, locate decision-makers within organizations, solidify your reputation and brand in the minds of those who hire, and gain access to hidden jobs and game-changing opportunities. Discover how networking and self-promotion can enable you to land or even create your dream job from scratch!

Exhibitor Presentation
Leica Microsystems
11:30 AM - 1:00 PM, ROOM 33A
Leica SP8 FALCON: Applications of FLIM for Functional Imaging and STED Nanoscopy
The rapidly growing field of functional imaging helps us understand the complex interactions of molecules, revealing the true nature of the underlying biology. In this context, fluorescence lifetime imaging (FLIM) is a powerful tool, providing valuable information beyond spectral imaging. FLIM is immune to concentration artifacts and highly sensitive to the molecular environment, providing a robust measure of a biological system’s health. However, previous FLIM solutions were slow and difficult to implement, particularly for complex imaging workflows. To address this weakness, we present the Leica SP8 FALCON (Fast Lifetime Contrast), a fast, intuitive and powerful built-in algorithms to manage data acquisition and analysis, while maintaining accuracy and excellent data quality.

This talk explains the technical implementations enabling this new level of performance and provides some interesting application examples, including functional imaging (e.g. metabolic imaging or FRET imaging) and the use of lifetime information to achieve improved live-cell Nanoscopic Imaging (t-STED). t-STED is a revolutionary modality for STED imaging, making use of the FALCON FLIM phase approach, delivering cutting-edge resolu-
Beyond Ion Channels and Transporters: Snapshots of the State-of-the-Art Solutions

For almost two decades Nanion Technologies provides diverse solutions for electrophysiologists worldwide. We aim to successfully implement innovative technologies in the fields of ion channel automated electrophysiology, monitoring of cell viability and contraction, as well as electrogentic transporters, with our chip- and plate-based devices. Covering the needs for low, medium and high throughput assays our portfolio is well suited to advance research and screening projects. During this year’s symposium, five snapshots of successful wide-ranging applications, assays and emerging technologies from our product portfolio will be presented. Our symposium will start with an introduction by Dr. Niels Fertig (CEO, Nanion) as a guide through the overall capabilities of Nanion’s technology portfolio.

In continuation, we will welcome our speakers.

Our first snapshot, presented by Prof. Dr. Jamie Vandenberg (Victor Chang Cardiac Research Institute) will be focusing on the high throughput automated patch clamp (APC) screening of missense variants in KCNH2 mutations, a well-established cause of sudden cardiac death, using the SyncroPatch 384PE. Prof. Vandenberg will present a high throughput functional assay his group developed in order to differentiate between benign and pathogenic variants in KCNH2 gene. Dr. Marc Rogers (Metrion Biosciences) will continue with a snapshot focusing on validation of a CardioExcyte 96 impedance-based phenotypic assay, that is able to reproduce the chronic effects of a range of clinical drugs that affect human iPSC cardiomyocyte contractility and viability by multiple and diverse mechanisms, including ion channel and ionic pump inhibition, DNA intercalation, proteasome and tyrosine kinase inhibition, and myosin component separation.

Moving from cardiac physiology, Nathan Thomas (University of Wisconsin-Madison) will introduce a new application of SSM-based electrophysiology, in the field of ion coupled transporters. With a novel approach the transporter stoichiometry is investigated via reversal potential determination. During his snapshot, SURFE2R N1 data obtained on transporters from the small multidrug resistance (SMR) family, with the goal of providing a better understanding of underlying transport mechanisms, will be presented.

Finally, Dr. Stephen Hess (Evotec) will introduce the use of APC platforms to support ion channel drug discovery, focusing on the Nav1.1 channels, which positive modulators could be useful in treating cognitive disorders, epilepsy, and neurodegenerative diseases. To find novel positive modulators of Nav1.1 channels. Dr. Hess screened over 150K small molecules using the SyncroPatch 384PE and found confirmed hits which could serve as excellent starting points for further MedChem optimization towards potential therapeutics.

The Nanion team is delighted to welcome you to our lunch symposium!

 Speakers
Jamie Vandenberg, Co-Deputy Director, Head of Cardiac Electrophysiology, The Victor Chang Cardiac Research Institute
Marc Rogers, Director, CSO, Metrion Biosciences
Matthias Gossmann, Innovitro (FLX), Co-Founder & CEO, Innovitro
Nathan Thomas, University of Wisconsin-Madison
Stephen Hess, Research Leader-Ion Channels, Evotec

Exhibitor Presentation Nanion Technologies
12:30 PM - 2:00 PM, ROOM 33C

The National Science Foundation’s Biological Sciences Directorate strongly supports biophysics researchers through its Division of Molecular and Cellular Biosciences. The division has awarded over $160 million in funding to researchers in 41 states.

At this session, program directors and officers with expertise in biophysics will be providing details on the NSF grant-making process as it stands in 2019, with a particular emphasis on grant writing and submission for new and early career investigators.

Speaker
Marcia Newcomer, NSF

How Does Congress Set the Federal Budget for Biomedical Research?
1:00 PM - 2:30 PM, ROOM 23ABC

This workshop will review the overall process, including distinctions between authorization and appropriations, discretionary and non-discretionary spending, and the Presidential and Congressional budgets. Understanding where grant giving agencies fit into the broader federal budget will aid you in advocating for basic and biomedical research budgets that truly address national needs. Learn how you can lend your voice to the Biophysical Society’s advocacy for sustained, predictable funding for scientific research.

Moderator
Jonathan King, MIT

Speakers
Angela Diaz, University of California, San Diego
Leah Cairns, BPS Congressional Science Fellow
Eric Sundberg, Emory University School of Medicine
Objective Lenses
Advancements in Lens Manufacturing Technology Develop New X Line

Researchers use microscopes as essential tools for advancing their science, and objective lenses are crucial components of the system. Many applications benefit from high-quality images with a large field of view, but there is usually a trade-off where improvements in one area of imaging, such as flatness of field, lead to a decrease in another area such as chromatic correction. Conventional objective lens manufacturing technology forced a trade-off between numerical aperture, image flatness, and chromatic correction, making it difficult to improve all three in one objective. Olympus, with 100 years of innovative optical solutions for life sciences, has developed a new lens polishing technology that creates lenses with shapes that are difficult to fabricate using other methods. These improvements enable manufacturing of convex lenses with ultra-thin edges as well as ultra-thin concave lenses, which lead to more lenses being packaged in each objective housing, increasing the NA, image flatness, and chromatic correction range. In this presentation, you will learn how these improvements advance optical performance and a range of applications.

Speaker
James Lopez, Manager-Life Science Applications Group, Olympus America Inc

Beyond Reporting: How to be an Ally to Those Experiencing Harassment
2:30 PM - 4:00 PM, ROOM 28CDE

It can be difficult to know how best to support individuals experiencing harassment, or to know what to do or say if you observe problematic conduct. In this workshop participants will learn what it means to be an ally to those experiencing harassment, ways to be an effective ally, and will discuss common concerns of would-be allies. Participants will also learn practical, experience-based actions, strategies, and conversations colleagues can utilize in order to support targets of harassment.

Speaker
Kristina K. Larsen, Kristina Larsen Law

Exhibitor Presentation
Olympus America Inc
1:30 PM - 3:00 PM, ROOM 33A

Advancements in Lens Manufacturing Technology Develop New X Line Objective Lenses

Meet the Editors, Biophysical Journal
1:45 PM - 3:00 PM, SOCIETY BOOTH/LOBBY G

How to Get Your Scientific Paper Published
2:15 PM - 3:45 PM, ROOM 29C

This panel discussion, sponsored by the Publications Committee, will focus on the practical issues involved in publishing a scientific paper. Panelists include Biophysical Journal editors and Publication Committee members who have extensive experience in writing, reviewing, and editing papers. They will provide general information on the dos and don’ts of submitting research manuscripts to journals for publication. For authors, topics encompass writing for your audience and identifying your appropriate journal, writing the cover letter, managing reviews, and suggestions for responding to critiques and even rejection of a paper. For reviewers, topics include how to write a useful review. Attendees are encouraged to pose questions and raise topics for discussion.

Moderator
Kathleen Hall, Washington University in Saint Louis

Panelists
Jason Kahn, University of Maryland, Selecting the Right Journal for Your Paper
Vasanthi Jayaraman, University of Texas Health Science Center, The Path of a Manuscript
Will Hancock, Pennsylvania State University, How to Craft a Narrative
Carlos Baiz, University of Texas at Austin, Design of Effective Figures

Career Development Center Workshop
Translating Your Credentials: Writing Effective Resumes + Cover Letters and Your LinkedIn Profile
2:30 PM - 3:30 PM, ROOM 26A

Translating Your Credentials: Writing Effective Resumes + Cover Letters and Your LinkedIn Profile
1:45 pm - 3:00 pm, Room 29AB

Come join us for a Q&A discussion about science in industry. Hear from a panel of scientists about their career in industry. Learn about the different roles and positions and get perspective about how you can tailor your current research experience to align with industry needs.

Moderator
Ariel Lewis-Ballester, Gilead Sciences

Speakers
Angela Ballosteros, NIH
Jeanne Small, NSF
Akash Bhattacharya, Beckman Coulter Life Sciences
Karl Maluf, KBI Biopharma
Shanti Amagasu, Amgen

Biophysics 101
An Introduction to Molecular Dynamics Simulation and its Application to Biological Systems
1:30 PM - 3:00 PM, ROOM 24ABC

Molecular dynamics (MD) is a computer simulation technique for studying structural dynamics and thermodynamics properties of molecular systems. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic “evolution” of the system. Given its high temporal and spatial resolutions, the methodology can be considered as a “computational microscope” to allow for visualization of molecular systems and processes and quantify microscopic properties of interest, including macromolecular interactions, energetics associated with processes, and molecular properties underlying macroscopic behavior observed experimentally. MD is now an indispensable biophysical tool that closely complements many experimental techniques. The technique has benefited tremendously from substantial boost in our computational power and from algorithmic advances, and it can currently describe rather complex biological phenomena. The speakers will introduce the basic theory and system building steps for a MD simulation and present some of the recent successful biophysical applications of the technique including examples of combining the methodology with experimental data.

Speakers
Esmael Haddadian, The University of Chicago
Emad Tajkhorshid, University of Illinois at Urbana-Champaign

Exhibitor Presentation
Olympus America Inc
1:30 PM - 3:00 PM, ROOM 33A

Advancements in Lens Manufacturing Technology Develop New X Line Objective Lenses

This panel discussion, sponsored by the Publications Committee, will focus on the practical issues involved in publishing a scientific paper. Panelists include Biophysical Journal editors and Publication Committee members who have extensive experience in writing, reviewing, and editing papers. They will provide general information on the dos and don’ts of submitting research manuscripts to journals for publication. For authors, topics encompass writing for your audience and identifying your appropriate journal, writing the cover letter, managing reviews, and suggestions for responding to critiques and even rejection of a paper. For reviewers, topics include how to write a useful review. Attendees are encouraged to pose questions and raise topics for discussion.

Moderator
Kathleen Hall, Washington University in Saint Louis

Panelists
Jason Kahn, University of Maryland, Selecting the Right Journal for Your Paper
Vasanthi Jayaraman, University of Texas Health Science Center, The Path of a Manuscript
Will Hancock, Pennsylvania State University, How to Craft a Narrative
Carlos Baiz, University of Texas at Austin, Design of Effective Figures

Career Development Center Workshop
Translating Your Credentials: Writing Effective Resumes + Cover Letters and Your LinkedIn Profile
2:30 PM - 3:30 PM, ROOM 26A

Beyond Reporting: How to be an Ally to Those Experiencing Harassment
2:30 PM - 4:00 PM, ROOM 28CDE

It can be difficult to know how best to support individuals experiencing harassment, or to know what to do or say if you observe problematic conduct. In this workshop participants will learn what it means to be an ally to those experiencing harassment, ways to be an effective ally, and will discuss common concerns of would-be allies. Participants will also learn practical, experience-based actions, strategies, and conversations colleagues can utilize in order to support targets of harassment.

Speaker
Kristina K. Larsen, Kristina Larsen Law
Discover When Change is Significant: Latest Developments in Circular Dichroism and Stopped-Flow Kinetics

Applied Photophysics has remained at the forefront of the technologies of circular dichroism and stopped-flow kinetics since its creation in 1971 by the Royal Institution of Great Britain under the leadership of Nobel Prize-winning Lord Port.

In the first part of the presentation, the latest developments regarding the Chirascan CD spectrometers will be introduced. Case studies will be discussed to illustrate that CD spectroscopy with Chirascan is far more powerful than the traditional use of revealing the protein secondary structures such as α-helix and β-sheet. With Chirascan CD spectrometers, information regarding secondary structures, as well as tertiary structures, thermal and chemical stability can be clearly demonstrated. Moreover, the introduction of automatic CD spectrometers provides unparalleled sensitivity, reproducibility and productivity. It provides a novel approach for objective, quantifiable higher order structure (HOS) comparisons. The introduction of the Circularly Polarized Luminescence (CPL) accessory makes the Chirascan more economical and versatile.

In the second part of the presentation, the latest developments in the SX Stopped-Flow systems will be discussed. Stopped-Flow systems from Applied Photophysics are known for their high performance, ease-of-use and durability and we have made them better. We introduce LED light sources and various accessories, such as dual fluorescence detection, fluorescence polarization/anisotropy, and photodiode array detector. Applications in enzymology and protein structures will be discussed.

Symposium

Kinetic Stability: Controlling Longevity at the Molecular Level

Chair

Jonathan King, MIT

877-SYMP 4:00 PM
DESIGNING PROTEIN STABILITY AND STRAIN FOR FOLDING AND FUNCTION.
Elizabeth M. Meiering

878-SYMP 4:30 PM
COMPETING INTERACTIONS BETWEEN VIRAL RHIM AMYLOID-FORMING PROTEINS AND HOST FUNCTIONAL AMYLOID STRUCTURES MODULATE THE CELLULAR RESPONSE TO INFECTION.
Margaret Sunde, Chi L.L. Pham, Nirukshan Shanmugam, Max O.D.G. Baker, Megan Steain, Allis O’Carroll, James W. Brown, Emma Sirecky, Yann Gambin

879-SYMP 5:00 PM
PROTEOMICS ANALYSES OF KINETIC STABILITY: FROM MOLECULAR TO ORGANISMAL LONGEVITY.
Wilfredo Colon, Evelyn G. Rugaber, Ke Xia

880-SYMP 5:30 PM
BURIED TRYPTOPHANS CONTRIBUTING TO THE HIGH KINETIC STABILITY OF THE LONG-LIVED GAMMA CRYSTALLINS AND THEIR OXIDATIVE DAMAGE OPENING THE PATHWAY TO THE AGGREGATED STATE ASSOCIATED WITH CATARACTS.
Jonathan King, Ishara Mills Henry, Melissa Kosinski-Collins, Shannon Thol, Eugene Serebryany

Symposium

Translational Control

Chair

Christine Dunham, Emory University

881-SYMP 4:00 PM
NASCENT POLYPEPTIDE CHAIN-MEDIATED TRANSLATION ELONGATION ARREST IN BACTERIA.
Shinobu Chiba

882-SYMP 4:30 PM
PRECISELY QUANTIFYING THE ENERGETICS OF THE RIBOSOME.
Mariana Levi, Jeffrey Noel, Huan Yang, Trung Kien Nguyen, Asem H. Hassan, Kelsey N. Walak, Jonathan Perrier, Liah Duekay, Ransom Horne, Paul C. Whitford
Platforms

Protein Structure and Conformation II
4:00 PM - 6:00 PM, BALLROOM 20BC

Co-Chairs
Joanna Long, University of Florida
Joseph Primeau, University of Alberta, Canada

885-PLAT 4:00 PM
ELUCIDATION OF PROTEIN-PROTEIN INTERACTIONS THROUGHOUT E. COU FATTY ACID BIOSYNTHESIS. Thomas G. Bartholow, Terra Sztain-Pedone, Ashay Patel, Ruben Abagyan, Michael D. Burkart

886-PLAT 4:15 PM
CHARACTERIZATION OF INTERMOLECULAR QUATERNARY INTERACTIONS BETWEEN DISCRETE SEGMENTS OF THE STREPTOCOCCUS MUTANS ADHESIN P1 AND THEIR BINDING TO SMALL MOLECULE AMYLOID INHIBITORS VIA NMR SPECTROSCOPY. Gwladys Riviere, Emily Peng, Albert Brotgendal, Jeanine Brady, Joanna R. Long

887-PLAT 4:30 PM
HEAT EFFECTS ON COIL HYDRODYNAMIC SIZE REVEAL THE ENERGETICS OF DENATURED STATE CONFORMATIONAL BIAS. Steven T. Whitten, Lance R. English, Elisia A. Paiz

888-PLAT 4:45 PM
WW DOMAINS FROM WWP2 E3 UBIQUITIN LIGASE RECOGNISE OCT4 AND SMAD7 PEPTIDES. Lloyd C. Wahl, Jessica E. Watt, Danielle De Bourcier, Andrew Chantry, Tharin M.A. Blumenschein

889-PLAT 5:00 PM
THE COMPLETE CHARACTERIZATION OF A TRAPPED ACYL CARRIER PROTEIN-KETOSYNTHASE COMPLEX. Jeffrey T. Mindrebo, G-pop Neason, Ashay Patel, Katia Charov, Joseph P. Noel, Michael D. Burkart

890-PLAT 5:15 PM
STRUCTURE-FUNCTION RELATIONSHIPS IN BIOFILMS CHARACTERIZING THE STAPHYLOCOCCAL AUTOYSIN R2 REPEAT DOMAIN. Yasiru R. Perera, Taylor M. South, Kayla D. McConnell, Rahul Yadav, Nicholas C. Fitzkeee

891-PLAT 5:30 PM
INTERACTION OF A SARCOLIPIN PENTAMER AND MONOMER WITH THE SARCOPLASMIC RETICULUM CALCIUM PUMP, SERCA. John Paul Graves, Joseph O. Primeau, Przemek Gorski, L. Michel Espinoza-Fonseca, M. Joanne Lemieux, Howard S. Young

892-PLAT 5:45 PM
DIMER INTERACTION IN THE HV1 PROTON CHANNEL. Laetitia Mony, Michael Boersch, Martha Braun, Christopher Daniel Rodrigues, Michael Boersch

893-PLAT 6:00 PM
FAST STATES REVEALED BY THEORY OF JUMPS IN F-ATPase ROTATION EXPERIMENTS. Sandor Volkan-Kacso, Luan Q. Le, Haibin Su, Rudolph Marcus

894-PLAT 4:15 PM
REVISITING SUBUNIT ROTATION IN F-, ATP SYNTHASE BY SINGLE-MOLECULE FRET IN AN ABELTRAP. Michael Boersch

895-PLAT 4:30 PM
ANIONIC LIPIDS CONFINE CYTOCHROME C TO THE VICINITY OF BIOENERGETIC MEMBRANES WITHOUT COMPROMISING ITS INTERACTION WITH MEMBRANE-EMBEDDED REDOX PARTNERS. Chun Kit Chan, Abhishek Singharoy, Emad Tajkhorshid

896-PLAT 4:45 PM
VOLTAGE-ENERGIZED CALCIUM-SENSITIVE ATP PRODUCTION BY MITOCHONDRIA. Andrew P. Wesscott, Joseph P. Kao, W. Jonathan Lederer, Liron Boyman

897-PLAT 5:00 PM
A PHOSPHOMIMETIC MUTATION S215E IN VDAC1 INTERFERES WITH HEKOKINASE BINDING. Qunli Cheng, Gayathri K. Natarajan, Meiyng Yang, Po-Chao Wen, Nandan Haloi, Emad Tajkhorshid, Amadou K. Camara, Wai-Meng Kwok

898-PLAT 5:15 PM
OPA1 GTPASE AND GE DOMAIN-SPECIFIC MUTATIONS DIFFERENTIALLY ALTER MITOCONDRIAL FUSION DYNAMICS AND CALCIUM HOMEOSTASIS. Benjamin Cartes-Saaavedra, Duxan Arancibia, Florence Burté, Marcela Sjoberg, Maria Estela Andres, Patrick Wu-Wai-Man, Gyorgy Hajnoczy, Veronica Eisner

899-PLAT 5:30 PM
REDox CONTROL OF SLEEP. Anissa Kempf, Seoho M. Song, Clifford B. Talbot, Gero Miesenböck

900-PLAT 5:45 PM

Platform

Membrane Structure
4:00 PM - 6:00 PM, ROOM 24ABC

Co-Chairs
Milka Doktorova, University of Texas Health Science Center at Houston
Félix Goñi, University of the Basque Country, Spain

901-PLAT 4:00 PM
FIB3 MEDIATED MEMBRANE FISSION DURING SPOULATION IN BACILLUS SUBTILIS. Anela Landajuela, Martha Braun, Christopher Daniel Rodrigues, Thierry Doan, David Rudner, Erdem Karatekin

902-PLAT 4:15 PM
PHOSPHOLIPID TRANSLLOCATION AS DRIVER OF CHOLESTEROL (RE) DISTRIBUTION. Milka Doktorova, Jessica L. Symons, Kandice R. Levental, Ilya Levental

903-PLAT 4:30 PM
A SEMI-SUPERVISED LEARNING APPROACH FOR CALCULATION OF MEMBRANE CURVATURE PROPERTIES, WITH APPLICATION TO MITOCONDRIAL MODEL MEMBRANES. Moene Meigooni, Emad Tajkhorshid

904-PLAT 4:45 PM
IMPACT OF DYSLIPIDEMIC LEVELS OF OXIDIZED CHOLESTEROL ON ENDOTHELIAL MEMBRANES. Manuela A. Ayee, Katie Lam, Irena Levitan

905-PLAT 5:00 PM
PATCHES AND BLEBS, A COMPARATIVE STUDY OF TWO PLASMA MEMBRANE PREPARATIONS FROM CHO CELLS. Félix M. Goñi, Bingen G. Monasterio, Noemi Jimenez-Rojo, Aritz Garcia-Arribas, Howard Riezman, Alicia Alonso
906-PLAT 5:15 PM
MONTE CARLO AND MOLECULAR DYNAMICS SIMULATIONS TO EXPLAIN
BIOMEMBRANE Meso-PATTERNING BY A COMPOSITION-CURVATURE
COUPLING MECHANISM. Julie Cornet, Matthieu Chavent, Manoel
 Manghi, Nicolas Destainville

907-PLAT 5:30 PM
MECHANICAL PROPERTIES OF COMPOSITIONALLY ASYMMETRIC MEM-
BRANES. Aparna Sreekumari, Reinhard Lipowsky

908-PLAT 5:45 PM
SUPERRESOLVING THE MEMBRANE TOPOGRAPHY OF LIVE CELLS.
Gabriele Kockelkoren, Line Lauritsen, Christopher Shuttle, Dimitrios
Stamou

Platform
Single-Molecule Spectroscopy
4:00 PM - 6:00 PM, Room 25ABC

Co-Chairs
Brett Israels, University of Oregon
Irina Gophich, NIH

909-PLAT 4:00 PM
QUANTIFYING BINDING AFFINITIES, KINETICS AND STOICHIOMETRY OF
BIOMEMBRANAL COMPLEXES WITH MASS PHOTOMETERY.
Fabian Soltermann, Veronica Pagnoni, Eric Foley, Martin Galpin, Justin L.
Benesch, Weston B. Struwe, Philipp Kukura

910-PLAT 4:15 PM
A MODULAR DNA SCAFFOLD TO STUDY PROTEIN-PROTEIN INTERAC-
TIONS AT SINGLE-MOLECULAR RESOLUTION. Dorota N. Kostrz, Hannah K.
Wayment-Steele, Jinglong Wang, Maryne Follenfant, Vijay S. Pande,
Antoine Triller, Christian G. Specht, Terence R. Strick, Charlie Goss

911-PLAT 4:30 PM
INVESTIGATION OF LENTIVIRUSES AND THEIR INITIAL CONTACTS WITH
CELLS USING REAL-TIME 3D TRACKING. Jack C. Exell, Shangguo Hou,
Courtney C. Johnson, Kevin D. Welsher

912-PLAT 4:45 PM
FAST THREE-COLOR SINGLE-MOLECULAR FRET USING CONTINUOUS-WAVE
EXCITATION OF DONOR. Janghyun Yoo, Jae-Yeol Kim, John M. Louis, Irina
V. Gopich, Ho Sung Chung

913-PLAT 5:00 PM
TRAVEL Awardee
SINGLE-MOLECULAR INVESTIGATION OF CONFORMATIONAL CHANGES IN
EPIDERMAL GROWTH FACTOR RECEPTOR. Raju Regmi, Shwetha
Srinivasan, Xingcheng Lin, Steven Quinn, Wei He, Kermit L. Carraway III,
Matthew A. Coleman, Bin Zhang, Gabriela Schlau-Cohen

914-PLAT 5:15 PM
SINGLE-MOLECULAR DYNAMICS OF THE HUMAN RNA POLYMERASE II PRE-
INITIATION COMPLEX. Rory Gunnison, Oksana Gonchar, Jonathan Grimm,
Luke Lavis, Zhengjian Zhang, Andrey G. Revyakin

915-PLAT 5:30 PM
TRAVEL Awardee
SUB-MICROSECOND SINGLE-MOLECULAR FRET STUDIES OF SINGLE-
STRANDED DNA CONFORMATION FLUCTUATIONS MEDIATED BY SINGLE-
STRANDED DNA BINDING PROTEINS. Brett A. Israels, Anson Dang, Peter H.
von Hippel, Andrew H. Marcus

916-PLAT 5:45 PM
HIGH GC CONTENT DNA DOES NOT AFFECT PHAGE T4 DNA PACKAGING --
TEST OF A SCRUNCHWORM MODEL FOR PACKAGING MOTOR FUNCTION.
Youbin Mo, Nicholas A. Keller, Douglas E. Smith

Platform
Cell Mechanics, Mechanosensing, and Motility
4:00 PM - 6:00 PM, Room 30ABC

Co-Chairs
Effie Bastounis, University of Washington
Stephanie Hoehn, University of Cambridge, United Kingdom

917-PLAT 4:00 PM
QUANTIFYING MOLECULAR FORCES WITH SERIALLY CONNECTED FORCE
SENSORS. Yousif Murad, Adam Yasunaga, Isaac T. Li

918-PLAT 4:15 PM
MORPHOGENESIS IS STRESSFUL - ELASTIC PROPERTIES OF FOLDING CELL
SHEETS. Stephanie S. Hoehn, Pierre A. Haas, Raymond E. Goldstein

919-PLAT 4:30 PM
EMERGENCE OF CELL ORGANIZATION AND PATTERN SENSING FROM
ENTROPIC SHAPE FLUCTUATIONS. Nicholas A. Kurniawan

920-PLAT 4:45 PM
STICK-SLIP DYNAMICS OF MIGRATING CELLS. Rumi De, Partho Sakha De

921-PLAT 5:00 PM
MECHANICALLY-DRIVEN CELLULAR COMPETITION PROMOTES THE COL-
LECTIVE EXTRUSION OF BACTERIA-INFECTED EPITHELIAL CELLS.
Effie E. Bastounis, Prarthima Radhakrishnan, Patrik Engström, Francisco
Alcalde, Maria Gómez Benito, José M. García Aznar, Matthew Welch, Julie
Theriot

922-PLAT 5:15 PM
CORRELATING MECHANICAL AND GENE EXPRESSION DATA ON THE
SINGLE CELL LEVEL TO INVESTIGATE METASTASIS. Katherine M. Young,
Congmin Xu, Kelly Ahkee, Roman Mezencev, Peng Qiu, Todd Sulchek

923-PLAT 5:30 PM
DIVERSE MODES OF MOTION OF DICTYOSTELIUM DISCOIDEUM CELLS:
CORRELATING CYTOSKELETON ORGANIZATION AND GENERATION
OF TRACTION FORCES. Elisabeth Ghabache, Yuchuan Miao, Peter N.
Devreotes, Wouter-Jan Rappel

924-PLAT 5:45 PM
TRAVEL Awardee
PLASMA MEMBRANE NANODOMAINS AS AN INTEGRATOR OF SUB-
STRATE ENCODED MECHANANO-CHEMICAL SIGNALS. Joseph Mathew
Kalappurakkal, Anupama Ambika Anilkumar, Chandrima Patra, Thomas S.
van Zanten, Michael P. Sheetz, Satyajit Mayor

Platform
Ligand-gated Channels
4:00 PM - 6:00 PM, Room 31ABC

Co-Chairs
Sun Joo Lee, Washington University in St. Louis
Erik Lindahl, Stockholm University, Sweden

925-PLAT 4:00 PM
LIGAND BINDING AND VOLTAGE MODULATION OPEN A CYCLIC-NUCLEO-
TIDE GATED ION CHANNEL. Xiaolong Gao, Chen Fan, Crina M. Nimigean

926-PLAT 4:15 PM
PATCH-CLAMP FLUOROMETRY DEFINES A ROLE FOR SUR1 IN NUCLEO-
TIDE INHIBITION OF K(OUT) CHANNELS. Samuel Usher, Frances M. Ashcroft,
Michael C. Puljung

927-PLAT 4:30 PM
ELUCIDATE THE BINDING MECHANISM OF VARIOUS SETRONS TO
5-HT3AR. Sandip Basak, Yvonne W. Gicheru, Arvind Kumar, Sudha
Chakrapani
928-PLAT 4:45 PM
A LIPID RECOGNITION SITE AT A TRANSMEMBRANE HELIX KINK SHAPES THE AGONIST RESPONSE OF A PENTAMERIC LIGAND-GATED ION CHANNEL.

929-PLAT 5:00 PM
THE MOLEULAR MECHANISMS OF CHOLESTEROL REGULATION OF KIR CHANNELS REVEALED BY DIRECT AND QUANTITATIVE APPROACHES.
Sun Joo Lee, Zi-Wei Chen, Melissa Budelier, Kathiresan Krishnan, Douglas F. Covey, Alex S. Evers, Colin G. Nichols

930-PLAT 5:15 PM
MECHANISM OF MODULATION OF AMPA RECEPTORS BY TARP/F8.
Elisa Carrillo, Sana A. Shaikh, Vladimir Berka, Linda M. Nowak, Vasanthis Jayaraman

931-PLAT 5:30 PM
MECHANISMS OF ACTIVATION AND DESENSITIZATION OF FULL-LENGTH GLYCINE RECEPTOR IN MEMBRANES.
Arvind Kumar, Sandip Basak, Shanlin Rao, Yvonne W. Gicheru, Megan Mayer, Mark S. Sansom, Sudha Chakrapanii

932-PLAT 5:45 PM
MAPPING PH-DEPENDENT STATE TRANSITIONS OF A PENTAMERIC LIGAND-GATED ION CHANNEL THROUGH MARKOV STATE MODELING.
Catherine Bergh, Laura Orellana, Stephanie A. Heusser, Rebecca J. Howard, Erik Lindahl

Speed Networking
4:30 PM - 6:00 PM, LOBBY H
Career development and networking is important in science, but can be a big time commitment. Here we offer refreshments and the chance to speed network, an exciting way to connect with a large number of biophysicists (including Biophysical Society committee members) in a short amount of time. Mid-career and more experienced scientists can learn how to get more involved in the Society or network for open positions in their labs. Early career scientists can discuss career goals and challenges, get advice on tenure or grant writing, or find out how to gain recognition for their work. Graduate students and postdocs can make contacts to find their next position. After introductions, each person will have short 3-5 minute meetings with consecutive new contacts. During this time you can exchange information and ask questions. When time is up, you select the next person to talk to. By the end of the event, each participant will have had meaningful interactions with over half a dozen colleagues and the opportunity to meet many more. It’s that simple!

Exhibitor Presentation
Molecular Devices
4:30 PM - 6:00 PM, ROOM 33C
Empower Your Electrophysiology Studies Using New Axon pCLAMP 11 Software and HumSilencer Adaptive Noise Cancellation Technology
The patch-clamp technique remains the best method for examining ion channel physiology and membrane biophysics. Axon Instruments and pCLAMP software continue to push the envelope with new innovations with best-in-class systems and software. In this user meeting we learn how to design protocols easier, analyze data faster, and achieve better data quality.

Speaker
Jeffrey Tang, Senior Global Axon Electrophysiological Application Scientist, Molecular Devices

Exhibitor Presentation
LUMICKS
5:30 PM - 7:00 PM, ROOM 33A
Breaking the Barriers: Providing the Full Workflow for Dynamic Single-Molecule Research from Sample to Publication
Here, we present our newest developments to further support discoveries in the fields of biology and biophysics. Our aim is to enable faster, easier, and more reliable than ever single-molecule research – from sample to publication – by extending the full experimental workflow with new services and open-access initiatives.

To decipher complex molecular interactions, you need to be able to observe the same biological process from multiple points of view. Using LUMICKS’ groundbreaking C-Trap™ Optical Tweezers – Fluorescence & Label-free Microscopy, you can simultaneously visualize individual molecules in real time and measure biological processes in greater detail. The combination of live-imaging and measurements has proven to be a research game changer.

With the ever-increasing pressure to perform breakthrough discoveries in the least amount of time, LUMICKS brings you an instrument with unprecedented high precision, accuracy, reliability, and the shortest time to result. The C-Trap gives you access to three key features: stable and precise sample manipulation and measurements, a wide variety of visualization capabilities, and a high throughput experimental workflow.

With the technology in hand, the major barriers that still remain in dynamic single-molecule research are caused by tedious sample preparation and non-standardized data analysis methods.

With ready-to-use kits, tailored sample preparation support, and easy-to-use data analysis, scientists can now focus more on their biological questions and generate the next wave of scientific discoveries in the least amount of time.

Join our presentation to learn about our new single-molecule biochemistry services and our open-access user community for experiment automation and data analysis in single-molecule research.

Speakers
Olivier Heyning, Chief Executive Officer & Founder, LUMICKS
Emmanuel Lissek, Application Scientist, LUMICKS
Ali Raja, Director Americas, LUMICKS

Dinner Meet-Ups
6:00 PM - 6:30 PM, SOCIETY BOOTH/LOBBY G
Interested in making new acquaintances and experiencing the cuisine of San Diego? Meet at the Society Booth Monday and Tuesday at 6:00 PM, where a BPS member will coordinate dinner at a local restaurant.

Awards and 2020 Biophysical Society Lecture
8:00 PM - 9:00 PM, BALLROOM 20ABCD
PRESENTATION OF AWARDS 8:00 PM
932.01-BPSL 8:15 PM
FROM SINGLE MOLECULE BIOPHYSICS TO SINGLE CELL GENOMICS: WHEN STOCHASTICITY MEETS PRECISION Xiaoliang Sunney Xie

Reception and Dance
9:30 PM - 12:00 AM, HILTON, SAPPHIRE

Reception and Quiet Room
9:30 PM - 12:00 AM, HILTON, INDIGO AE
MONDAY POSTER SESSIONS
1:45 PM–3:45 PM, EXHIBIT HALL

Below is the list of poster presentations for Monday of abstracts submitted by October 1. The list of late abstracts scheduled for Monday is available in the Program Addendum, and those posters can be viewed on boards beginning with LB.

Posters should be mounted beginning at 6:00 PM on Sunday and removed by 5:30 PM on Monday evening. Posters will be on view until 10:00 PM the night before presentation. Poster numbers refer to the program order of abstracts as they appear in the online Abstracts Issue. Board numbers indicate where boards are located in the Exhibit Hall.

Below is the list of poster presentations for Monday of abstracts submitted by October 1. The list of late abstracts scheduled for Monday is available in the Program Addendum, and those posters can be viewed on boards beginning with LB.

Posters should be mounted beginning at 6:00 PM on Sunday and removed by 5:30 PM on Monday evening. Posters will be on view until 10:00 PM the night before presentation. Poster numbers refer to the program order of abstracts as they appear in the online Abstracts Issue. Board numbers indicate where boards are located in the Exhibit Hall.

Odd-Numbered Boards 1:45 PM–2:45 PM | Even-Numbered Boards 2:45 PM–3:45 PM

<table>
<thead>
<tr>
<th>Board Numbers</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 – B21</td>
<td>Protein Structure and Conformation II</td>
</tr>
<tr>
<td>B22 – B40</td>
<td>Protein Stability, Folding, and Chaperones I</td>
</tr>
<tr>
<td>B41 – B67</td>
<td>Protein Assemblies I</td>
</tr>
<tr>
<td>B68 – B87</td>
<td>Protein Dynamics and Allostery II</td>
</tr>
<tr>
<td>B88 – B107</td>
<td>Membrane Protein Structures I</td>
</tr>
<tr>
<td>B108 – B131</td>
<td>Intrinsically Disordered Proteins (IDP) and Aggregates II</td>
</tr>
<tr>
<td>B132 – B152</td>
<td>DNA Structure and Dynamics II</td>
</tr>
<tr>
<td>B153 – B177</td>
<td>Protein-Nucleic Acid Interactions II</td>
</tr>
<tr>
<td>B178 – B201</td>
<td>Membrane Physical Chemistry II</td>
</tr>
<tr>
<td>B202 – B215</td>
<td>Membrane Dynamics II</td>
</tr>
<tr>
<td>B216 – B240</td>
<td>Membrane Active Peptides and Toxins I</td>
</tr>
<tr>
<td>B241 – B267</td>
<td>General Protein-Lipid Interactions I</td>
</tr>
<tr>
<td>B268 – B293</td>
<td>Membrane Receptors and Signal Transduction II</td>
</tr>
<tr>
<td>B294 – B312</td>
<td>Mechanosensation I</td>
</tr>
<tr>
<td>B313 – B329</td>
<td>Intracellular Calcium Channels and Calcium Sparks and Waves I</td>
</tr>
<tr>
<td>B330 – B344</td>
<td>Muscle Regulation</td>
</tr>
<tr>
<td>B345 – B374</td>
<td>Voltage-gated K Channels II</td>
</tr>
<tr>
<td>B375 – B394</td>
<td>Ion Channel Regulatory Mechanisms I</td>
</tr>
<tr>
<td>B395 – B420</td>
<td>Other Channels</td>
</tr>
<tr>
<td>B421 – B437</td>
<td>Skeletal Muscle Mechanics, Structure, and Regulation</td>
</tr>
<tr>
<td>B438 – B460</td>
<td>Cell Mechanics, Mechanosensing, and Motility I</td>
</tr>
<tr>
<td>B461 – B467</td>
<td>Genetic Regulatory Systems</td>
</tr>
<tr>
<td>B468 – B475</td>
<td>Computational Neuroscience</td>
</tr>
<tr>
<td>B476 – B488</td>
<td>Neuroscience: Experimental Approaches and Tools</td>
</tr>
<tr>
<td>B489 – B512</td>
<td>Electron Microscopy</td>
</tr>
<tr>
<td>B513 – B538</td>
<td>Molecular Dynamics II</td>
</tr>
<tr>
<td>B539 – B568</td>
<td>Computational Methods and Bioinformatics I</td>
</tr>
<tr>
<td>B569 – B603</td>
<td>Optical Microscopy and Superresolution Imaging II</td>
</tr>
<tr>
<td>B604 – B618</td>
<td>Biosensors I</td>
</tr>
<tr>
<td>B619 – B626</td>
<td>Biophysics Education</td>
</tr>
</tbody>
</table>

It is the responsibility of the poster presenters to remove print materials from the board after their presentations. Please do not leave materials or belongings under poster boards or in the poster area. Posters will not be collected or stored for pick-up at a later time. The Biophysical Society is not responsible for any articles left in the poster area.
Protein Structure and Conformation II
(Boards B1 - B21)

933-Pos 板 B1
EXPERIMENTAL TEST OF ENSEMBLE-INDUCED EPISTASIS IN MACROMOLECULES. Anneliese J. Morrison, Michael J. Harms

934-Pos 板 B2
PP2A PHOSPHATASE ACTIVATOR (PTPA): KEY TO THE MASTER REGULATOR IS CRUCIAL FOR SURVIVAL OF ENTAMOEBA HISTOLYTICA; STRUCTURAL AND FUNCTIONAL ELUCIDATION. Priya Tomar, Gourinath Samudrala

935-Pos 板 B3
EFFECT OF BILAYER THICKNESS ON MECHANICAL ACTIVATION OF THE ANGIOTENSIN II TYPE 1 RECEPTOR. Bharat Poudel, Rajitha R. Tatikonda, Juan M. Vanegas

936-Pos 板 B4
SINGLE-MOLECULE FLUORESCENCE SPECTROSCOPY OF NON-LIPIDATED FORMS OF APOLIPROTEIN E. Melissa D. Stuchell-Bereton, Logan Calderone, Berevan Baban, Jasmine Cubuk, Greg DeKoster, Carl Frieden, Andrea Soranno

937-Pos 板 B5
ACTIVATION OF A PHOTODRIVER ENZYMES RESULTS IN MODIFIED STRUCTURE AND DYNAMICS. Andreas M. Stadler, Judith Schneidewind, Michaela Zamponi, Esther Kniips-Grühsheim, Samira Ghomlian, Ulrich Schwamborg, Ivan Rivolta, Marco Garavelli, Mehdi Davari, Karl-Erich Jaeger, Frank Krause, Marco Bocola, Ulrich Krauss

938-Pos 板 B6
IN-CELL STRUCTURAL DETERMINATION OF AN ANTINORMAL PEPTIDE BY DNP SOLID-STATE NMR. Shiyong Zhu, Frances Separovic, Marc Antoine Sani

939-Pos 板 B7
PRINCIPLES OF ATP AND GTP SELECTIVITY IN NMP KINASES. Per Rogne, Elisabet Sauer-Ericsson, Uwe Sauer, Christian Hedberg, Magnus Wolf-Watz

940-Pos 板 B8
FLANKING DISORDER AFFECTS THE CONFORMATIONAL ENSEMBLE AND DYNAMICS OF A SMALL FOLDED HUB DOMAIN. Lasse Staby, Micha Kunze, Katherine R. Kemplien, Karen Skriver, Birthe B. Kragelund

941-Pos 板 B9
THE VARIABLE DOMAIN FROM THE MITOCHONDRIAL FISSION MECHANOENZYME DRP1 PROMOTES LIQUID-LIQUID PHASE SEPARATION. Blake Hill, Ammon E. Posey, Mehran Bagheri, Megan C. Harwig, Nolan W. Kennedy, Vincent J. Hilser, James L. Harden

942-Pos 板 B10
STRUCTURE AND FUNCTION OF A SOLUBLE PRECURSOR OF HUMAN PULMONARY SURFACTANT PROTEIN SP-B. Alejandro Alonso, Barbara Olmeda, Olga Cañadas, Jesus Perez-Gil

943-Pos 板 B11
DISSECTING CONTRIBUTIONS TO EFFICIENT CATALYSIS IN THE TRNA MODIFYING ENZYME TILS. Ferdiemar C. Guinto, Rebecca W. Alexander, Freddie R. Salsbury

944-Pos 板 B12
INVESTIGATION OF DRUG RESISTANCE MECHANISMS FOR ANTIANDR-GEN PROSTATE CANCER DRUG ENZALUTAMIDE USING MOLECULAR DYNAMICS SIMULATIONS. Behzad Aslani Avilaiq, Sefer Baday

Protein Stability, Folding, and Chaperones I
(Boards B22 - B40)

945-Pos 板 B13
CHARACTERIZATION OF AIF5A PROTEIN: A MULTIFUNCTIONAL TRANSLATION FACTOR IN THE HYPERTERMOPHILIC ARCHAEON S. SOLFATARI- CUS. Alice Romagnoli, Flavia Bassani, Paolo Moretti, Francesco Spinozzi, Udo Bläsi, Daniele Di Marino, Anna La Teana

946-Pos 板 B14
ELECTROSTATICS AND THE CONTROL OF ENDOGENOUS HEME LIGATION BY PH IN A HEMOGLOBIN. Jaime E. Martinez, Laia Julió Plana, Jamie L. Schlessman, Dario A. Estrin, Luciana Capece, Juliette T. Lecomte

947-Pos 板 B15
HIGH-THROUGHPUT MUTATIONAL SCREEN IDENTIFIES PHENOTYPICALLY RELEVANT CATEGORIES OF MUTATIONS IN FUMARATE HYDRATASE. David Shorthouse, Michael W.J. Hall, Benjamin A. Hall

948-Pos 板 B16
THE DETERMINANTS FOR LIGAND BINDING OF THE DOMESTICATED RETROVIRAL PROTEIN ARC. Christian Parsbæk Pedersen, Lau Dalby Nielsen, Simon Erlandssøn, Kaare Teilm

949-Pos 板 B17
ALTERATION OF TBID-INDUCED APOPTOTIC BAX PORATION IN MITOCHONDRIAL MEMBRANES BY MUTATIONS AND SMALL MOLECULES. Fei Qi

950-Pos 板 B18
MECHANISMS OF CARDIAC ARRHYTHMIAS AND SUDDEN CARDIAC DEATH IN HUMAN CALMODULINOPATHY. Ryan L. Woltz, Hannah A. Leford, Padmini Sirish, Duncan Muir, Wen Smith, Xiao-Dong Zhang, Vladimir Yarov-Yarovov, Nipavan Chiamvimonvat

951-Pos 板 B19
MOLECULAR BASIS FOR HEME EXTRACTION OF THE ANTIMICROBIAL TARGET ISDH FROM STAPHYLOCOCCUS AUREUS FROM HUMAN HEMOGLOBIN. Sandra Valentino Bellido, Vu T. Nhuon, Makoto Nakakido, Jose M. M. Caeveiro, Kouhei Tsumoto

952-Pos 板 B20
DARWINIAN SHIFT: A GENERAL APPROACH FOR ESTABLISHING EVIDENCE AND MECHANISM OF NATURAL SELECTION. Michael W. Hall, David Shorthouse, Philip H. Jones, Benjamn A. Hall

953-Pos 板 B21
ROSSMANN-LIKE PROTEINS FUNCTION AND EVOLUTION ANALYSIS OF A FIFTH OF THE PROTEIN WORLD. Kirill E. Medvedev, Lisa N. Kinch, Nick V. Grishin

Protein Structure and Conformation II
(Boards B1 - B21)

943-Pos 板 B2
PP2A PHOSPHATASE ACTIVATOR (PTPA): KEY TO THE MASTER REGULATOR IS CRUCIAL FOR SURVIVAL OF ENTAMOEBA HISTOLYTICA; STRUCTURAL AND FUNCTIONAL ELUCIDATION. Priya Tomar, Gourinath Samudrala

935-Pos 板 B3
EFFECT OF BILAYER THICKNESS ON MECHANICAL ACTIVATION OF THE ANGIOTENSIN II TYPE 1 RECEPTOR. Bharat Poudel, Rajitha R. Tatikonda, Juan M. Vanegas

936-Pos 板 B4
SINGLE-MOLECULE FLUORESCENCE SPECTROSCOPY OF NON-LIPIDATED FORMS OF APOLIPROTEIN E. Melissa D. Stuchell-Bereton, Logan Calderone, Berevan Baban, Jasmine Cubuk, Greg DeKoster, Carl Frieden, Andrea Soranno
CONTINUOUS, TOPOLOGICALLY GUIDED PROTEIN CRYSTALLIZATION DRIVES SELF-ASSEMBLY OF A BACTERIAL SURFACE LAYER.

Colin J. Comerci, Jonathan Herrmann, Joshua Yoon, Fatemeh Jabarpour, Xiaofeng Zhou, John F. Nomellini, John Smit, Lucy Shapiro, Soichi Wakatsuki, William E. Moerner

AFFINITY BETWEEN MACROMOLECULAR REGULATORS LEADS TO PRECISE CONTROL OF LIQUID-LIQUID PHASE SEPARATION.

Konstantinos P. Mazarakas, Archisman Ghosh, Xiaojia Zhang, Valery Nguemaha, Huan-Xiang Zhou

STRUCTURAL AND CONFORMATIONAL CHANGES IN AMYLOID BETA PEPTIDES INDUCED BY THE PRESENCE OF SURFACTANTS.

Michalina M. Wilkowska, Aneta Szymanska, Barbara Peplińska, Marek Kempka, Monika Makrocka-Rydzyk, Maciej L. Kozak

MOLECULAR MECHANISMS OF RNA SENSING IN NLRP6 INFLAMMASOME SIGNALING. Chen Shen, Runzhi Li, Roberto Negro, Richard Flavel, Shu Zhu, Hao Wu

QUANTIFYING PROTEIN-PROTEIN BINDING INTERACTION IN VITRO AND IN CELLS. Yuhang Wang, Mahima Unnikrishnan, Brooke Ramsey, Martin Gruebele

INFLUENCE OF IONIC AQUEOUS SOLUTION ON THE AB16-22 SELF-ASSEMBLY: A REPLICON-EXCHANGE MOLECULAR DYNAMICS STUDY. Zhenyu Qian, Lili Zhu, Zhiwei Liu

TWO CALCIUM SENSORS, ONE TARGET: PRP40 INTERACTS WITH CALMODULIN AND CENTRIN. Adalberto Diaz-Casas, Walter J. Chazin

ATP REGULATED TIME WINDOW TRIGGERED BY CA2+ /CAM FOR GATING CAMKII HOLOENZYME INTERACTIONS WITH NR2B. Tuan A. Nguyen, Henry L. Puhl, Daniel Lput, Grace H. Taumoefolau, Steven S. Vogel, Youngchan Kim

MOLECULAR MECHANISMS FOR THE STOCHASTIC CONDENSATION OF LAT ASSEMBLIES IN T CELLS. Mark K. ODair, Darren B. McAffee, Jay T. Groves

ROBUST MODULATION OF A BACTERIAL KINASE BY PROTEIN PHASE SEPARATION. Saumya Saurabh, Trisha Chong, Camille Bayas, Peter D. Dahlberg, William E. Moerner, Lucy Shapiro

SEGMENTAL AGGREGATION AND STRUCTURAL PROPENSITIES OF AMYLOID BETA PEPTIDE. Faisal Abedin, Nabin Kandel, Suren A. Tatulian

STRUCTURE AND AGGREGATION OF ABETA1-42 AND PYROGLUTAMYLATED ABETA1-40 SEPARATELY AND COMBINED. Faisal Abedin, Suren A. Tatulian

STRUCTURAL BASIS OF CURVATURE GENERATION BY DYNAMIN-RELATED PROTEIN 1. Paul V. Thomas

NUCLEIC ACID-INDUCED DIMERIZATION OF HIV-1 GAG PROTEIN.

Huayang Zhao, Siddhartha A. Datta, Sung Kim, Samuel To, Sumit K. Chaturvedi, Alan Rein, Peter Schuck

STRUCTURAL AND BIOPHYSICAL CHARACTERIZATION OF SPlicing-ASsociATED ASSEMBLIES OF THE SMN PROTEIN. Kaylee L. Mathews, Jacob Marglous, Nicolas L. Fawzi
1011-Pos Board B79
LONG RANGE CORRELATED MOTIONS OF TIM AND THEIR POSSIBLE INFLUENCE ON ENZYME FUNCTION. Jeffrey A. McKinney, Yanting Deng, Deepu K. George, John Richard, Andrea G. Markelz

1012-Pos Board B80
RESOLVING FREE-ENERGY CONTRIBUTIONS OF SUBSTRATE DELIVERY TO DESATURASE BY ATOMIC SIMULATIONS. Marcel D. Baer, Simone Raugei

1013-Pos Board B81
USING MOLECULAR SIMULATIONS TO INFORM DRUG DEVELOPMENT EFFORTS FOR THE GPCR CCR2. Bryn C. Taylor, Christopher T. Lee, Rommee E. Amaro

1014-Pos Board B82
FREE ENERGY LANDSCAPE OF CASEIN KINASE DELTA AND ITS IMPLICATIONS FOR CIRCADIAN RHYTHM. Clarisse Gravina Ricci, Jonathan M. Philpott, Rajesh Narasimamurthy, Alfred M. Freeberg, Sabrina R. Hunt, Lauren E. Yee, Rebecca S. Pelofsky, Sarvind Tripathi, David M. Virshup, Carrie L. Partch

1015-Pos Board B83
MODELLING AND PREDICTING ALLOSTERY WITH PROPAGATION OF RIGIDITY ACROSS PROTEIN STRUCTURES. Adnan Sjoka

1016-Pos Board B84
EVIDENCE OF INTRAMOLECULAR STRUCTURAL STABILIZATION IN LIGHT ACTIVATED STATE OF CAROTENOID PROTEIN. Jeffrey A. McKinney, Akansha Sharma, Kimberly Crossen, Yanting Deng, Deepu K. George, Sigal Lechno-Yossef, Cheryl Kerfeld, Andrea G. Markelz

1017-Pos Board B85
COMBINING LE4PD NORMAL MODES AND MARKOV STATE MODELING TO ELUCIDATE THE FLUCTUATION DYNAMICS OF UBQUITIN. Eric R. Beyerle, Marina G. Guenza

1018-Pos Board B86
INVESTIGATING FULL-LENGTH PS3 TETRAMER DYNAMICS WITH MULTI-MICROSECOND MOLECULAR DYNAMICS SIMULATIONS. Ozlem Demir, Rommee E. Amaro

1019-Pos Board B87
ALLOSTERY EXPLAINED THROUGH SYNCHRONIZED OSCILLATORS AND FRACTAL NETWORKS. Alexandr P. Kornev

Membrane Protein Structures I (Boards B88 - B107)

1020-Pos Board B88

1021-Pos Board B89
EXPRESSION OF FUNCTIONAL HUMAN NA’+ COUPLED CITRATE TRANSPORTER (SLC13A5) IN THE YEAST PICHIA PASTORIS. Valeria Jaramillo-Martinez, Ina L. Urbatsch, Vadivel Ganapathy

1022-Pos Board B90
STUDY THE STRUCTURAL TOPOLOGY, DYNAMIC PROPERTIES AND FUNCTIONAL MODEL OF PHAGE 21 HOLIN PROTEIN USING EPR SPECTROCOPY. Tanbir Ahmmed, Daniel L. Drew, Indra Sahu, Rasal Khan, Tianyan Li, Emily Faul, Robert M. McCarrick, Gary A. Lorigan

1023-Pos Board B91
PROBING THE M1-M2 INTERACTION IN INFLUENZA A VIRUS USING SITE-DIRECTED SPIN LABELING EPR IN LIPID BILAYER NANODISCS. Elizabeth Erler, Reham Mahgoub, Kathleen P. Howard

1024-Pos Board B92
EPR DISTANCE MEASUREMENTS ON THE E. COLI COBALAMIN TRANSPORTER BTUB INDICATE CONFORMATION AND ORGANIZATION ARE DEPENDENT ON THE NATIVE, CELLULAR ENVIRONMENT. David Nyenhuis, Thushhani D. Nilaweera, David S. Caffso

1025-Pos Board B93
SELF-ASSEMBLY OF ES/PDGFBR IN MEMBRANES STUDIED BY SOLID-STATE NMR DISTANCE MEASUREMENTS. Li Tian, Stephan L. Grage, Parvesh Wadhwani, Anne S. Ulrich

1026-Pos Board B94
STRUCTURAL ANALYSIS OF A PHOSPHATE ‘TRANSCEPTR’. Meghna Gupta, Robert M. Stroud

1027-Pos Board B95
INVESTIGATION OF STRUCTURAL TOPOLOGY AND DYNAMICS OF CANONICAL HOLIN IN LIPOSOMES USING EPR SPECTROSCOPY. Indra D. Sahu, Rehani S. Perera, Ryan Kaplevatsky, Jack Bennett, Gary A. Lorigan

1028-Pos Board B96
INFLUENCES OF A NEAR-NATIVE MEMBRANE ENVIRONMENT ON THE STRUCTURE AND FUNCTION OF THE YERSINIA PESTIS OUTER MEMBRANE PROTEIN AIL. James E. Kent, L. Miya Fujimoto, Yong Yao, Kyungsoo Shin, Chandan Singh, Francesca M. Marassi

1029-Pos Board B97
FROM THE GRAM-NEGATIVE BACTERIAL EXTRACELLULAR SPACE TO PERIPLASMIC SPACE WITH EPR: EXPLORING THE ESCHERICHIA COLI VITAMIN B₁₂ TRANSPORTER, BTUB, IN WHOLE CELLS. Thushhani D. Nilaweera, David A. Nyenhuis, Robert K. Nakamoto, David S. Caffso

1030-Pos Board B98

1031-Pos Board B99
MEMBRANE-MEDIATED CONFORMATIONAL CHANGES OF CYTOPROTECTIVE BCL-XL REGULATE ITS ACTIVITY. Pavel Ryzhov, Yong Yong, Betsaida Bibo Verdugo, Guy Salvesen, Francesca M. Marassi

1032-Pos Board B100
CONFORMATIONAL SAMPLING OF PH-LOW INSERTION PEPTIDES IN MULTICOMPONENT BILAYERS: EFFECTS OF CHARGED LIPIDS AND PROTONATION STATES. Brandon M. Bogart, Afra Panahi

1033-Pos Board B101

1034-Pos Board B102
STRUCTURE-FUNCTION STUDIES OF THE A482 NICOTINIC ACETYLCHOLINE RECEPTOR IN A LIPIDIC ENVIRONMENT. Guipeun Kang

1035-Pos Board B103
CHOLESTEROL CONTROLS DYNAMICS OF THE METABOTROPIC GLUTAMATE RECEPTOR 2 VIA AN IONIC-LOCK. Angelica Sandoval-Perez

1036-Pos Board B104
STRUCTURAL MODELING OF THE HERG CHANNEL IN AN INACTIVATED STATE AND ASSOCIATED DRUG INTERACTIONS. Jan Malý, Aiyana M. Emigh, Kevin DeMarco, Jon T. Sack, Igor V. Vorobyov, Colleen E. Clancy, Vladimir Yarov-Yarovoy
Intrinsically Disordered Proteins (IDP) and Aggregates II (Boards B108 - B131)

1037-Pos BOARD B105
Molecular mechanisms of autoinhibition and activation of the eukaryotic lipid flipase DR52p-DC50p. Lin Bai, Huilin Li

1038-Pos BOARD B106
Resolving CD47 structure and function to understand signal transduction mechanism. Sarah M. Young, Tarjani M. Thaker, Thomas M. Tomasiak, William R. Montfort

1039-Pos BOARD B107
Mapping the ATP hydrolysis cycle of a clostridium perfringens ABC transporter. Sergei Pourmal

1040-Pos BOARD B108
Liquid-liquid phase separation of intrinsically disordered proteins for development of membraneless organelles in synthetic cells. Michele Costantino, Prerna Sharma, Sara M. Vaiana, Giovanna Ghirlanda

1041-Pos BOARD B109
Multidimensional phase diagrams for multicomponent systems comprising multivalent proteins. Furqan Dar, Rohit V. Pappu

1042-Pos BOARD B110
Conformational flexibility of p53 transactivation domain controls DNA binding specificity and promoter selectivity. Emily Gregory-Lott, Wade M. Borcherds, Fan He, Mi Zhou, Gary W. Daughdrill

1043-Pos BOARD B111
Secondary structure prediction for intrinsically disordered proteins. Youngchan Kim, Nina Jovic, Jeetain Mittal

1044-Pos BOARD B112
Impact of hydrophobic patterning on conformational ensemble of disordered proteins. Wenwei Zheng, Gregory Dignon, Matthew Brown, Jeetain Mittal

1045-Pos BOARD B113

1046-Pos BOARD B114
Compact disorder of estrogen receptor. Sichun Yang

1047-Pos BOARD B115
Nano-POREs to interrogate the conformational ensembles of intrinsically disordered proteins on a single-molecule level. Saurabh Awasthi, Jared Houghtaling, Cuifeng Ying, Aziz Fennouri, Ivan Shorubalko, Michel Calame, Mitu C. Acharjee, Jiali Li, Michael Mayer

1048-Pos BOARD B116
Tuning the activity of disordered proteins by changing solution conditions. David Moses, Feng Yu, Alex S. Holehouse, Shahar Sukenik

1049-Pos BOARD B117
Molecular mechanisms of low complexity sequence protein assembly. Yuuki Wittmer, Blake Fonda, Rachelle Stowell, Natalie Boulos, Rebecca Rafique, Rong Hu, Truc Le, Dylan T. Murray

1050-Pos BOARD B118
Protein disorder regulates the DNA binding specificity of P53. Robin Levy, Wade M. Borcherds, Fan He, Gary W. Daughdrill, Jian-dong Chen

1051-Pos BOARD B119
Disease associated mutations in intrinsically disordered proteins show evidence of enrichment in hydrophobic blobs. Ruchi Lohia, Kaitlin Bassi, Matthew Hansen, Grace Brannigan

1052-Pos BOARD B120
Thermodynamics of the interaction between biological polyelectrolyte-like disordered proteins: from binary complexes to oligomers. Arika Chowdhury, Andrea Sottini, Alessandro Borgia, Madeleine B. Borgia, Daniel Nettels, Benjamin Schuler

1053-Pos BOARD B121
Molten globule driven liquid-liquid phase separation at the center of viral factory assembly. Mariano Salgueiro, Gabriela Camporeale, Julieta Conci, Belen Sousa, Arcarel Visentin, Agustin Corbat, Hernan Grecco, Guilherme A. de Oliveira, Gonzalez de Prat-Gay

1054-Pos BOARD B122
The improved ability of APOA-I amyloidogenic variants at mediating cholesterol efflux relies on their increased structural flexibility. Jens O. Lagerstedt, Oktawia Nilsson, Mikasa Lindvall, Laura Obici, Simon Ekstrom, Rita Del Giudice

1055-Pos BOARD B123
Water dynamics and interactions inside amyloid-beta fibrils. Sachin Natesh, Alex R. Hummels, Joseph R. Sachleben, Tobin R. Sosnick, Karl F. Freed, Stephen C. Meredith, Esmael J. Haddad

1056-Pos BOARD B124
Structural characterization of huntingtin: mechanism of aggregation and disaggregation. Silvia A. Cervantes Cortes, J. Mario Isas, Janine Kirstein, Ralf Langen, Ansgar B. Siemer

1057-Pos BOARD B125
Cardiolipin modulates huntingtin aggregation and binding to mitochondrial membranes. Adewale Adegbuyiro, Faezeh Sedighi, Justin Legleiter

1058-Pos BOARD B126
Transient structure formation kinetics of monomeric alpha-synuclein derived from MD simulations. Reinhard Klement, Timo Graen, Asaf Grupi, Elisha Haas, Helmut Grubmueller

1059-Pos BOARD B127
All-atom molecular dynamics simulation of the altered protein-protein interaction with metabolites and ions in the cytoplasm. Isseki Yu, Michael Feig, Yui Sugita

1060-Pos BOARD B128

1061-Pos BOARD B129
Integrative sequence-based classification of intrinsically disordered regions. Garrett M. Ginell, Jared Lalmansingh, Megan C. Cohan, Alex S. Holehouse

1062-Pos BOARD B130
Identification of structural defects in amyloid beta fibril as potential sites for inhibition of protein aggregation. Giuseppe Licari, Soumyo Sen, Xing Jiang, Jeffrey S. Moore, Emad Tajkhorshid

1063-Pos BOARD B131
Characterization of small objects in homogenates of the squid optic lobe. Catherine Chang, Amelia Ralowicz, Yuto Kegawa, Jennifer Petersen, Gulcin Pekkurnaz, Paul S. Blank, Joshua Zimmerman
DNA Structure and Dynamics II (Boards B132 - B152)

1064-Pos BOARD B132
MOLECULAR CROWDING EFFECTS ON STABILITY AND KINETICS OF TRINUCLEOTIDE REPEAT HAIRPINS. Deema Martini, Brian L. Cannon

1065-Pos BOARD B133
ACCURATE ASSESSMENT OF BIOMOLECULAR PARTIAL SPECIFIC VOLUMES FROM POLARIZABLE MD SIMULATIONS AND ANALYTICAL ULTRACENTRIFUGATION EXPERIMENTS. Alexey Savelyev, Borries Demeler

1066-Pos BOARD B134
CALCULATING THE BINDING FREE ENERGY DIFFERENCE BETWEEN CONFORMATIONAL CHANGES OF AT-RICH DNA SEQUENCES. Md Lokman Hossen, Prem P. Chapagain, Bernard Gerstman

1067-Pos BOARD B135
REAL-TIME CONDENSATION OF NANOCONFINED DNA BY AN INTRINSICALLY DISORDERED POLYCATIONIC PROTEIN. Rajhans Sharma, Sriram KK, Erik D. Holmstrom, Fredrik Westerlund

1068-Pos BOARD B136
LABEL-FREE SINGLE-MOLECULE QUANTIFICATION OF DNA BY MASS PHOTOMETRY. Yiwen Li, Weston B. Struve, Katharina Häußermann, Philipp Kukura

1069-Pos BOARD B137
STUDYING THE INTRAMOLECULAR FORCES OF BASE-MODIFIED NUCLEIC ACIDS USING OPTICAL TWEEZERS. Vinoth Edal Joseph Sundar Rajan, Xavier Viader, Yii-Lih Lin, Felix Ritort, Fredrik Westerlund, Marcus Wilhelmsson

1070-Pos BOARD B138
ATOMIC FORCE MICROSCOPY STUDY OF INTERCALATED DNA MOLECULES. Joseph Tibbs, S. M. Ali Tabei, Timothy E. Kidd, Justin P. Peters

1071-Pos BOARD B139
DIRECT MEASUREMENT OF FLUID SHEAR STRESS IN 3-D MATRICES USING DNA-BASED FORCE SPECTROSCOPY. Peter E. Beshay, Kelly L. Kolotka, Jonathan W. Song, Carlos E. Castro

1072-Pos BOARD B140
MEMORY EFFECTS IN SINGLE-MOLECULAR FORCE SPECTROSCOPY MEASUREMENTS OF BIOMOLECULAR FOLDING. Andrew G. Pyo, Michael T. Woodside

1073-Pos BOARD B141
NANOPORE-BASED ANALYSIS OF CONFORMATIONAL HETEROGENEITY OF NUCLEIC ACIDS USING A GAMMA-HEMOLYSIN PROTEIN CHANNEL. Cherie S. Tan

1074-Pos BOARD B142
A DEEP DIVE INTO DNA BASE PAIRING INTERACTIONS UNDER WATER. Rongpeng Li, Chi H. Mak

1075-Pos BOARD B143
COUNTERION CONDENSATION ON A POLYELECTROLYTE UNDER EXTERNAL ELECTRIC FIELDS. Pyeong Jun Park

1076-Pos BOARD B144
INFLUENCE OF MONOVALENT CATIONS ON THE DYNAMICS OF THE C-KIT1 PROMOTER G-QUADRUPLEX USING POLARIZABLE MOLECULAR DYNAMICS SIMULATIONS. Alexa M. Salisbury, Justin A. Lemkul

1077-Pos BOARD B145
FOLDING/UNFOLDING PATTERN AND STABILITY OF INTRAMOLECULAR G-QUADRUPLEX STRUCTURE BY MYOINOSITOL. Danish Idrees

1078-Pos BOARD B146
POLARIZABLE MOLECULAR DYNAMICS SIMULATIONS OF DNA G-QUADRUPLEXES REVEAL DIFFERENT PROPERTIES OF NUCLEOBASE ELECTRONIC STRUCTURE AND CATION BINDING. Justin A. Lemkul

1079-Pos BOARD B147
IRREVERSIBILITY OF CONFORMATIONAL CHANGES AND ZN²-BINDING TO DNA. Kurt Andresen, Olivia Peduzzi, Claire Woodward, Katie Madore, Shelli L. Frey, Katherine M. Buettner

1080-Pos BOARD B148
DNA ELECTROPHORETIC MOBILITIES IN HIGH IONIC STRENGTH SOLUTIONS. Nancy C. Stellwagen, Earle Stellwagen

1081-Pos BOARD B149
BIOMIMETIC TRANSMEMBRANE SIGNAL TRANSDUCING DNA NANOSENSOR FOR MEMBRANE ENCLOSED NUCLEIC ACID BIOMARKER DETECTION. Swarup Dey, Alonzo Beatty V, Hao Yan

1082-Pos BOARD B150
DNA DIELECTRIC AND ELECTROMAGNETIC PROPERTIES: THEORETICAL BACKGROUND, EXPERIMENTAL FINDINGS AND DISCUSSION. Masroor H.S. Bukhari, Asifa Bukhari, Salma Batool, Yasir Raza, Tashmeem Razzaki

1083-Pos BOARD B151
COARSE-GRAINED MODELING OF DNA PLECTONEME FORMATION IN THE PRESENCE OF BASE-PAIR MISMATCHES. Parth Rakesh Desai, Siddhartha Das, Keir C. Neuman

1084-Pos BOARD B152

Protein-Nucleic Acid Interactions II (Boards B153 - B177)

1085-Pos BOARD B153
USING PROGRAMMABLE ROADBLOCKS TO PROBE DNA TARGET SEARCH. Allen C. Price

1086-Pos BOARD B154
SINGLE-MOLECULAR STUDIES OF DOXORUBICIN-DNA INTERACTIONS USING OPTICAL TWEEZERS. Zachary Ells, Brian Dolle, Mark C. Williams, Thayaparan Paramanathan

1087-Pos BOARD B155
COOPERATIVITY AND COMPETITION IN THE BINDING OF HETERO CYCLIC DIAMIDINES AND RNA POLYMERASES TO PHIX174 DNA. Stephen A. Winkle, Rosalina Fernandez-Paradas, Selma Hernandez, Erney Lorquet, Stephanie Singer, Nidia Rodriguez

1088-Pos BOARD B156

1089-Pos BOARD B157
EVIDENCE THAT PRIMARY MICRORNAs BENDS IN THE PRESENCE OF DGCR8 SEEN USING BOTH SAXS AND FRET MEASUREMENTS. Suzette A. Pabit, Yen-Lin Chen, Grace A. Usher, Erik C. Cook, Lois Pollack, Scott A. Showalter

1090-Pos BOARD B158
VIRAL RNA FOLDING STUDIED THROUGH CONTRAST VARIATION SMALL ANGLE- X RAY SCATTERING. Josue San Emeterio, Lois Pollack
Membrane Dynamics II (Boards B202 - B215)

1118-Pos Board B186 TRAVEL Awardee IONIZATION PROPERTIES OF PHOSPHATIDIC ACID AND DIACYLGLYCEROLPYROPHOSPHATE IN PC AND PC/PE MODEL MEMBRANES. Desmond Owusu Kwarteng, Edgar Kooljman

1119-Pos Board B187 FATTY ACID MEMBRANES BOOST PEPTIDE YIELD AND IMPLICATIONS FOR THE ORIGIN OF CELLULAR LIFE. Zachary R. Cohen, Julia Nguyen, Avijit Hazra, Gojko Lalic, Roy A. Black, Sarah L. Keller

1120-Pos Board B188 ESR SPECTROSCOPY DETERMINES THE AFFINITY OF CHOLESTEROL FOR LIPIDS WITH VARYING DEGREES OF UNSATURATION. Andres T. Cavazos, Stephen R. Wassall

1121-Pos Board B189 THE ROLE OF GROWTH TEMPERATURE AND LIPID COMPOSITION IN PHASE SEPARATION OF YEAST VACUOLE MEMBRANES. Chantelle L. Leveille, Caitlin E. Cornell, Alexey J. Merz, Sarah L. Keller

1122-Pos Board B190 DIRECT IMAGING OF LIPID DOMAINS IN NANOSCALE VESICLES BY CRYOEM. Caitlin E. Cornell, Alexander Mileant, Kelly K. Lee, Sarah L. Keller

1123-Pos Board B191 SCALING BEHAVIOR IN SOFT MATERIALS REVEALED BY LIPID ACYL CHAIN ORDER. Abhinav Ramkumar, Xiaoling Leng, Michael F. Brown, Horia I. Petracek

1124-Pos Board B192 EFFECT OF POLAR SOLVENTS ON SURFACTANT MEMBRANES. Daniel Berrellez, Judith Tânorî, Alan G. Acedo-Mendoza, Amir Maldonado

1125-Pos Board B193 PROBING THE RELATIONSHIP BETWEEN CHOLESTEROL CONCENTRATION AND CHEMICAL POTENTIAL IN MODEL MEMBRANES. Anna D. Gaffney, Fiona C. Gaffney, Kathleen Wisser, Sarah L. Veatch

1126-Pos Board B194 RAPID PRODUCTION OF LIPOSOMES USING ELECTRODIALYSIS. Gamid Abatchev, Andy Bogard, Jason D. Ward, Rikki Fix

1127-Pos Board B195 ANTIPSYCHOTICS ALTER LIPID BILAYER PROPERTIES. R Lea Sanford, Olaf S. Andersen

1128-Pos Board B196 MICROFLUIDIC MEASUREMENT OF CARBON DIOXIDE PERMEABILITY ACROSS LIPID BILAYERS. Matthew C. Blosser, Majed S. Madani, Justin So, Noah Malmstadt

1129-Pos Board B197 DEUTERATED POLYUNSATURATED FATTY ACID RESIDUES PROTECT BILAYER LIPID MEMBRANES FROM PEROXIDATIVE DAMAGE. Alexander M. Firso, Elena A. Kotova, Maksim A. Fomich, Andrei V. Bekish, Olga L. Sharko, Vadim V. Shimnai, Yuri N. Antonenko, Mikhail S. Shchevinov

1130-Pos Board B198 PERMEABILITY OF HUMAN RED BLOOD CELL MEMBRANES TO HYDROGEN PEROXIDE. Mattias N. Moller, Florencia Orrico, Ana C. Lopez, Ana Denicola, Leonor Thomson

1131-Pos Board B199 COUNTERINTUITIVE ELECTROSTATIC FORCES IN LIPOSOME COLLOIDAL CRYSTALS. Joel Cohen

1132-Pos Board B200 EFFECT OF STYRENE MALEIC ACID COPOLYMER LENGTH ON BIOLOGICAL MEMBRANE SOLUBILIZATION AND PROPERTIES OF NATIVE NANO-DISCS. Barend O.W. Elenbaas, Adrian H. Kopf, Martijn C. Kooreneveel, Helene Jahn, J. Antoinette Killian

1133-Pos Board B201 DEMIXING IN MEMBRANES AND THEIR ENCAPSULATED SOLUTIONS. Heidi M. Spears, Sarah L. Keller

1134-Pos Board B202 OBSERVATIONS OF COMPOUND PENETRATION IN ESCHERICHIA COLI USING ETHIDIUM BROMIDE AS A MODEL COMPOUND. Michelle Ramsahoye, Ankit Pandeya, Yuguang Cai, Yinan Wei

1135-Pos Board B203 RECONCILING MEMBRANE PROTEIN SIMULATIONS WITH EXPERIMENTAL SPECTROSCOPIC DATA. Shriyaa Mittal, Diwakar Shukla

1136-Pos Board B204 LIPID MEMBRANE DEFORMATION INDUCED BY TRANSMEMBRANE PEPTIDES. Kayano Izumi, Keisuke Shimizu, Ryuji Kawano

1137-Pos Board B205 MECHANISMS OF NEGATIVE MEMBRANE CURVATURE SENSING AND GENERATION. Binod Nepal, Aliaaghbar Sepehri, Themis Lazaridis

1138-Pos Board B206 RED BLOOD CELL CURVATURE IS CONTROLLED BY THE NON-UNIFORM DISTRIBUTION OF MYOSIN-MEDIATED FORCES AND MEMBRANE TENSION. Haleh Alimohamadi, Alyson Smith, Velia Fowler, Padmimi Ranga

1139-Pos Board B207 VISUALIZING OPA1-MEDIATED CHANGES TO INNER MITOCHONDRIAL MEMBRANE MORPHOLOGY. Julie L. McDonald, Yifan Ge, Paula P. Navarro, Luke H. Chao

1140-Pos Board B208 FACILE MEMBRANE FLOW AND TENSION EQUILIBRATION AT A PRESYNAPTIC NERVE TERMINAL. Carolina Gomis Perez, Natasha Dudzinski, Mason Rouches, Benjamin Matcha, David Zenisek, Erdem Karatekin

1141-Pos Board B209 MELATONIN CHANGES DOMAIN STRUCTURE AND PROTECTS MODEL NEURONAL MEMBRANES AGAINST DAMAGE CAUSED BY AMYLOID-BETA. Carina T. Flicke, Julia Lumini, Brenda Y. Lee, Zoya Leonenko

1142-Pos Board B210 THE ORGANIZATION AND CLUSTERING OF GIARDIAL LIPID RAFT DOMAINS AFTER TREATMENT WITH OSELTAMIVIR BY DIRECT STOCHASTIC OPTICAL RESOLUTION MICROSCOPY. Carmen Martinez, E. Aslan Gallegos, Aaron Neumann

1143-Pos Board B211 SUBCELLULAR ACCUMULATION OF FLUOROQUINOLONES IN E. COLI. Ankit Pandeya, Olaniyi Alegun, Yinan Wei

1144-Pos Board B212 SUPPORTED MODEL MEMBRANES FOR BIOSENSING APPLICATIONS - OPTICAL OXYTOCIN BINDING ASSAY. Aysu Kucukturhan Kubowicz, Kiryl Kustanovich, Agata Gitlin-Domagalska, Ventsislav Yantchev, Mattan Halevich, Shlomo Yitzchaik, Aldo Jesorka, Irep Gozen

1145-Pos Board B213 SINGLE PROTEIN DYNAMICS IN POLYMER-CUSHIONED LIPID BILAYERS DERIVED FROM CELL PLASMA MEMBRANES. Wai Cheng Wong, Jz-Yuan Juo, Chih-Hsiang Lin, Yi-Hung Liao, Ching-Ya Cheng, Chia-Lung Hsieh

1146-Pos Board B214 MONOVALENT LABELING OF GOLD NANOPROBES FOR ULTRAFAST TRACKING OF SINGLE-MEMBRANE MOLECULES IN LIVE CELLS. Yi-Hung Liao, Chih-Hsiang Lin, Ching-Ya Cheng, Wai Cheng (Christine) Wong, Jz-Yuan Juo, Chia-Lung Hsieh
Membrane Active Peptides and Toxins I (Boards B216 - B240)

1147-Pos Board B215 Travel Awardee
QUANTITATIVE ASSESSMENT OF THE DYNAMIC MODIFICATION OF LIPID-DNA PROBES ON LIVE CELL MEMBRANES. Yousef Bagheri, Mingxu You

1148-Pos Board B216
CROWDING ALTERS THE KINETICS OF POLYPEPTIDE-PROTEIN NANO-PORE INTERACTION. Motahareh Ghahari Larimi, Lauren A. Mayse, Liviu Movileanu

1149-Pos Board B217
CHARACTERIZATION OF MEMBRANE PORES FORMED BY CATIONIC AMPHIPATHIC A-HELICAL ANTIMICROBIAL PEPTIDES. Erik Strandberg, David Bentz, Parvesh Wadhwani, Jochen Bürrck, Anne S. Ulrich

1150-Pos Board B218
MEMBRANE PORE FORMATION BY MELITTIN DERIVATIVES. Aliashgar Sepehri, Leo PeBenito, Almudena Pino-Angeles, Themis Lazaridis

1151-Pos Board B219 Travel Awardee
ANTIMICROBIAL PEPTIDES IMPAIR BACTERIA CELL STRUCTURES WITHIN SECONDS. Enrico F. Semeraro, Johannes Mandl, Lisa Marx, Thuyencheri Narayanan, Sylvain Prévost, Helmut Bergler, Karl Lohner, Georg Pabst

1152-Pos Board B220
EFFECTS OF MEMBRANE POTENTIAL ON THE ENTRY OF CELL-PENETRATING PEPTIDES TRANSPORTANT 10 INTO SINGLE VESICLES. Md. Mizanur R. Moghal, Md. Zahidul Islam, Farzana Hossain, Samiron Kumar Saha, Masahito Yamazaki

1153-Pos Board B221
LIPID COMPOSITION, PROTONATION, AND DIVALENT CATIONS AS MODULATORS OF PROTEIN-MEMBRANE INTERACTIONS. Victor Vasquez Montes, Alexey Ladokhin

1154-Pos Board B222
EFFECTS OF COLD ATMOSPHERIC PLASMAS ON MEMBRANES. Joseph H. Lorent, Min Xie, Fabrice Gilissen, J. Antoinette Killian

1155-Pos Board B223
THE ANTIMICROBIAL PEPTIDE POLYMIXIN B1 ENCOUNTERS MANY MOLECULAR OBSTACLES IN THE PERIPLASMEN ROUTETO THE INNER MEMBRANE OF E. COLI. Syma Khalid, Conrado Pedebos

1156-Pos Board B224
DEPROTONATION OF C-TERMINAL ACIDIC RESIDUES HOLDS THE KEY TO THE EXIT PATHWAY OF PHILP. Violeta Burns, Blake Mertz

1157-Pos Board B225
DISCOVERING NOVEL HEMOCOMPATIBLE ANTIMICROBIAL PEPTIDES USING HIGH-THROUGHPUT SCREENING AND RATIONAL VARIATION. Jenisha Ghimire, Charles G. Starr, William C. Wimley, Shantanu Guha, Joseph P. Hoffmann, Yihui Wang, Lisa A. Morici

1158-Pos Board B226
CHARACTERIZATION OF CHARGE-ZIPPER TETRAMERIC ASSEMBLY OF THE STRESS RESPONSE PEPTIDE TISS FROM E. COLI IN MODEL MEMBRANES. Parvesh Wadhwani, Benjamin Zimpfer, Violette Schneider, Jochen Burck, Johannes Reichert, Erik Strandberg, Stephan L. Grage, Markus Elstner, Tomás Kubar, Anne S. Ulrich

1159-Pos Board B227
RHombohedral Trap for Studying Molecular Oligomerization in Membranes: Application to Daptomycin. Ming-Tao Lee, Wei-Chin Hung, Huey W. Huang

1160-Pos Board B228
INDUCED-FIT PATHWAY ACCELERATED BINDING OF AGITOXIN-2 TO A K+ CHANNEL IMAGED BY HS-AFM. Ayumi Sumino, Takashi Sumikama, Takayuki Uchihashi, Shigetoshi Oiki

1161-Pos Board B229 Travel Awardee
NMR STRUCTURAL STUDIES AND ANTIBACTERIAL KILLING MECHANISMS OF ANTIMICROBIAL PEPTIDES WITH HIGHER ACTIVITY. Yongae Kim

1162-Pos Board B230 Travel Awardee

1163-Pos Board B231
DIVALENT CATIONS AND LIPID COMPOSITION MODULATE MEMBRANE INSERTION AND CANCER-TARGETING ACTION OF PHILP. Victor Vasquez Montes, Janessa S. Gerhart, Damien Thevenin, Alexey Ladokhin

1164-Pos Board B232
SELECTIVE CARGO RELEASE FROM LIPID VESICLES BY A SYNTHETICALLY EVOLVED, NON-TOXIC, VESICLE-PERMEABILIZING PEPTIDE. Leisheng Sun, Kalina Hristova, William Wimley

1165-Pos Board B233
MEMBRANE PERFORATION BY THE PORE-FORMING TOXIN PNEUMOLYSIN. Martin Vögele, Ramachandra M. Bhaskara, Estefania Mulvihill, Katharina van Pee, Özkan Yildiz, Werner Kühbrandt, Daniel J. Müller, Gerhard Hummer

1166-Pos Board B234
CATIONIC ANTIMICROBIAL PEPTIDES HAVE REDUCED BINDING TO MPRF-MODIFIED MEMBRANES. Patrick W. Simcock, Mark S. Sansom, Phillip J. Stansfeld, Maike Bublitz, Jason Crain, Maxim G. Ryadnov, Flaviu Cipcigan

1167-Pos Board B235 Travel Awardee
MEMBRANE POTENTIAL IS VITAL FOR RAPID PERMEABILIZATION OF PLASMA MEMBRANES AND LIPID BILAYERS BY THE ANTIMICROBIAL PEPTIDE LACTOFERRICIN B. Farzana Hossain, Md. Mizanur Moghal, Md. Zahidul Islam, Md. Moniruzzaman, Masahito Yamazaki

1168-Pos Board B236
EFFECTS OF POLYUNSATURATED FATTY ACIDS AND METALLATION ON THE ANTIMICROBIAL ACTIVITY AND MEMBRANE-DISRUPTIVE PROPERTIES OF HOST-DEFENSE METALLOPEPTIDE PISCIDIN 1. Myriam Cotten, Steven Paredes, Sarah Kim, Alexander Greenwood, Yawei Xiong, Kalina Hristova, David Giles

1169-Pos Board B237
AMPHOTERICINB INTERACTION WITH DMPC/ERGO MIXED LIPID BILAYERS. Wei-Chin Hung, Chi-Jiun Hung

1170-Pos Board B238
PISCIDINS AT MEMBRANE INTERFACES: PHOSPHOLIPIDS VERSUS LPS. Hannah Cetuk, Joseph Maramba, Madelyn Brit, Robert K. Ernst, Ella Mihailescu, Myriam Cotten, Sergei I. Sukharev

1171-Pos Board B239
INCREASED POTENCY OF ANTIMICROBIAL PISCIDINS IN THE PRESENCE OF COPPER (II) CORRELATES DIRECTLY WITH INSERTION DEPTH AND ORIENTATION IN MEMBRANES. Fatih Comert, Frank Heinrich, Alexander Greenwood, Vitalii I. Silin, Myriam Cotten, Ella Mihailescu

1172-Pos Board B240
PEPTIDE-DRUG CONJUGATES ACROSS THE BLOOD-BRAIN BARRIER: USING VIRAL PROTEIN DOMAINS TO SHUTTLE SMALL DRUGS TO THE CENTRAL NERVOUS SYSTEM. Miguel A.R.B. Castanho
General Protein-Lipid Interactions I
(Boards B241 - B267)

1173-Pos Board B241 UNDERSTANDING KEY INTERACTIONS BETWEEN LIPID MEMBRANES AND PERIPHERAL MEMBRANE PROTEINS INVOLVED IN CELLULAR SIGNALING. Andreas H. Larsen, Laura John, Liliya Tata, Mark S. Sansom

1174-Pos Board B242 TRAVEL Awardee DETERMINING THE LIPID ENVIRONMENT AND INTERACTIONS OF CFTR. Kirsten Cottrill, Kerry M. Strickland, Nael A. McCarty

1175-Pos Board B243 BINDING OF ALPHA-CRYSTALLIN TO PHOSPHOLIPID MEMBRANE: EPR SPIN-LABELING APPROACH. Laxman Mainali

1176-Pos Board B244 SOFT MATTER CONTROL OF GPCR FUNCTION BY MEMBRANE LIPIDS AND WATER. Nipuna Weerasinge, Helen Mann, Anna R. Eitel, Steven D. Fried, Emily Cosgrie, Andrey V. Struts, Suchithranga M. Perera, Michael F. Brown

1177-Pos Board B245 FUNCTIONAL AND STRUCTURAL STUDIES OF OPA PROTEINS FROM NEISSERIA. Meagan L. Belcher Dufrisne, Linda M. Columbus

1178-Pos Board B246 CHOLESTEROL CONTROL OF INFLUENZA FUSION PEPTIDE BEHAVIOR WITHIN LIPID MEMBRANES. Piotr M. Setny

1179-Pos Board B247 TRANSMEMBRANE AND JUXTAMEMBRANE INTERACTIONS OF EPHA2 WITH LIPID MEMBRANES IN THE ACTIVE AND INACTIVE STATES. Katherine M. Stefanski, Justin M. Westerfield, Francisco N. Barrera

1180-Pos Board B248 AN IMPLICIT LIPID MODEL FOR EFFICIENT REACTION DIFFUSION SIMULATIONS OF PROTEINS BINDING TO ARBITRARY SURFACES. Yiben Fu, Alexander J. Sodt, Margaret E. Johnson

1181-Pos Board B249 TRAVEL Awardee MEASURING MEMBRANE PROTEIN-LIPID INTERACTIONS IN NANODISCS WITH NATIVE MASS SPECTROMETRY. James E. Keener, Julia Townsend, Megan Mowad, Michael T. Marty

1182-Pos Board B250 STRENGTHENING INTERACTIONS WITH THE MEMBRANE INTERFACE THROUGH GRAFTED AROMATIC COMPOUNDS PRODUCES EXTREMELY POTENT HIV-1 NEUTRALIZING ANTIBODIES. Jose L. Nieva, Edurne Rujas, Sara Insausti, Daniel P. Learman, Pablo Carravilla, Ruben Sanchez-Eugenio, Lei Zhang, Miguel Garcia-Porras, Christian Egelgeling, Jean-Philippe Julien, Akio Ojida, Michael B. Zwick, Joseph M. Caaveiro

1183-Pos Board B251 WATER FOR STEROL: AN UNUSUAL MECHANISM OF STEROL EGRESS FROM A STARLIN DOMAIN. George Khelashvili, Neha Chauhan, Kalpana Pandey, David Eliezer, Anant K. Menon

1184-Pos Board B252 SIGMA 1 RECEPTOR REMODELS ENDOPLASMIC RETICULUM MEMBRANE. Vladimir Zhemkov, Ilya Bezprozvanny

1185-Pos Board B253 MODULATION OF INSULIN RECEPTOR KINASE ACTIVITY BY LIPID ENVIRONMENT. Pavana Suresh, Erwin London, W. Todd Miller

1186-Pos Board B254 IMPROVED SOLUBILITY OF MEMBRANE PROTEINS WITH ZSMA POLYMERS. Mariana C. Fiori, Yunjiang Jiang, Wan Zheng, Guillermo A. Altenberg, Hongjun Liang

1187-Pos Board B255 TRAVEL Awardee CHARACTERIZING THE TRANLOCATION OF CHARGED PEPTIDE LOOPS ACROSS LIPID BILAYERS WITH MOLECULAR DYNAMICS SIMULATIONS. Samarthaben J. Patel, Reid C. Van Lehn

1188-Pos Board B256 MEMBRANE CURVATURE EFFECTS ON RHODOPSIN ACTIVATION INVESTIGATED BY TIME-RESOLVED ELECTRONIC SPECTROSCOPY. Steven D. Fried, James W. Lewis, Istvan Szundi, Karina Martinez-Mayorga, Mohana Mahalingam, Reiner Vogel, David S. Kliger, Michael F. Brown

1189-Pos Board B257 TRAVEL Awardee LIPID CHAIN ENTROPY AND EXCHANGE IN THE VICINITY OF G-PROTEIN COUPLED RECEPTORS. Alison Leonard, Alexander J. Sodt, Edward R. Lyman

1190-Pos Board B258 TRAVEL Awardee DISSECTING THE FUNCTIONAL ROLE OF PALMITOYLATION ON RPE65 PROTEIN. Sheetal Uppal, Tingting Liu, Eugenia Poliakov, Susan Gentleman, Thomas M. Redmond

1191-Pos Board B259 MOLECULAR BASIS OF CHOLESTEROL-DEPENDENT BINDING AND SELECTIVITY OF A CHOLESTEROL SENSOR. Defne Gorgun, Myun Li Han, Emad Tajkhorshid

1192-Pos Board B260 TRAVEL Awardee ANNEXIN-AS STABILIZES MEMBRANE DEFECTS VIA MODULATING LIPID ORDER. Yi-Chih Lin, Christophe Chipot, Simon Scheuring

1193-Pos Board B261 MECHANISTIC DISSECTION OF SPHINGOLIPID BINDING TO THE ER STRESS TRANSDUCER ATF6 - INSIGHTS INTO THE COORDINATION OF SPHINGOLIPID AND PROTEIN PRODUCTION. Toni Radanovic, Michael Gecht, Roberto Covino, Gerhard Hummer, Maho Niwa, Robert Ernst

1194-Pos Board B262 THE INTERACTION WITH DIFFERENT MEMBRANES OF THE C2 DOMAIN OF PKC-_EPSILON. Juan C. Gomez-Fernandez, Senena Corbalán-García, Alessio Ausili

1195-Pos Board B263 The Thermodynamic Landscape of Nanodisc Self-Assembly. Tyler Camp, Stephen G. Sligar

1196-Pos Board B264 AN AXON-MYELIN INTERFACE MODEL TO EXAMINE MULTIVALENT INTERACTIONS BETWEEN GANGLIOSIDES AND MYELIN-ASSOCIATED GLYCOPROTEIN. Jennie Cauley, Nathan J. Wittenberg

1197-Pos Board B265 INTERACTION OF CARDIOLIPIN WITH LC3/GABARAP FAMILY MEMBERS IN CARGO RECOGNITION DURING MITOPHAGY. Asier Etxaniz, Marina N. Iriondo, Yaiza Varela, Javier Hervás, Ruth Montes, Felix Gofil, Alicia Alonso

1198-Pos Board B266 MECHANISM OF THE INHIBITORY INTERFERENCE IN HUMAN ANTIMICROBIAL PEPTIDES. Ewa Drab, Kaori Sugihara

1199-Pos Board B267 THERMODYNAMIC CHARACTERIZATION OF THE MITOCHONDRIAL CALCIUM UNIPORTER. Francisco J. Sierra Valdez
Membrane Receptors and Signal Transduction II (Boards B268 - B293)

1200-Pos Board B268 Travel Awardee
INNATE ANTIFUNGAL IMMUNE RECEPTOR, DECTIN-1, UNDERGOES LIGAND-INDUCED OLIGOMERIZATION WITH HIGHLY STRUCTURED B-GLUCANS AND AT FUNGAL CELL CONTACT SITES. Edward John Anaya, Aaron Neumann

1201-Pos Board B269
AN UNUSUAL HYDROGEN BOND IN THE KDEL RECEPTOR. Zhiyi Wu, Simon Newstead, Philip C. Biggin

1202-Pos Board B270
ACCELERATED MOLECULAR SIMULATIONS OF SUBSTRATE RECOGNITION BY G-SECRETASE. Apurba Bhattacharai, Sujan Devkota, Yilong Miao, Michael S. Wolfe, Sanjay Bhattacharai

1203-Pos Board B271
MODELING THE BINDING MECHANISM OF A T CELL RECEPTOR AND MAJOR HISTOCOMPATIBILITY COMPLEX. Erin Groth, Cory M. Ayres, Brian M. Baker, Steven A. Corcelli

1204-Pos Board B272

1205-Pos Board B273
SPATIAL REQUIREMENTS FOR T-CELL RECEPTOR TRIGGERING PROBED VIA FUNCTIONALIZED DNA ORIGAMI PLATFORMS. Joschka P. Hellmeier, Rene Platzer, Andreas Karner, Victoria Motsch, Victor Bamilieh, Johannes Preiner, Mario O. Brameshuber, Hannes Stockinger, Gerhard J. Schütz, Johannes B. Huppa, Eva Sevcik

1206-Pos Board B274
MAGNESIUM DEFICIENCY CAUSES REVERSIBLE DIASTOLIC AND SYSTOLIC CARDIOMYOPATHY. Man Liu, Hong Liu, An Xie, Gyeoung-Jin Kang, Feng Feng, Xiaoxu Zhou, Yang Zhao, Samuel C. Dudley

1207-Pos Board B275
COMPARATIVE ANALYSIS OF THE RESIDUE CO-EVOLUTION OF THE DNA-BINDING RESPONSE REGULATOR SUBFAMILIES. Mayu Shibata, Xingcheng Lin, Ryan R. Cheng, Kei Yura, José N. Onuchic

1208-Pos Board B276
SOLUBLE ADENYLYL CYCLASE AT THE NANOSCALE: IMAGING AND FUNCTION IN HEART. Uron Boyman, Konstantinos Lefkimmiatis, Tulio Pozzan, W. Jonathan Lederer, Maura Greiser

1209-Pos Board B277
IQGAP1 SCAFFOLDING CONNECTS EGFR AND PHOSPHOINOSITIDE SIGNALING TO CYTOSKELETAL REORGANIZATION. V Siddartha Yerramilli, Alonzo H. Ross, Jessica Reisinger, Karin Plante, Suzanne F. Scarlata, Arne Gercke

1210-Pos Board B278
EXPANDING NUMBER AND BRIGHTNESS TO DETERMINE THE OLIGOMER SIZE OF MEMBRANE PROTEINS IN LIVE CELLS AS A FUNCTION OF CONCENTRATION. Michael D. Paul, Yi Zu, Randall Rainwater, Luo Gu, Kalina Hristova

1211-Pos Board B279 Travel Awardee
PAIR CORRELATION ANALYSIS REVEALS BARRIERS TO NATURAL KILLER CELL RECEPTOR MOTION AT THE SYNAPSE. Per Niklas Hedde, Elina Staaf, Sunitha Bagawath Singh, Sofia Johansson, Enrico Gratton

1212-Pos Board B280 Travel Awardee
COACTION OF ELECTROSTATIC AND HYDROPHOBIC INTERACTIONS IN SIGNALING: DYNAMIC CONSTRAINTS ON DISORDERED TRKA JUXTA-MEMBRANE DOMAIN. Zichen Wang, Huaxun Fan, Xiao Hu, John Khamo, Jiage Diao, Kai Zhang, Taras V. Pogorelov

1213-Pos Board B281 Travel Awardee
DNA PROBES THAT STORE MECHANICAL INFORMATION REVEAL TRANSPORT PORES ON THE SURFACE OF B Lymphocytes. Yunmin Jung, Lai Wen, Sara McArdle, Klaus Ley

1214-Pos Board B282
EXPANSION MICROSCOPY REVEALS THAT CD45 IS EXCLUDED FROM THE TIPS OF MICROVILLI IN T AND B LYMPHOCYTES. Nirmalya Bag, David A. Holowka, Barbara A. Baird

1215-Pos Board B283
PLASMA MEMBRANE ORGANIZATION IS POISED TO MEDIATE STIMULATED TRANSMEMBRANE SIGNALING. Nirmalya Bag, David A. Holowka, Barbara A. Baird

1216-Pos Board B284
MECHANICAL STRESS MAY IMPACT THE FORMATION OF STRESS GRANULES. Androniqi Qifti, Suzanne F. Scarlata

1217-Pos Board B285
DISCRETE-STATE STOCHASTIC MODELING OF T-CELL ACTIVATION. Hamid Teimouri, Anatoly B. Kolomeisky

1218-Pos Board B286
THE FORMATION OF LAT PROTEIN CONDENSATES IN RESPONSE TO SINGLE PMHC-TCR BINDING EVENTS. Darren McAffee, Shalini Low-Nam, Jenny J. Lin, Scott D. Hansen, Steven Alvarez, Jay T. Groves

1219-Pos Board B287
HOW GROWTH FACTOR RECEPTOR CLUSTERING PROMOTES DOWNSTREAM SIGNALING. Kelvin J. Peterson, Leslie M. Loew

1220-Pos Board B288
PI 4-KINASE AND PIP 5-KINASE COOPERATE TO REPLENISH PTDINS(4,5)2 AFTER RECEPTOR-MEDIATED DEPLETION. Jill B. Jensen, Lizbeth de la Cruz, Alexis Traynor-Kaplan, Bertil Hille

1221-Pos Board B289
GENETIC BIOSENSORS FOR REAL TIME MONITORING OF THE ACTIVATION OF SIGNAL TRANSDUCERS AND ACTIVATORS OF TRANSCRIPTION (STAT). Aisha M. Attar

1222-Pos Board B290
RHOA MEDIATED JUXTACRINE REGULATION OF GLUCAGON SECRETION. Yong Hee Chung, David W. Piston

1223-Pos Board B291
LATTICE LIGHT-SHEET MICROSCOPY MULTI-DIMENSIONAL ANALYSES (LAMDA) OF T-CELL RECEPTOR DYNAMICS PREDICT T-CELL SIGNALING STATES. Jun Huang

1224-Pos Board B292
REGULATION OF DHHC5 ENZYMATIC ACTIVITY IN CARDIOMYOCYTES. Jie Chen, Autumn N. Marsden, C. Anthony Scott, Askar M. Akimzhanov, Darren F. Boehning

1225-Pos Board B293
LIPID REMODELLING IN CD36 NANOCLUSTERS PROMOTES FYN ACTIVATION IN RESPONSE TO THROMBOSPONDIN-1. Nicolas Touret, Swai Mon Khaing
Mechanosensation I (Boards B294 - B312)

1226-Pos Board B294

Characterizing the Expression and Function of the Mechanosensitive Piezo1 Channel in the Heart. Fan Jiang

1227-Pos Board B295

Different Mechanical Responses to Substrate Stiffness Between Cancer Cells and Normal Cells. Fang Tian, Tsung-Cheng Lin, Liang Wang, Sidong Chen, Caishan Yan, Pak Man Yiu, Ophelia K.C. Tsui, Jun Chu, Ching-Hwa Kiang, Hyokeun Park

1228-Pos Board B296

Corynebacterial “force-from-lipids” mechanosensation for msg production. Yoshitaka Nakayama, Ken-ichi Hashimoto, Hisashi Kawasaki, Boris Martinac

1229-Pos Board B297

Quantitative nano-platforms for interrogation of curvature sensitive proteins. Ching-Ting Tsai

1230-Pos Board B298

Structure and mechanogating of the mammalian tactile channel piezo2. Wenhao Liu

1231-Pos Board B299

Cadherin Complexes Are Combinatorial Mechano-switches That Differentially Regulate Cell Mechanics. Vinh H. Vu, Zainab Rahil, Brendan G. Sullivan, Deborah E. Leckband

1232-Pos Board B300

Survivin is a mechanosensitive regulator of vascular smooth muscle cell proliferation. John C. Biber, Yongho Bae

1233-Pos Board B301

Quantifying the Effect of Fatty Acids on the Elasticity of Model Membranes. Miranda L. Jacobs, Neha P. Kamat

1234-Pos Board B302

The Influence of Substrate Elasticity on Cell Adhesion Mechanisms. Zbigniew Baster, Zenon Rajfur

1235-Pos Board B303

Travel Awardee

Exploring the Structural Elements Responsible for Cis-Homodimerization of Inner Ear Cadherin-23. Joseph C. Sudder, Jasanvir Sandhu, Pedro De-la-Torre, Deepanshu Choudhary, Marissa Boyer, Florencia Velez-Cortes, Jeshua K. Avila-Estrada, Collin Nisler, Michael L. Leake, Marcos S. Sotomayor

1236-Pos Board B304

Contractility autoregulation in cardiomyocytes emerges from mechanosensor geometry and mechano-chemo-transduction. Leighton T. Izu, Rafael Shimkunas, Zhong Jian, Tamas Banyasz, Ye Chen-Izu

1237-Pos Board B305

Travel Awardee

Mscs Is a Critical Component for Osmotic Survival of Vibrio Cholerae. Madolyn Brit, Kristen Ramsey, Joseph Maramba, Blake Ushijima, Elissa Moller, Andriy Anishkin, Claudia Hase, Sergei I. Sukharev

1238-Pos Board B306

Exploring the Functional Implications of the Structural Relationship Between Tmcl and Tmem16 Proteins. Angela Ballesteros, Kenton Swartz

1239-Pos Board B307

Mechanical Forces Alter Endothelin-1 Signaling: Comparative Ovine Models of Congenital Heart Disease. Antoni Garcia-Herreros, Rebecca J. Kameny, Terry Zhu, Jason Boehme, Gary Raff, Juan C. Lasheras, Stephen M. Black, Emin Maltepe, Sanjeev A. Datar, Jeffrey R. Fineman

1240-Pos Board B308

Active Forces on Cell-Cell Contacts Enable Efficient Immune Discrimination. Shenshen Wang

1241-Pos Board B309

A FRET-based sensor for probing forces exerted by single T cell receptors on their ligands. Lukas Schrangl, Janett Goehring, Florian Kellner, Johannes B. Huppa, Gerhard J. Schütz

1242-Pos Board B310

Cell geometry modulates the activation of fibroblasts in 3D tumor microenvironments. Saradha Venkatachalapathy, D.S. Jokhun, G.V. Shivashankar

1243-Pos Board B311

Travel Awardee

Yap Activity Directly Scales with Nuclear Deformation and Lamin A Distribution. Newsha Koushki, Allen J Ehrlicher

1244-Pos Board B312

Mechanical Characterization of Extracellular Vesicles Derived From Immortalized Adipose Stromal Cells. Melissa C. Piontek, Sourav Maity, Linda A. Brouwer, Martin C. Harmsen, Wouter H. Roos

Intracellular Calcium Channels and Calcium Sparks and Waves I (Boards B313 - B329)

1245-Pos Board B313

Characterization of RyR2 Mutations Located at the Caffeine and FKBP Binding Sites in Hips-Cms. Jose Carlos Fernandez Morales, Xiaohua Zhang, Yanli Xia, Naohiro Yamaguchi, Martin Morad

1246-Pos Board B314

Increased Sr Calcium Leak Is Promoted by O-Glcnacylation of Camkii in Diabetes and Hyperglycemia. Anna Fasoli, Christopher Y. Ko, Bence Hegyi, Wenzjun Pan, Benjamin W. Van, Erin Y. Shen, Sonya Baidar, Julie Bossuyt, Donald M. Bers

1247-Pos Board B315

Role of Sk Current Rectification in Shaping Action Potential of Ventricular Cardiomyocytes. Peter Bronk, Tae Yun Kim, Iuliia Polina, Shanna Hamilton, Radmila Terentieva, Karim Roder, Gideon Koren, Dmitriy A. Terentyev, Bum-Rak Choi

1248-Pos Board B316

Sorafenib Suppresses Basal Spontaneous Beating of Rabbit Sinoatrial Node Cells (San) Through Inhibition of Vascular Endothelial Growth Factor Receptor 1 (Vegfr1). Tatiana M. Vinogradova, Kirill Tarasov, Yelena Tarasova, Edward G. Lakatta

1249-Pos Board B317

A Novel In Vitro Model Using Organotypic Cardiac Slices Reveals Transmural Heterogeneity in Arrhythmogenic Ca2+ Events After Cardiac Injury. Eef Dries, Ifigenia Bardi, Fotios Pitoulis, Raquel Nunez-Toldra, Warragong Kit-Anan, Cesare M. Terracciano
1250-Pos BOARD B318 SERCA STIMULATION TRIGGERS ARRHYTHMOGENIC CA2+ EVENTS IN MOUSE CARDIOMYOCYTES HARBORING THE RYR2M202I/2 MUTATION. Ruben Jose Lopez Dicuru, Miguel Fernandez-Tenorio, Radoslav Janicek, Ana M. Gomez, Ernst Niggli

1251-Pos BOARD B319 IMPROVEMENTS OF ER-CA2+ BASED HIGH-THROUGHPUT SCREENING METHOD FOR SEARCHING NOVEL RYR2 INHIBITORS. Masatoshi Ito, Nagomi Kurebayashi, Takashi Murayama, Mai Tamura, Junji Suzuki, kazunori Kanemaru, Masamitsu Iino, Takashi Sakurai

1252-Pos BOARD B320 EFFECTS OF RYR2 INHIBITORS ON CA2+ SIGNALS IN HEALTHY AND DISEASED CARDIAC CELLS. Nagomi Kurebayashi, Takashi Murayama, Masato Konishi, Shuichi Mori, Mari Ishigami-Yuasa, Hiroyuki Kagechika, Haruo Ogawa, Sachio Morimoto, Takashi Sakurai

1254-Pos BOARD B322 PROBING THE RYR2 CA2+ AND CAFFEINE BINDING SITES BY MUTAGENESIS IN HUMAN STEM-CELL DERIVED CARDIOMYOCYTES BY CRISPR/CAS9 GENE EDITING. Yani Xia, Xiaohua Zhang, Naohiro Yamaguchi, Martin Morad

1255-Pos BOARD B323 ANALYSIS OF LOCAL CALCIUM FLUCTUATIONS IN CARDIAC MYOCYTES. Cherrie H. Kong, Mark B. Cannell

1256-Pos BOARD B324 CPVT-ASSOCIATED MUTATION P.G357S-RYR2 PROMOTES A GAIN OF FUNCTION IN PATIENT-SPECIFIC INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES (IPS-CM). David Carreras, Rebecca Martinez-Moreno, Elisabet Selga, Ramon Brugada, Fabiana S. Sornick, Guillermo J. Perez

1257-Pos BOARD B325 TRAVEL Awardee HYPERACTIVITY OF RYR2 IN CARDIAC DISEASE IS EXACERBATED BY CALCIUM LEAK-INDUCED MITOCHONDRIAL ROS. Shanna Hamilton, Radmila Terentyeva, Jiaoni Li, Andrei Stepanov, Ingrid M. Bonilla, Bjorn C. Knollmann, Przemyslaw Radwanski, Sandor Gyorke, Andriy E. Belevych, Dmitry Terentyev

1258-Pos BOARD B326 EFFECTS OF ULTRASTRUCTURAL REMODELING ON CALCIUM SIGNALING AND ELECTROPHYSIOLOGY IN A THREE-DIMENSIONAL MODEL OF THE HUMAN ATRIAL MYOCYTE. Xianwei Zhang, Haibo Ni, Stefano Morotti, William E. Louch, Andrew G. Edwards, Daisuke Sato, Fabiana S. Sornick

1259-Pos BOARD B327 ELEMENTARY INTRACELLULAR CALCIUM SIGNALS ARE INITIATED BY A PHASE TRANSITION OF CALCIUM RELEASE CHANNELS IN A METASTABLE STATE. Guillermo Veron, Anna Maltsev, Michael D. Stern, Victor A. Maltsev

1260-Pos BOARD B328 NOVEL MITOCHONDRIAL CA2+ UPTAKE ENHANCERS FOR THE TREATMENT OF CARDIAC ARRHYTHMIA. Paulina Sander, Daniela M. Arduino, Maria K. Schweitzer, Fabiola Wilting, Thomas Guddermann, Fabiana Perocchi, Johann Schredelseker

1261-Pos BOARD B329 PHARMACOLOGICAL MODULATION OF MITOCHONDRIA CA2+ EXERTS DIVERGENT EFFECTS ON ARRHYTHMOGENIC CALCIUM WAVES IN CA2+-DEPENDENT AND METABOLIC CARDIAC DISEASE. Brian Tow, Anna-Beth Loper, Dongyu Wang, Bjorn C. Knollmann, Sandor Gyorke, Bin Liu

1262-Pos BOARD B330 RIBONUCLEOTIDE REDUCTASE IS ESSENTIAL IN ADULT CARDIOMYOCYTES. Kristina B. Kooiker, Djelli Berisha, Amy Martinson, Joelle Tudor, Jeremy Freeman, Claire Branley, Farid Moussavi-Harami

1263-Pos BOARD B331 CARDIAC PALMITOME SHEDS NEW LIGHT ON THE STRUCTURAL AND FUNCTIONAL ROLES OF S-PALMITOYLATION IN CARDIAC MYOCYTES. Madeleine Miles, Nicholas Rodriguez, Min Jiang, Jane E. Tomaszewzki, Isabelle Deschenes, Gea-Ny Tseng

1264-Pos BOARD B332 HYPERVENTRICULAR CARDIOMYOPATHY: PROLONGED TWITCH, CALCIUM TRANSIENTS AND ACTION POTENTIALS IN HUMAN STEM CELL-DERIVED CARDIOMYOCYTES WITH B-MYOSIN MUTATION R723G. Natalie Weber, Tim Holler, Joachim Meibner, Judith Montag, Martin Fischer, Jeanne de la Roche, Stefan Thiemann, Neele Peschel, Anne Kathrin Mayer, Kristin Schwane, Birgit Piep, Ulrich Martin, Robert Zweigerdt, Theresa Kraft

1265-Pos BOARD B333 THE MECHANICAL PROPERTIES OF A UTROPHIN CONSTRUCT ENCODING THE TANDEM CH ACTIN BINDING DOMAIN THROUGH SPECTRIN REPEAT 3 IS ALTERED BY THE CELL EXPRESSION SYSTEM THROUGH POST-TRANSLATIONAL MODIFICATIONS. Maria Paz Ramirez Lopez, Sivaraman Rajaganapathy, Wendy R. Gordon, Murti V. Salapaka, James M. Ervasti

1266-Pos BOARD B334 ELUCIDATING THE ROLE OF PHOSPHORYLATED REGULATORY LIGHT CHAIN PROTEINS (RLC) DURING HEART FAILURE PROGRESSION. Kasturi Markandran

1267-Pos BOARD B335 CALCIUM REGULATES AVERAGE TIME AND NOT VELOCITY A THIN FILAMENT MOVES. Henry G. Zot, Javier E. Hasbun, Prescott B. Chase, J. Renato D. Pinto

1268-Pos BOARD B336 ESSENTIAL ROLE OF SEPTIN 7 IN SKELETAL MUSCLE STRUCTURE AND FUNCTION. Laszlo Csernocheck, Mónika Gónicz, Zsolt Ráduly, László Szabó, Nóra Dobrosi, Péter Szentesi, Beatrix Dienes

1269-Pos BOARD B337 STUDY BIOPHYSICS OF ESOPHAGEAL TRANSPORT BY COMBINING SIMULATION, MODELING AND BIO-MECHANICAL ANALYSIS BASED ON IN-VIVO DATA. Wenjun Kou, Shashank Acharya, Sourav Halder, Neelesh Patankar, John Pandolfino

1270-Pos BOARD B338 THE GLU-RICH C-TERMINAL EXTENSION OF INSECT TROPONIN T IS AN ESSENTIAL STRUCTURE CRITICAL TO EMBRYONIC DEVELOPMENT. Alyson Sujkowski, Tianxin Cao, J.-P. Jin

1271-Pos BOARD B339 K\textsubscript{ATP} CHANNELS IN ZEBRAFISH CARDIOVASCULAR SYSTEM: A MODEL TO STUDY CANTÚ SYNDROME. Sonia S. Singareddy, Helen I. Roessler, Conor McClenaghan, Rob C. Tryon, Gis van Haasten, Colin G. Nichols

1272-Pos BOARD B340 UNIVERSAL INVERSE SQUARE RELATIONSHIP BETWEEN HEART RATE VARIABILITY AND HEART RATE. Anna Maltsev, Oliver J. Monfredi, Victor A. Maltsev

1273-Pos BOARD B341 TISSUE MECHANISMS OF ADULT ZEBRAFISH VENTRICULAR ECG PATTERNS UNDER BASELINE AND OXIDATIVE STRESS CONDITION. Yali Zhao, Nicholas James, Ashraf Beshay, Eileen Chang, Thao P. Nguyen
Ion Channel Regulatory Mechanisms I
(Boards B375 - B394)

1302-Pos **BOARD B370**
Using onsets-of-block kinetic analysis of HERG1 current with a Markov model to improve in silico proarrhythmic risk prediction.
Bogdan P. Amuzescu, Thomas Knott, Stefan A. Mann, Julianne Knuelping, Razvan Airini, Florin Bogdan Epureanu, Beatrice Mihaela Radu

1303-Pos **BOARD B371**
Kv1.3 regulates the driving force for calcium entry through P2X4 in microglia.
Hai M. Nguyen, Yi-Je Chen, Jacopo Di Lucente, Lee-Way Jin, Izumi Maezawa, Heike Wulff

1304-Pos **BOARD B372**
Identification of sodium sensitive site and chloride sensitive site on the C-terminus of rat KCN1 channel.
Jie Xu, Xiao-Yun Zhao, Yan-Tian Lv, Yun Xu, Jing-Jing Wang, Qiong-Yao Tang, Zhe Zhang

1305-Pos **BOARD B373**
SLC7A5 alters the functional interaction between KV1.2 and KVB.
Shawn M. Lamotho, Harley T. Kurata

1306-Pos **BOARD B374**
Identification of extracellular pH-sensing residues in the voltage-gated proton channel HV1.
Ashley L. Bennett, Giuliano Melki, I. Scott Ramsey

1307-Pos **BOARD B375**
Relationship between amino acid sequence mutations and human diseases revealed by Piezo 1 ion channel structural analysis.
Zikai Zhou

1308-Pos **BOARD B376**
Acid-sensing ion channel currents of the hypothalamus are increased by hydrogen sulfide.
Zhong Peng, Stephan Kellenberger

1309-Pos **BOARD B377**
Mechanisms of dominance of MLC2B mutations in glialcam, a regulatory subunit of the CLC-2 chloride channel.
Raul Estevez

1310-Pos **BOARD B378**
The road not taken - lipid/ion conduction pathways in TMEM16 protein family.
ZhiGuang Jia, Pengfei Liang, Trieu Le, Huanghe Yang, Jianhan Chen

1311-Pos **BOARD B379**
Computational insights into voltage dependence of polyamine block in inwardly rectifying K+ channels.
Michael Bründl, Xingyu Chen, Anna Stary-Weinzinger

1312-Pos **BOARD B380**
Atrial myocytes maintain low [Na+]i through specialized Na+/K+ ATPase microdomain.
Humberto C. Joca, Libet Garber, Andrew Coleman, Uron Boyman, Mariusz Karbowksi, Christopher W. Ward, W. Jonathan Lederer, Maura Greiser

1313-Pos **BOARD B381**
Energetics of calmodulin recognition of a skeletal muscle ryanodine receptor site.
Adina M. Kilpatrick, Ryan W. Mahling, Madeline A. Shea

1314-Pos **BOARD B382**
How do KCNQ1 and KCNE1 assemble to form the slow-de layed-rectifier (Ih) channels in adult ventricular myocytes (AVMs)?
Sukhleen Kaur, Tytus Bernas, Zachary Wilson, Taylor Schultz, Min Jiang, Gea-Ny Tseng

1315-Pos **BOARD B383**
Arrhythogenic vulnerability is associated with alterations in ion channel expression, localization and function in hypertrophic cardiomyopathy.
Henrietta Cserne-Szappanos, Daniea W. Ito, Rose E. Dixon, Livia C. Hool

1316-Pos **BOARD B384**
EAG channel PAS domain binder inhibits currents from EAG channels and decreases tumor growth in zebrafish xenograft model.
Ze-Jun Wang, Pareesa Kamgar-Dayhoff, Purushottam B. Tiwari, Eric Glasgow, TinaTin I. Breidze

1317-Pos **BOARD B385**
Control of SL7A5 sensitivity by the voltage-sensing domain of Kv1 channels.
Shawn M. Lamotho, Nazlee Sharmin, Victoria A. Baronas, Grace Silver, Yubin Hao, Harley T. Kurata

1318-Pos **BOARD B386**
The energy landscape of voltage sensing in Ci-VSP.
Rong Shen, Benoit Roux, Eduardo Perozo

1319-Pos **BOARD B387**
Both lobes of calmodulin bound to KCA2.2 respond to Ca2+.
David Brent Halling, Ashley Philpo, Richard W. Aldrich

1320-Pos **BOARD B388**
Characterisation of the versatile gating behaviour in talk-2 K+ channels.
Elena B. Riel, Björn Jürs, Jan Langer, Marianne Musinszki, Sönke Cordeiro, Susanne Rinné, Niels Decher, Marcus Schewe, Thomas Baukrowitz

1321-Pos **BOARD B389**
Solving the gating mechanism of the mitochondrial B-barrel metabolite channel VDAC.
Maria Queralt-Martín, Van A. Ngo, Lucie A. Bergdoll, Jeff Abramson, David P. Hoogerheide, Tatiana K. Rostovtseva, Sergey M. Bezrukov, Sergey V. Noskov

1322-Pos **BOARD B390**
An allosteric gating mechanism of TMEM16A calcium-activated chloride channel.
Son C. Le, Huanghe Yang

1323-Pos **BOARD B391**
Novel biophysical properties of molecular permeation in CALHM1 and connexin channels.
Pablo S. Gaete, Mauricio A. Lillo, William I. Lopez, Yu Liu, Andrew L. Harris, Jorge E. Contreras

1324-Pos **BOARD B392**
Ankyrin-G mediates targeting of both Na+ and KATP channels to the cardiac intercalated disc.
Hua-Qian Yang, Marta Pérez-Hernández, Jose L. Sanchez-Alonso, Andriy Shevchuk, Julia Gorelik, Eli Rothenberg, Mario Delmar, William A. Coetzee

1325-Pos **BOARD B393**
G8T activates GIRK2 with low-micromolar affinity with distinct activation pattern compared to GIRK1/2.
Daniel Yakubovich, Uri Kahanovitch, Galit Tabak, Tal Keren Raifman, Vladimir Tsemakhovich, Debi Ranjan Tripathy, Carmen W. Dessauer, Joel A. Hirsch, Nathan Dascal

1326-Pos **BOARD B394**
Low-nano as a new tool for the regulation of HCN channels by blue light.
Michal Laskowski, Andrea Saponaro, Alessandro Porro, Matias Zurbriggen, Gerhard Thiel, Anna Moroni
Other Channels (Boards B395 - B420)

<table>
<thead>
<tr>
<th>Board</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>B396</td>
<td>A Kinetic Study of Intraburst Activity of the Human Erythrocyte Mechan-Activated K+ Channel A (HEMCKA): Effect of Calcium and TRAM-34.</td>
<td>Jesus G. Romero, Alejandro Mata</td>
</tr>
<tr>
<td>B397</td>
<td>Exploring the Kinetcs of the HCN2 Channel Using a Cyclic AllostERIC Four-State Model.</td>
<td>Delbert Yip, Wai Wong, Leo Kim, Yue-Xian Li, Eric Accili</td>
</tr>
<tr>
<td>B398</td>
<td>Measurement of Selectivity Filter Dynamics in Selective and Non-Selective NAK Channel Variants.</td>
<td>Adam Lewis, Katherine Henzler-Wildman</td>
</tr>
<tr>
<td>B399</td>
<td>Labeling and Purification of BK Channel for Single Molecule Experiments.</td>
<td>Shubhra Srivastava, Pablo Miranda, Teresa Giráldez, Miguel Holmgren</td>
</tr>
<tr>
<td>B400</td>
<td>Nanodomain Calcium Signals Couple Activation of TRPV1 and ANO1 Sensory Ion Channels.</td>
<td>Shihab S. Shah, Chase M. Carver, Mark S. Shapiro, Nikita Gamper</td>
</tr>
<tr>
<td>B402</td>
<td>Identifying Ryabonide Receptor Modulators: From High-Throughput Screening to Single Channel Recording.</td>
<td>Manuel Paine, Jim Goodchild, Lucy Firth, Katharina Montag, Maria Grazia Garibaldi, Loredana Redaelli, Lia Scarabottolo, Judith Blythe, Jean-Francois Rolland</td>
</tr>
<tr>
<td>B403</td>
<td>The Atomic Details of the CA2+ Permeation Through the Open-State Ryabonide Receptor 1.</td>
<td>Aihua Zhang, Hua Yu, Chunhong Liu, Chen Song</td>
</tr>
<tr>
<td>B404</td>
<td>Travel Awardee Conformational Dynamics of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Revealed by Molecular Simulations.</td>
<td>Zhi Wei Zeng</td>
</tr>
<tr>
<td>B406</td>
<td>Visualizing Conformational Changes of the Magnesium Channel Cora Using Synthetic Antibodies.</td>
<td>Satchal K. Erramilli, Tian Li, Kamil Nosol, Piotr Tokarz, Przemyslaw Dutka, Pawel K. Dominik, Eduardo Perozo, Anthony A. Kossiakoff</td>
</tr>
</tbody>
</table>

Monday, 2020 Biophysical Society Annual Meeting

Biophysical Society 2020

64th Annual Meeting of the Biophysical Society
February 15-19, 2020 • San Diego, California

89
Skeletal Muscle Mechanics, Structure, and Regulation (Boards B421 - B437)

1353-Pos Board B421
ACTIVE AND PASSIVE CONTRIBUTION TO FORCE IN SKELETAL MUSCLE FIBRES: EFFECT OF AN ACTIVE STRETCH. Venus Joumaa, Faruk Ortes, Walter Herzog

1354-Pos Board B422
BINDING SITE ANALYSIS OF AN ANTI-TROPOMYOSIN DESTABILIZING PEPTIDE USING FLUORESCENCE MICROSCOPY AND SPECTROSCOPY. Blessing I. Oloyede, Douglas D. Root

1355-Pos Board B423
TRAVEL Awardee DETECTION OF SUPER-RELAXED MYOSIN IN SPECIFIC HUMAN SKELETAL MUSCLE FIBER TYPES. Lien A. Phung, Aurora D. Foster, Mark S. Miller, Dawn A. Lowe, David D. Thomas

1356-Pos Board B424
REGULATORY LIGHT CHAIN ORIENTAITON ON MYOSIN S1 USING A BIFUNCTIONAL SPIN LABEL. Yahir Savich, Megan R. McCarthy, David D. Thomas

1357-Pos Board B425
MITOCHONDRIAL ORGANIZATION IS SEVERLY MODIFIED IN SKELETAL MUSCLES OF SEPTIN7 KNOCKDOWN ANIMALS. Mónika Göröcs, László Szabó, Zsolt Ráduly, Nóra Dobrosi, Gréta Kis, Karolina Cseri, Beatrix Dienes, László Csernoch

1358-Pos Board B426
DEVELOPMENT OF MECHANICAL AND STRUCTURAL DYSFUNCTION IN SKELETAL MUSCLE FROM A DUCHENNE MUSCULAR DYSTROPHY RAT MODEL. Saffie Mohran, Chen-Ching Yuan, Shawn M. Luttrell, Weikang Ma, Thomas C. Irving, David L. Mack, Michael Regnier

1359-Pos Board B427
CROSS-BRIDGE CYCLING KINETICS SLOW AT LONGER MUSCLE LENGTH IN TETANIC CONTRACTING MOUSE SOLEUS MUSCLE. Axel J. Fenwick, David C. Lin, Bertrand C. Tanner

1360-Pos Board B428
REAL-TIME INVESTIGATION OF SARCOMERE STRUCTURE-FUNCTION IN LIVE SKELETAL MUSCLE THROUGH FRET. Ashley A. Martin, Brian R. Thompson, Joseph M. Metzger

1361-Pos Board B429

1362-Pos Board B430
USE OF CELLS FROM REMOTELY COLLECTED URINE TO GENERATE HUMAN INDUCED PLURIPOTENT STEM CELLS AND MYOFIBERS THAT RECAPITULATE UNCONVENTIONAL MYOPATHIES. Shawn M. Luttrell, Saffie Mohran, Kati Buckingham, Michael J. Bamshad, Michael Regnier, David L. Mack

1363-Pos Board B431
STEP STRETCHES AND SHORTENINGS ELICIT SIMILAR TRANSIENT FORCE OVERSHOOTS. Joel C. Robinett, Laurin M. Hanft, Kerry S. McDonald

Cell Mechanics, Mechanosensing, and Motility I (Boards B438 - B460)

1364-Pos Board B432
INSIGHTS INTO VARIOUS TYPES OF MYOPATHY USING THE ATOMIC MODEL OF LETHOCERUS MYOSIN FILAMENTS. Hamidreza Rahmani, Nadia Daneshparvar, Dianne Taylor, Kenneth A. Taylor

1365-Pos Board B433
MUTATIONS IN THE LARGE PROTEIN NEBULIN TRIGGER TYPICAL NEUROGENIC MYOPATHY WITH A UNIQUE MOLECULAR MECHANISM. Johan Lindqvist, Weikang Ma, Yaren Hernandez, Frank W. Li, Justin Kolb, Paola Tonino, Balazs Kiss, Robbert van der Pijl, Esmat Karimi, Zaynab Hourani, John E. Smith, Coen A. Ottenheijm, Thomas C. Irving, Henk L. Granzier

1366-Pos Board B434
MOLECULAR DYNAMICS SIMULATIONS OF ALPHA-BETA-TROPOMYOSIN SHOW CONFORMATIONAL PROPERTIES OF HETERODIMERIC TROPOMYOSIN. Michael J. Rynklewich, William Lehman

1367-Pos Board B435
STRESS-DEPENDENT ACTIVATION OF MYOSIN MOTORS CONTROLS THE COOPERATIVITY AND DYNAMICS OF FORCE GENERATION IN SKELETAL MUSCLE. Luca Fusi, Elisabetta Brunello, Lorenzo Marcucci, Qiqian Yan, Yin-Biao Sun, Malcolm Irving

1368-Pos Board B436
MEASUREMENT OF SKELETAL MUSCLE FIBER CONTRACTILITY WITH HIGH-SPEED TRACTION MICROSCOPY. David Böhinger, Martin Rausch, Martin Steinmann, Stefan Schruefer, Dirk W. Schubert, Annamaria Härtl, Christoph Mark, Ben Fabry

1369-Pos Board B437
USING POSITIONAL ISOMERS OF A SYNTHETIC NON-NUCLEOSIDE TRIPHOSPHATE TO CONTROL MYOSIN FUNCTION. Mike Woodward, Eric Ostrander, Xiaorong Liu, Seung Pyo Jeong, Jianhan Chen, Dhandapani Venkataraman, Edward P. Debold

1370-Pos Board B438
REDUCED VIMENTIN LEVEL IN FIBROBLASTS REGULATES CELL TRACTION FORCE BUT NOT MECHANOSENSING. Minh-Tri Ho Thanh

1371-Pos Board B439
DYNAMIC CROSSLINKING OF THE ACTIN CYTOSKELETON GOVERS CELL MECHANICS. Loïc Chauvet, Hossein Khadivi Heris, Allen J. Ehrlicher, Adam G. Hendricks

1372-Pos Board B440
MECHANOBIOLOGY OF EXTRAVASATING CD4(+) T-CELL CYTOSKELETON. Alexander S. Zhovmer, Emilio K. Dimitriadis, Xuefei Ma, Paolo P. Provenzano, Erdem D. Tabdanov

1373-Pos Board B441
EFFECTS OF INTER-DOUBLET COUPLING ON FLAGELLAR BEATING. Louis Woodham, Yenan Shen, Philip Bayly

1374-Pos Board B442
AN ARTIFICIAL PROTEIN-BASED BURNT-BRIDGES MOLECULAR MOTOR DESIGN. Chapin S. Korosec, Nancy R.福德

1375-Pos Board B443
REAL-TIME NANOMETER-ACCURACY TRACKING OF SINGLE LIPID DROP-LETS IN LIVING CELLS. Hoi Man Lau, Hyokeun Park

1376-Pos Board B444
ROLE OF BRAF IN CANCER CELL EXTRAVASATION, MECHANOTRANSDUC TION IN ENDOTHEIAL MONOLAYERS. Anna Hollosi, Katalin Paszty, Balint Bunta, Miklós S.Z. Kellermayer, Andrea Varga
1377-Pos Board B445 BIOMECHANICS OF JAM-C-MEDIATED NEUTROPHIL REVERSE TRANSENDOTHELIAL MIGRATION. Yi-Ting Yeh, Ricardo Serrano, Ernesto Criado-Hidalgo, Juan Carlos del Álamo, Juan Carlos Lasheras

1378-Pos Board B446 BINDING OF RAS TO PI3K: MEASURING BINDING AFFINITY, AND THE EFFECTS OF DISEASE-LINKED H-RAS MUTATIONS ON AFFINITY. Hayden Swisher, Nicholas J. Cordaro, Justin G. Martyr, Annette H. Erbse, Johnathon H. Hannan, Emily M. Kibby, Joseph J. Falke

1379-Pos Board B447 EFFECT OF EXTRACELLULAR MATRIX STIFFNESS GRADIENT ON DUROTAXIS MOTION AND CELL MIGRATION OF CELLS USING DYNAMIC CELLULAR FINITE ELEMENT MODEL (DYCELFEM). Pourya Delafrouz, Jieling Zhao, Wei Tian, Jie Liang

1380-Pos Board B448 PTEN-Pi(4,5)P, POSITIVE FEEDBACK MECHANISM FOR STABILIZING ASYMMETRIC Pi(3,4,5)P, LOCALIZATION IN MIGRATING CELL. Daisuke Yoshioka, Seiya Fukushima, Hiroyasu Koteishi, Daichi Okuno, Toru Ide, Satomi Matsuoka, Masahiro Ueda

1381-Pos Board B449 DIRECT FORCE MEASUREMENT OF THE PANc-1’S TRACTION FORCE. Takeshi Sakamoto, Yuwen Mei, Justin Raupp

1382-Pos Board B450 CELL MECHANICS AND INVASION ARE INFLUENCED BY ST6GAL-I MEDIATED SIALYLATION OF EGFR. Tejeshwar C. Rao, Reena R. Beggs, Katie L. Dietz, Victor Pui-Yan Ma, Khalid Salaita, Susan L. Bellis, Alexa L. Mattheyes

1384-Pos Board B452 UNDERSTANDING MECHANICAL EFFECTS ON THE DYNAMICS OF NASCENT ADHESIONS. Laurent MacKay, Etienne Lehman, Anmar Khadra

1385-Pos Board B453 LIPID DROPLETS DEFORM NUCLEUS AND CAUSE MISLOCALIZATION OF DNA REPAIR FACTORS. Irena L. Ivanovska, Michael P. Tobin, Charlotte R. Pfeifer, Dennis E. Discher

1386-Pos Board B454 ROS INDUCED CELL MECHANICAL ALTERATIONS IN SUSPENSION AND ADHERENT CELLS. Yesawmini Komaragiri

1387-Pos Board B455 THE DYNAMICS OF PROTEIN TRANSLATION IN THE PROCESS OF CELLULAR ADHESION. Alexia Caillier, Jonathan Bergeman, Marc-Étienne Huot

1388-Pos Board B456 UTILIZING MOLECULAR DYNAMICS SIMULATIONS TO PROBE THE RELEASE OF SIGNAL FACTORS FROM THE ADHERENS JUNCTION. Brandon L. Neel, Marcos M. Sotomayor

1389-Pos Board B457 GENETICALLY ENGINEERED MYOBLASTS FOR MEASURING NUCLEAR LAMINA STRESS. Thomas M. Suchyna, Frederick Sachs, Fanjie Meng, Wilma A. Hofmann

1390-Pos Board B458 SUPER-RESOLVED MEASUREMENT OF PICONEWTON RECEPTOR FORCES VIA TENSION-PAINT. Joshua M. Brockman, Hanquan Su, Alexia L. Mattheyes, Yonggang Ke, Khalid Salaita

1391-Pos Board B459 PHYSICAL DETERMINANTS OF PARTICLE UPTAKE AND TRANSPORT DURING PHAGOCYTOSIS. Steve Keller, Simon Wieland, Wolfgang Gross, Konrad Berghoff, David Gitschier, Manuel Eisentraut, Holger Kress

1392-Pos Board B460 A SIDE-VIEW ON NUCLEAR MECHANICS: COMBINED ATOMIC FORCE MICROSCOPY AND LIGHT SHEET MICROSCOPY INFORM CHROMATIN’S ROLE IN REGULATING NUCLEAR MORPHOLOGY. Chad Hobson, Evan F. Nelsen, Joe Hsiao, Megan E. Kern, Andrew Stephens, E. Timothy O’Brien, Michael R. Falvo, Richard Superfine

Genetic Regulatory Systems (Boards B461 - B467)

1393-Pos Board B461 AGE-DEPENDENT PROTEIN DEGRADATION MODULATES NOISE OF AUTO-REGULATED GENE EXPRESSION. Ji-Hyun Kim, Jaeyoung Sung

1394-Pos Board B462 PROBABILITY LANDSCAPE OF COUPLED EPIGENETIC AND GENETIC NETWORK WITH EDDY-LIKE PROBABILITY CURRENTS. Bhattacharyya, Masaki Sasai

1395-Pos Board B463 REPLICATION INITIATION CONTROL IN E. COLI. Dongyang Li, Sukjooon Jun

1396-Pos Board B464 IN SITU SINGLE-MOLECULE DYNAMICS OF THE SOS-REPRESSOR LEXA DURING ANTIBIOTIC STRESS. Leonard Schärfen, Milos Tisma, Andreas Hartmann, Michael Schlierf

1397-Pos Board B465 CHEMICAL DYNAMICS IN LIVING CELLS. Jaeyoung Sung

1398-Pos Board B466 DYSREGULATED CILIARY, AUTOPHAGY AND CELL CYCLING PATHWAYS MANIFEST IN HEPATOBLASTOMA TUMORS REQUIRING LIVER TRANSPLANTATION - A SYSTEMS BIOLOGY ANALYSIS. Tejaswini Narayanan, Mylarappa Ningappa, Rakesh Sindhi, B. W Higgs, Shankar Subramaniam

1399-Pos Board B467 THE EFFECT OF TIME-DEPENDENT DRIVE AND DELAYED FEEDBACK LOOP IN TWO-DIMENSIONAL GENE REGULATORY NETWORK. Bivash Kaity, Ratan Sarkar, Buddhapriya Chakrabarti, Mithun K. Mitra

Computational Neuroscience (Boards B468 - B475)

1400-Pos Board B468 CORRELATING DENDRITIC SPINE GEOMETRY AND CALCIUM TRANSIENTS TO LEARNING AND INFORMATION PROCESSING. Christopher T. Lee, Justin G. Laughlin, Miriam Bell, Michael Holst, Padmini Rangamani

1401-Pos Board B469 PHOSPHAGENS AS ENERGETIC MODERATORS AT CHEMICAL SYNAPSES: A COMPUTATIONAL APPROACH. Sergio Sempertegui, Youen Fily, Gregory T. Ma

1402-Pos Board B470 COMPUTATIONAL MODELLING FRAMEWORK TO STUDY CA2+ ACTIVATION OF SYNAPSEC VESICLE FUSION BY DIFFERENT SYNAPTOTAGMIN ISOFORMS. Christopher A. Norman, Kirill E. Volynski, Skym S. Krishnakumar, Yulio Timofeeva

1403-Pos Board B471 A COMPUTATIONAL MODEL OF PH DYNAMICS WITHIN THE CLEFT OF CONVENTIONAL NEURONAL SYNAPSES. Touhid Feghhi, Gregory T. Macleod, Roberto X. Hernandez, AWC Lau, Michal Stawarski, Jolanta A. Borycz, Zhiyuan Lu, Andrea Aragwal, Ian A. Meinertzhagen, Robert Renden
Neuroscience: Experimental Approaches and Tools (Boards B476 - B488)

Optical modulation of receptor tyrosine kinase signaling during cell differentiation and embryonic development. Savanna R. Sharum, Payel Mondal, Vishnu Krishnamurthy, Kritika Mehta, Huaxun Fan, Jing Yang, Kai Zhang

Travel awardee for MagnetoGenetics: Sharing the load. Guillaume Duret, Jacob T. Robinson

A mathematical model of cerebral cortical folding development. Ahmet Kilinc, Monica K. Hurdal

Transmembrane hemoprotein optical reporters (THORS) for membrane potential sensing. Martin J. Iwanicki, Brian Y. Chow, Christopher C. Moser, Bohdana M. Discher

A ratiometric calcium sensors using bright green and red fluorescent proteins for neural calcium imaging. Diming Zhang, Kimberly L. Lennox, Zhijing Zhu, Emily Redington, Yiyang Gong

Influence of mid-infrared laser irradiation on membrane potentials in neuron-like cells. Yoshiyuki Shimizu, Gen Takebe, Toyohiko Yamauchi, Tatsuo Dougakiuchi

Dense neuronal reconstruction through X-ray holographic nano-tomography. Aaron T. Kuan

Biomechanical stresses due to tissue micromotion at the neural interface modulate intracellular membrane potentials. Jonathan L. Duncan, Swathy Sampath Kumar, Diane Iradukunda, Arati Sridharan, Jitendra Muthuswamy

Live cell storm studies on the perineuronal net in cultured neurons. Dickinson L. Nall, Paul R. Selvin

External charges influence fluorescent protein proton wires. Bok Eum Kang, Leticia Leong, Bradley J. Baker

Effectiveness of the QUBE in studying the rapidly-desensitizing alpha7 nicotinic acetylcholine receptor. Sung H. Park

Electron Microscopy (Boards B489 - B512)

What to expect from cryo-EM at the NCCTR national service center. Edward T. Eng, Elina Kopylov, Clinton S. Potter, Bridget Carragher

NIH transformative high resolution cryo-EM and cryo-electron tomography initiatives. Malgorzata Klosek, Mary Ann Wu, Paula F. Flicker, Hounam Araj

Bottom-up structural proteomics: cryo-EM of protein complexes enriched from the cellular milieu. Chi-Min Ho, Xiaorun Li, Mason Lai, Thomas Terverliger, Josh Beck, James A. Wohlschlegel, Daniel E. Goldberg, Anthony W.P. Fitzpatrick, Hong Zhou

Automated cryo-EM structure refinement using correlation-driven molecular dynamics. Andrea C. Vaiana, Maxim Igaev, Lars V. Bock, Carsten Kutzner, Helmut Grubmueller

Damped dynamics as a validation platform for the flexible refinement of atomic models against cryo-EM maps. Willy R. Wriggers, Vitold E. Galkin, Wade A. Hunter, Julio A. Kovacs

Z-contrast enhancement for small protein cryo-EM structure determination. Adam Oken, Jaeick Lee, Sholto David, Qing Xie, Christopher Dennison, James Z. Chen

Automated segmentation and correction of missing-wedge artifacts in cryo-electron tomography maps by shape-constrained deconvolution. Wade A. Hunter, Julio A. Kovacs, Willy R. Wriggers

Semi-automated 3D segmentation of human skeletal muscle using focused ion beam-scanning electron microscopic images reveals network of mitochondria. Alexander V. Maltsev, Brian Caffrey, Marta Gonzalez-Freire, Lisa Hartnell, Srimam Subramaniam, Luigi Ferrucci
1457-Pos BOARD B525
OBTAINING 3D ATOMIC STRUCUTURE OF SACCHARIDES FROM RAMAN/ROA/NMR SPECTROSCOPIC TECHNIQUES. Vladimir Palivec, Petr Bour, Pavel Junghwirth, Jakub Kaminsky, Hector Martinez-Seara

1458-Pos BOARD B526
MECHANISTIC STUDIES OF THE CATALYTIC PROCESS OF MORPHINONE REDUCTASE. Xi Chen

1459-Pos BOARD B527
BINDING OF MDM2 INHIBITORS VIA BIASED SAMPLING AND MULTI-ENSEMBLE MARKOV MODELS. Matthew F. Hurley, Vincent Voelz

1460-Pos BOARD B528
MOLECULAR DYNAMICS INVESTIGATION OF THE PHYSICAL BINDING OF THE NKX DIAZONIUM ION TO TP53 EXON 5. David Wahl, Christos Deligkaris, Evan Millam

1461-Pos BOARD B529
TRANSLOCATION OF ANTHRAX LETHAL FACTOR: PERSPECTIVES FROM ATOMIC MOLECULAR DYNAMICS SIMULATIONS. Piao Ma, Alfredo E. Cardenas, Mangesh Chaudhari, Ron Elber, Susan L. Rempe

1462-Pos BOARD B530
SOLVATION THERMODYNAMIC PROPERTIES OF ANIONIC AND NATURAL SULFATE-FREE SURFACTANT MOLECULES. Manori Jayasinghe, Harshini Fernando

1463-Pos BOARD B531
COMPUTATIONAL STUDIES OF THE ORANGE CAROTENOID PROTEIN (OCP) FAMILIES, COMBINING COMPARATIVE MODELING AND MOLECULAR DYNAMICS SIMULATION. Youngmoon Cho, Manhyuk Han, Yvette V. Villafani, Seung Joong Kim, Jiyoung Park, Younil Park

1464-Pos BOARD B532
UNVEILING THE STRUCTURAL PROPERTIES OF HIV-1 VESICLE FROM COARSE-GRAIN MOLECULAR DYNAMICS SIMULATIONS. Fabio A. Gonzalez-Arias, Tyler J. Reddy, Juan R. Perilla

1465-Pos BOARD B533
HOOGSTEEEN BASE PAIRING IN DNA VS RNA: THERMODYNAMICS AND KINETICS FROM ENHANCED SAMPLING SIMULATION AND MARKOV STATE MODELING. Dhiman Ray, Ioan Andricioaei

1466-Pos BOARD B534
EVALUATING BINDING AFFINITIES OF DIMERIZATION OF BAR PROTEINS IN SOLUTION AND ON MEMBRANE SURFACE. Adip Jhaveri

1467-Pos BOARD B535
TRAVEL AWARDEE
PROTON TRANSPORT THROUGH E. COLI C3 LC CHLORIDE/PROTON ANTIPORTER IN THE PRESENCE OF BOUND FLUORIDE. Baris O. Aydintug

1468-Pos BOARD B536
LIPID PORE INSTABILITY IN BIPOLAR ELECTRICALLY STRESSED MEMBRANES. Federica Castellani, Esin B. Sozer, P. Thomas Vernier

1469-Pos BOARD B537
MULTI-RESOLUTION MODEL OF THE EUKARYOTIC CYTOPLASM. Han-Yi Chou, David N. Winogradoff, Christopher M. Maffeo, Aleksei Aksimentiev

1470-Pos BOARD B538
MULTI-RESOLUTION SIMULATIONS OF HIV GLYCAN SHIELD REVEAL MECHANISTIC ASPECTS OF IMMUNE EVASION. Srirupa Chakraborty, Cesar A. Lopez, Sandrasegaram Gnanakaran

Computational Methods and Bioinformatics I (Boards B539 - B568)

1471-Pos BOARD B539
INVESTIGATING THE CHANGES IN AMINO ACID PROPERTIES IN THE EVOLUTIONARY AND MULTI-SCALE CONTEXT. Daniel Kool

1472-Pos BOARD B540
GENOME DASHBOARDS: A FRAMEWORK FOR UNIFYING INFORMATICS AND STRUCTURE. Zilong Li, Thomas C. Bishop

1473-Pos BOARD B541
SENSITIVITY OF DNA DAMAGE TO VARIANCE OF SIMULATION PARAMETERS IN MICROSCOPIC MONTE CARLO SIMULATION. Yujie Chi, Youfang Lai, Congchong Yan, Min-yu Tsai, Xun Jia

1474-Pos BOARD B542
CONVOLUTIONAL NEURAL NETWORKS BRIDGE MOLECULAR MODELS AND SOLUTION X-RAY SCATTERING EXPERIMENTS. Yen-Lin Chen, Lois Pollack

1475-Pos BOARD B543
STRUCTURAL INTERPRETATION OF HYDROGEN-DEUTERIUM EXCHANGE WITH MAXIMUM-ENTROPY SIMULATION REWEIGHTING. Fabrizio Marinelli, Richard Bradshaw, José D. Faraldo-Gómez, Lucy R. Forrest

1476-Pos BOARD B544
FRET-BASED INTEGRATIVE STRUCTURAL MODELS AND THEIR DATABASE DEPOSITION. Christian A. Hanke, Hayk Vardanyan, Claus A. Seidel

1477-Pos BOARD B545
MULTI-SCALE IMPLEMENTATION OF 3D-RISM TO THE ELECTRONIC STRUCTURE THEORY BEING APPLICABLE FOR SOLVATED BIOMOLECULES. Norio Yoshida

1478-Pos BOARD B546
A DIFFUSION BASED EMBEDDING OF THE STOCHASTIC SIMULATION ALGORITHM IN CONTINUOUS SPACE. Marcus Thomas, Russell S. Schwartz

1479-Pos BOARD B547
THEORETICAL INVESTIGATIONS OF SELECTED MUTATIONS AND EXPLORING THE CATALYTIC SPACE OF ADENYLOSUCCINATE LYASE - A POTENTIAL TARGET FOR L DONOVANI. Nikita Bora

1480-Pos BOARD B548
TARGETING COVALENT COMPLEX OF HUMAN TOPOISOMERASE I WITH DNA. Purushottam Tiwari, Yuk-Ching Tse-Dinh, Aykut Üren

1481-Pos BOARD B549
IDENTIFYING TIME-RESOLVED ALLOSTERIC SIGNALING PATHWAYS IN PROTEINS USING SUPERVISED MACHINE LEARNING. NaLi Duro, Sameer Varma

1482-Pos BOARD B550
PROTEIN TRANSITION PATHWAY GENERATION GUIDED BY INTERNAL COORDINATE NORMAL MODES. Byung Ho Lee, Soon Woo Park, Hyunki Kim, Moon Ki Kim

1483-Pos BOARD B551
LEARNING DYNAMICAL INFORMATION FROM STATIC PROTEIN AND SEQUENCING DATA. Philip Pearce, Francis G. Woodhouse, Aden Forrow, Halim Kusumaatmaja, Jorn Dunkel

1484-Pos BOARD B552
DETECTING FUNCTIONAL DYNAMICS IN PROTEINS WITH COMPARATIVE PERTURBED-ENSEMBLES ANALYSIS. Xin-Qiu Yao, Donald Hamelberg

1485-Pos BOARD B553
STATISTICAL ANALYSIS OF PROTEIN DYNAMICS USING THE KOSMOS DATABASE. Hyunki Kim, Soon Woo Park, Byung Ho Lee, Moon Ki Kim
Biosensors I
(Boards B604 - B618)
NANOPIN - A MEMS BASED SENSOR FOR THE ANALYSIS OF SINGLE-CELL MECHANICAL PROPERTIES. Stanislav Karsten, Lili Kudo, Zhongcai Ma, Momoko Kumemura

DEVELOPMENT OF A SMELL BIOSENSOR SYSTEM FOR EARLY DETECTION OF PLANT DISEASES. Timea Dóra Miskolczi, Katalin Zboray, Anikó Keszöce, Zainab Quddoos, Zsuzsanna Ambrózy, Kamirán Áron Hamow, Adam Toth, László Sági, Magdolna Oliva Szelényi, Dalma Radványi, Mátéyás Csaba Földi, Béla Péter Molnár, Krisztina Pesti, Arpad Mike, Péter Lukács

CHARACTERIZATION AND ANALYSIS OF LEUKOTOXIN-CONTAINING OUTER MEMBRANE VESICLES. Megan E. Blauch, Justin B. Nice, Angela C. Brown, Nathan J. Wittenberg

DETECTION OF SPHINGOMYELINASE ENZYME BY METHYLENE BLUE ENCAPSULATED LIPOSOME APPLYING ELECTROCHEMICAL AMPLIFIED PROCESS. Ankan Dutta Chowdhury, Enoch Y. Park

FLUOROMETRIC SENSING PLATFORM BASED ON LOCALIZED SURFACE PLASMON RESONANCE USING QUANTUM DOTS-GOLD NANOCOMPOSITES OPTIMIZING THE LINKER LENGTH VARIATION. Fahmida Nasrin, Ankan Dutta Chowdhury, Kenshin Takemura, Enoch Y Park

WIDE DYNAMIC RANGE DETECTION OF TARGET DNA BY SINGLE PARTICLE MICROSCOPY OF DNA-GOLD NANOCLUSTER MULTIMERS. Keiko Esashika, Takaha Mizuguchi, Yoshiharu Saiki

THE OPENPICOAMP-100K, AN OPEN-SOURCE HIGH PERFORMANCE AMPLIFIER FOR SINGLE CHANNEL RECORDING IN PLANAR LIPID BILAYERS. Vadim Shlyonsky, David Gall

RESISTIVE PULSE SENSORS FOR BIOSENSORS. Marcus Pollard, Federico Thei, Mark Platt

1024-CH ELECTROCHEMICAL RECORDINGS OF SINGLE-CELL NEUROTRANSMITTER SECRETION FROM HUMAN NEUROBLASTOMA CELLS USING MONOLITHIC CMOS BIOELECTRONICS. Kevin A. White, Geoffrey Mulberry, Brian N. Kim

USING ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING TO CHARACTERIZE EFFECTS OF CURCUMIN ON NRK CELLS. Erin M. Troy, Derek L. Beahm

SCIENTIFIC SOCIETIES JOIN FORCES TO AMPLIFY EFFECTIVENESS OF STEM WORKFORCE DIVERSIFICATION PROGRAMMING. Marina Ramirez-Alvarado, Veronica Segarra

TEACHING BIOPHYSICS TO BLIND OR LOW VISION (BLV) STUDENTS AT MIDDLE SCHOOL. Yuly E. Sánchez, Angie V. Rodriguez, Edgar A. Reyes

HELPING UNDERGRADUATE STUDENTS TO UNDERSTAND THE CONNECTION BETWEEN PHYSICS AND BIOLOGY. Christopher Bassey

INTEGRATING COMPUTATION AND WET LAB METHODS IN A BIOCHEMISTRY LAB COURSE-BASED UNDERGRADUATE RESEARCH EXPERIENCE (CURE). Julia R. Koeppen, Ashley Ringer McDonald, Rebecca Roberts, Paul A. Craig

MULTIMEDIA JUPYTER NOTEBOOKS FOR LEARNING STRUCTURE PREDICTION AND DESIGN. Kathy H. Le, Sergey Lyskov, Jeffrey J. Gray

INVESTIGATION OF SEA URCHIN SPERM MOTILITY: AN UNDERGRADUATE PROJECT. Jesús González, Ana G. Villalba-Villalba, Amir Maldonado

RESEARCH PROJECT FOR UNDERGRADUATE LEVEL STUDENTS: TOXIC METALS BIOSORPTION POTENTIAL OF ASPERGILLUS SPP. Brenda Leyva-Amaya

INCREASING BIOCHEMISTRY SELF-EFFICACY IN FRESHMEN STUDENTS THROUGH HANDS-ON EXPERIENCE. Clarisse L. van der Feltz, Mario Pernella, Lynne Prost
Tuesday, February 18, 2020

Daily Program Summary

All rooms are located in the San Diego Convention Center unless noted otherwise.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 AM–5:00 PM</td>
<td>Registration/Information</td>
<td>Lobby G</td>
</tr>
<tr>
<td>8:00 AM–9:00 AM</td>
<td>Biophysical Society Business Meeting</td>
<td>Room 28AB</td>
</tr>
<tr>
<td>8:00 AM–4:00 PM</td>
<td>Poster Viewing</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Symposium: ATP-driven Maintenance of Protein Homeostasis</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>Chair: Aaron Lucius, University of Alabama at Birmingham</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REVISITING THE ATP-DRIVEN CHAPERONIN GROEL-GROES REACTION CYCLE. Hideki Taguchi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COTRANSLATIONAL FOLDING OF PROTEIN DOMAINS ON THE RIBOSOME. Marina Rodnina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROTEOSTASIS AND VIRAL EVOLUTION. Matthew D. Shoulders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*MOLECULAR MECHANISMS OF ENZYME CATALYZED PROTEIN UNFOLDING AND TRANSLOCATION BY CLASS 1 AAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOTOR. Aaron L. Lucius</td>
<td></td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Symposium: Synthetic Biology</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td></td>
<td>Chair: Yvonne Chen, University of California, Los Angeles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGINEERING DNA NANODEVICES TO ADVANCE BIOMOLECULAR ANALYSIS. Peng Yin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MULTIPLEXABLE MOLECULAR CIRCUIT REPORTERS DESIGNED FOR NANOPORE SENSOR READOUT. Jeff Nivala</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROTEIN FOLDING ON THE RIBOSOME - INSIGHTS FROM GENE EDITING AND STRUCTURAL BIOLOGY. John</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christodoulou</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGINEERING NEXT-GENERATION T CELLS FOR CANCER IMMUNOTHERAPY. Yvonne Y. Chen</td>
<td></td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Protein Dynamics and Allostery II</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Membrane Physical Chemistry</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Protein-Small Molecule Interactions</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Ion Channels, Pharmacology, and Disease</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Cardiac Muscle Regulation</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Calcium Signaling</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>9:00 AM–10:30 AM</td>
<td>Career Development Center Workshop:</td>
<td>Room 26A</td>
</tr>
<tr>
<td></td>
<td>Looking Beyond Academia: Identifying your Career options using MyIDP, LinkedIn & More</td>
<td></td>
</tr>
<tr>
<td>9:30 AM–11:00 AM</td>
<td>Exhibitor Presentation: Sophion Bioscience A/S</td>
<td>Room 33A</td>
</tr>
<tr>
<td></td>
<td>Characterization of the Rapidly Desensitizing α7 Nicotinic Acetylcholine Receptor on the Qube,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NaV1.1 Assays on Automated Electrophysiology Platforms and Developing NMDA Assays on the Qube System</td>
<td></td>
</tr>
<tr>
<td>10:00 AM–4:00 PM</td>
<td>Exhibits</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>10:15 AM–11:00 AM</td>
<td>Coffee Break</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Symposium: Awards</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>Chair: David Piston, Washington University in St. Louis and BPS President*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAPER OF THE YEAR. Carlos R. Baiz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IGNACIO TINOCO AWARD. Elliot L. Elson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOUNDERS AWARD. Don M. Herschlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MARGARET OAKLEY DAYHOFF AWARD. Valeria Vásquez</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICHAEL AND KATE BÁRÁNY AWARD. Clifford P. Brangwynne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVANTI AWARD IN LIPIDS. Akihiro Kusumi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOPHYSICS IN HEALTH AND DISEASE. Alexandra C. Newton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KAZUHIKO KINOSITA AWARD IN SINGLE MOLECULE BIOPHYSICS. Yale E. Goldman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INNOVATION AWARD. G. Marius Clore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANATRACE MEMBRANE PROTEIN AWARD. Gunnar von Heijne</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td>Location</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Optical Microscopy and Superresolution Imaging III</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Voltage Sensor to Pore Coupling</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: DNA/RNA Structure and Dynamics</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Protein Structure and Conformation III</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Protein Stability, Folding, and Chaperones</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>10:45 AM–12:45 PM</td>
<td>Platform: Computational Methods and Bioinformatics</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>11:30 AM–12:30 PM</td>
<td>Career Development Center Workshop: Negotiation for Nerds: Negotiation Strategies and Tactics and Evaluating a Job Offer</td>
<td>Room 26A</td>
</tr>
<tr>
<td>12:00 PM–1:30 PM</td>
<td>Funding Opportunities for Faculty at Primarily Undergraduate Institutions</td>
<td>Room 29AB</td>
</tr>
<tr>
<td>12:00 PM–1:30 PM</td>
<td>Postdoc to Faculty Q&A: Transitions Forum and Luncheon</td>
<td>Room 32AB</td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>The Biophysicist Editorial Board Meeting</td>
<td>Room 30D</td>
</tr>
<tr>
<td>1:15 PM–2:45 PM</td>
<td>Climate Change We Want to See: Mitigating Unconscious Bias in the Biophysical Professions</td>
<td>Room 28AB</td>
</tr>
<tr>
<td>1:30 PM–3:00 PM</td>
<td>The Nuts and Bolts of Preparing Your NIH Grant</td>
<td>Room 28CDE</td>
</tr>
<tr>
<td>1:30 PM–3:00 PM</td>
<td>Exhibitor Presentation: HORIBA Scientific A New Imaging Camera Technology Featuring TDC In-Pixel Architecture for Simple Dynamic FLIM Imaging at Video Rates</td>
<td>Room 33A</td>
</tr>
<tr>
<td>1:45 PM–3:00 PM</td>
<td>Snack Break</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>1:45 PM–3:45 PM</td>
<td>Poster Presentations and Late Posters</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>2:30 PM–3:30 PM</td>
<td>Career Development Center Workshop: Going Live: Preparing for Interviews in Industry and Academia</td>
<td>Room 26A</td>
</tr>
<tr>
<td>3:00 PM–5:00 PM</td>
<td>Education Committee Meeting</td>
<td>Room 30D</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Symposium: Neuron–glia Interactions</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Symposium: Exocytosis & Autophagy</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Intrinsically Disordered Proteins (IDP) and Aggregates II</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Membrane Active Peptides and Toxins</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Cardiac, Smooth, and Skeletal Muscle Electrophysiology and Regulation I</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Genetic, Cellular, Synthetic, and Systems Biology</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Micro- and Nanotechnology</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>4:00 PM–6:00 PM</td>
<td>Platform: Cytoskeletal Assemblies, Dynamics, Transport, and Motility</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>6:00 PM–6:30 PM</td>
<td>Dinner Meet-Ups</td>
<td>Society Booth/Lobby G</td>
</tr>
<tr>
<td>6:00 PM–10:00 PM</td>
<td>Publications Committee Meeting</td>
<td>Hilton, Cobalt 500AB</td>
</tr>
<tr>
<td>Time</td>
<td>Workshop</td>
<td>Room</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>7:30 PM–9:30 PM</td>
<td>Workshop: Design and Constructing Quantitative Biosensors
Chair: Edward Lemke, IMB Mainz, Germany</td>
<td>24ABC</td>
</tr>
<tr>
<td></td>
<td>FOLDING-BASED ELECTROCHEMICAL BIOSENSORS: A GENERALIZABLE APPROACH TO REAL-TIME, IN-VIVO MOLECULAR MEASUREMENTS. Kevin W. Plaxco
TMP-TAG: A CHEMICAL SURROGATE TO THE FLUORESCENT PROTEINS FOR LIVE CELL IMAGING. Virginia W. Cornish
NEW FLUORESCENT AND BIOLUMINESCENT PROBES AND SENSORS. Kai Johnsson
HIGH PERFORMANCE GENETICALLY ENCODED BIOSENSORS OF CELL METABOLISM. Robert E. Campbell
VERSATILE SENSOR DESIGN IN CELLULO BY COMBINING MEMBRANELESS ORGANELLES WITH CLICK CHEMISTRY. Edward A. Lemke</td>
<td></td>
</tr>
<tr>
<td>7:30 PM–9:30 PM</td>
<td>Workshop: Chemical Biology Tools for Biophysics
Chair: Henry Colecraft, Columbia University</td>
<td>25ABC</td>
</tr>
<tr>
<td></td>
<td>ADJUSTING MAIN-CHAIN CHEMISTRY IN ION CHANNEL VOLTAGE-SENSORS. Christopher A. Ahern
INSERTION OF SYNTHETIC PEPTIDES INTO PROTEINS BY TANDEM PROTEIN TRANS-SPlicing. Stephan A. Pless
GENETICALLY-ENCODED TAGS FOR CORRELATIVE FLUORESCENCE AND ELECTRON MICROSCOPY. Kimberly Beatty
CONTROLLING THE FATE AND FUNCTION OF PROTEINS WITH PHOTOPHARMACOLOGY. Dirk Trauner
TARGETED (DE)UBIQUITINATION OF ION CHANNELS: FROM MECHANISTIC INSIGHTS TO TRANSLATION. Henry Colecraft</td>
<td></td>
</tr>
<tr>
<td>7:30 PM–9:30 PM</td>
<td>Workshop: Simulation Strategies for Large Scales
Chair: Tobin Sosnick, University of Chicago</td>
<td>30ABC</td>
</tr>
<tr>
<td></td>
<td>WEIGHTED ENSEMBLE SIMULATION: TACKLING THE CHALLENGES OF LONG-TIMESCALE KINETICS. Lillian Chong
ON THE ALGORITHMIC IDENTIFICATION OF OPTIMAL COARSE-GRAINED REPRESENTATIONS OF BIOMOLECULES. Raffaello Potestio<br.GOING BIG: MILLION ATOM SIMULATIONS OF RIBOSOMES AND BILLION ATOM SIMULATIONS OF CHROMATIN. Karissa Y. Sanbonmatsu<br.CHALLENGES TO THE CREATION OF DYNAMIC STRUCTURAL MODELS OF INTRACELLULAR SYSTEMS. Adrian H. Elcock<br.UPSIDE: PROTEIN FOLDING IN CPU-HOURS WITH APPLICATIONS TO FORCE-UNFOLDING OF MEMBRANE PROTEINS. Tobin R. Sosnick</td>
<td></td>
</tr>
<tr>
<td>7:30 PM–9:30 PM</td>
<td>Workshop: Fluorescence Correlation Spectroscopy
Chair: Elizabeth Hinde, University of Melbourne, Australia</td>
<td>31ABC</td>
</tr>
<tr>
<td></td>
<td>MEASURING BARRIERS TO DIFFUSION IN LIVE CELLS. Enrico Gratton
MINING MOLECULAR NOISE VIA IMAGE CORRELATION SPECTROSCOPY TO MAP MOLECULAR TRANSPORT AND INTERACTIONS IN LIVING CELLS. Paul W. Wiseman
APPLICATION OF SPOT VARIATION FCS (SVFCS) ANALYSIS TO T CELL MEMBRANE DYNAMICS. Didier Marguet
PITCHING SINGLE FOCUS CONFOCAL SPECTROSCOPY TO MAP LIGHT AT A TIME WITH BAYESIAN NONPARAMETRICS. Steve Presse
MAPPING THE DIFFUSIVE ROUTE OF OLIGOMERIC TRANSCRIPTION FACTORS DURING DNA TARGET SEARCH. Elizabeth Hinde</td>
<td></td>
</tr>
<tr>
<td>8:00 PM–10:00 PM</td>
<td>SOBLA (The Society for Latinoamerican Biophysicists) Meeting</td>
<td>29C</td>
</tr>
</tbody>
</table>
Tuesday, February 18

Biophysical Society Business Meeting
8:00 AM - 9:00 AM, ROOM 28AB

Poster Viewing
8:00 AM - 4:00 PM, EXHIBIT HALL

Symposium
ATP-driven Maintenance of Protein Homeostasis
8:15 AM - 10:15 AM, BALLROOM 20A

Chair
Aaron Lucius, University of Alabama at Birmingham

No Abstract
8:15 AM
REVISITING THE ATP-DRIVEN CHAPERONIN GROEL-GROES REACTION CYCLE. Hideki Taguchi

1559-SYMP 8:45 AM
COTRANSLATIONAL FOLDING OF PROTEIN DOMAINS ON THE RIBOSOME. Marina Rodnina, Marija Liutkute, Meline Macher, Evan Mercier, Manisan kar Maiti, Ekaterina Samatova, Wolfgang Wintermeyer

1560-SYMP 9:15 AM
PROTEOSTASIS AND VIRAL EVOLUTION. Matthew D. Shoulders

1561-SYMP 9:45 AM
MOLECULAR MECHANISMS OF ENZYME CATALYZED PROTEIN UNFOLDING AND TRANSLOCATION BY CLASS 1 AAA+ MOTOR. Aaron L. Lucius

Symposium
Synthetic Biology
8:15 AM - 10:15 AM, BALLROOM 20D

Chair
Yvonne Chen, University of California, Los Angeles

1562-SYMP 8:15 AM
ENGINEERING DNA NANODEVICES TO ADVANCE BIOMOLECULAR ANALYSIS. Peng Yin

1563-SYMP 8:45 AM
MULTIPLEXABLE MOLECULAR CIRCUIT REPORTERS DESIGNED FOR NANOPORE SENSOR READOUT. Jeff Nivala

No Abstract
9:15 AM
PROTEIN FOLDING ON THE RIBOSOME - INSIGHTS FROM GENE EDITING AND STRUCTURAL BIOLOGY. John Christodoulou

1564-SYMP 9:45 AM
ENGINEERING NEXT-GENERATION T CELLS FOR CANCER IMMUNOTHERAPY. Yvonne Y. Chen

Platform
Protein Dynamics and Allostery II
8:15 AM - 10:15 AM, BALLROOM 20BC

Co-Chairs
Galía Debelouchina, University of California, San Diego
Naomi Latorraca, University of California, Berkeley

1565-PLAT 8:15 AM
DETERMINING HOW GPCR PHOSPHORYLATION PATTERNS AFFECT ARRESTIN-MEDIATED SIGNALING. Naomi R. Latorraca, Ron O. Dror

1566-PLAT 8:30 AM
SIMULATION OF SPONTANEOUS G PROTEIN ACTIVATION REVEALS A NEW INTERMEDIATE DRIVING GDP UNBINDING. Sukrit Singh, Xianqiang Sun, Kendall J. Blumer, Gregory Bowman

1567-PLAT 8:45 AM
UNCOVERING THE DYNAMICAL LANDSCAPE OF PSI DNA BINDING DOMAIN WITH MARKOV STATE MODELS. Emilia Pecora de Barros, Ozlem Demir, Rommie E. Amaro

1568-PLAT 9:00 AM
A MOLECULAR VIEW OF THE LIQUID TO GEL PHASE TRANSITION OF HETEROCHROMATIN PROTEIN HP1. Bryce Ackermann, Galía T. Debelouchina

1569-PLAT 9:15 AM
DEEP DOMAIN INSERTION PROFILING IS A WINDOW INTO INWARD RECTIFIER K+ CHANNEL DYNAMICS AND GATING. Willow Coyote-Maestas, Antonio Suma, David Nedrud, Vincenzo Carnevale, Daniel Schmidt

1570-PLAT 9:30 AM
THE INTERNAL ALLOSTERIC ARCHITECTURE OF DIHYDROFOLATE REDUCTASE. James W. McCormick, Samuel Thompson, Kimberly A. Reynolds

1571-PLAT 9:45 AM
A METHOD FOR THE INCORPORATION OF PROTEIN DYNAMICS INTO COMPUTATIONAL ENZYME DESIGN USING THE ROSETTA SOFTWARE SUITE. Bethany K. Kartchner, Ismail C. Kazan, S. Banu Ozkan, Jeremy H. Mills

1572-PLAT 10:00 AM
COMBINING BIOPHYSICAL EXPERIMENTS AND BIOMOLECULAR SIMULATIONS. Kresten Lindorff-Larsen

Platform
Membrane Physical Chemistry
8:15 AM - 10:15 AM, ROOM 23ABC

Co-Chairs
Arne Gericke, Worcester Polytechnic Institute
Chad Leidy, Universidad de los Andes, Colombian

1573-PLAT 8:15 AM
OIL-IN-WATER EMULSION DROPLETS AND MICROFLUIDIC TOOLS TO STUDY B CELLS POLARIZATION AND MECHANICS OF IMMUNOLOGICAL SYNAPSE. Léa Pinon, Judith Pineau, Lorraine Montel, Olivier Mesdjian, Paolo Pierobon, Jacques Fattaccioi

1574-PLAT 8:30 AM
CAROTENOID CONTENT AND COMPOSITION IN EXPONENTIAL, STATIONARY AND BIOFILM STATES OF STAPHYLOCOCCUS AUREUS AND THEIR INFLUENCE ON MEMBRANE BIOPHYSICAL PROPERTIES. Chad Leidy, Maria I. Perez, Rudy M. Méndez Reina, Steven Trier, Cornelia Herrfurth, Gerson-Dirceu Lopez, Chiara Carazzone, Ivo Feussner, Adriana Bernal, Manu Forero-Shelton, Elizabeth Suesca

Biophysical Society
1575-PLAT 8:45 AM MEMBRANE SOLUBILIZATION BY DISOBUTYLENE-MALEIC ACID (DIBMA) COPOLYMERS AND CHARACTERIZATION OF THE RESULTING NATIVE NANODISCS. Adrián H. Kopf, Barend O.W. Elenbaas, Martijn C. Koorengengevel, Cornelis A. van Walree, J. Antoinette Killian

1576-PLAT 9:00 AM TRANSIENT ELECTRODEFORMATION OF GIANT UNILAMELLAR VESICLES (GUVS) TO PROBE MEMBRANE VISCOSITY. Hammad A. Faizi, Rumiana Dimova, Petia M. Vlahovska

1577-PLAT 9:15 AM CURVED LIPID INTERFACES STUDIED WITH GRAZING INCIDENT SANS. Karolina Mothander, Tommy Nylander, Adrian Rennie

1578-PLAT 9:30 AM THE STRUCTURAL ORIGIN OF CHOLESTEROL INDUCED PHOSPHOINOSITIDE CLUSTERING. Kyungreem Han, Anne-Marie Bryant, Richard W. Pastor, Arne Gericke

1580-PLAT 10:00 AM USING AFM-NANO IR SPECTROSCOPY AND SUM-FREQUENCY GENERATION (SFG) VIBRATIONAL SPECTROSCOPY TO INVESTIGATE SICKLE CELL DISEASE. Alexander P. Fellows, Mike T.L. Casford, John N. Brewin, David C. Rees, Paul B. Davies, John S. Gibson

Platform: Protein-Small Molecule Interactions
8:15 AM - 10:15 AM, Room 24ABC

Co-Chairs
Karan Kapoor, University of Illinois at Urbana-Champaign
Matthias Preller, Medizinische Hochschule Hannover, Germany

1581-PLAT 8:15 AM MULTISTAGE INHIBITION OF THE MYOSIN XIV-BASED INVASION MOTOR IN THE MALARIA PARASITE AND RELATED PATHOGENS. Matthias Preller, Janna Ehlert

1582-PLAT 8:30 AM COMPUTING POSES OF LIGANDS BOUND TO PROTEINS USING MELD ACCELERATED MOLECULAR DYNAMICS. Cong Liu, Emiliano Brini, Alberto Perez, Ken A. Dill

1583-PLAT 8:45 AM CHARACTERIZING EVOLUTION OF BINDING SITES IN P-GLYCOPROTEIN THROUGH EXTENDED-ENSEMBLE DOCKING. Karan Kapoor, Sundarapandian Thangapandian, Emad Tahjhorshid

1584-PLAT 9:00 AM EXPLORING THE BINDING POTENCY AND SPECIFICITY OF SMALL MOLECULES AGAINST THE TRANSMEMBRANE AMYLOID PRECURSOR PROTEIN FRAGMENT, C99. Manuel Castro

1585-PLAT 9:15 AM TRAVEL Awardee STRUCTURAL BASIS OF NON-STEROIDAL ANTI-INFLAMMATORY DRUG (NSAID) TRANSPORT BY SERUM ALBUMIN. Mateusz P. Czub, Katarzyna B. Handing, Barat S. Venkataramany, Ivan G. Shabalin, Wladek Minor

1586-PLAT 9:30 AM USING REVERSE MICELLES TO EXTEND THE DETECTION LIMIT OF WEAK LIGAND-PROTEIN INTERACTIONS. Brian Fuglestad, Nicole E. Kerstetter, Sabrina Bedard, A. Joshua Wand

1587-PLAT 9:45 AM FLUORESCENCE-BASED BIOSENSOR TO QUANTIFY SMALL MOLECULE BINDING KINETICS WITH TARGET SPATIAL RESOLUTION. Joanna Deek, Thomas Weber, Ulrich Rant

1588-PLAT 10:00 AM STRUCTURALLY-DIVERSE NON-COVALENT ALLOSTERIC KRAS INHIBITORS. Cynthia Pagba, Amit K. Gupta, Michael McCarthy, Yong Zhou, Alemayehu A. Gorfe

Platform: Ion Channels, Pharmacology, and Disease
8:15 AM - 10:15 AM, Room 25ABC

Co-Chairs
Mercedes Alfonso-Prieto, University of Barcelona, Spain
Paul DeCaen, Northwestern University

1589-PLAT 8:15 AM MOLECULAR REGULATION OF POLYCYSTIN TRP CHANNELS. Thuy Vien, Jinhliang Wang, Leo C. Ng, Erhu Cao, Paul G. DeCaen

1590-PLAT 8:30 AM MODULATION OF GIRK CHANNEL BY PROTEIN KINASE C AND ITS ROLE IN ATRIAL FIBRILLATION. Kirin Gada, Aishwarya Chandrashekar, Yu Xu, Takeharu Kawano, Leigh D. Plant, Diomedes E. Logothetis

1591-PLAT 8:45 AM TRAVEL Awardee MOLECULAR MECHANISM OF MODULATION OF THE TMEM16A CHANNEL BY ANTHRACENE-9-CARBOXYLIC ACID: IMPLICATIONS FOR CHANNEL GATING. Ria Dinsdale, Angela Russell, Phillip J. Stansfeld, Paolo Tammaro

1592-PLAT 9:00 AM AN ALL-OPTICAL ELECTROPHYSIOLOGY SCREENING PLATFORM TO IDENTIFY NAV CHANNEL MODULATORS AS PAIN THERAPEUTICS. Hongkang Zhang, Kit Werley, Pin Liu, Gabriel Borja, Steven Nagle, Graham Dempsey, Owen McManus

1593-PLAT 9:15 AM DEMONSTRATION OF A PREDICTIVE MULTISCALE MODEL FOR DRUG-INDUCED ARRHYTHMOGENIC RISK. Kevin R. DeMarco, Pei-Chi Yang, Parya Aghasafari, John R.D. Dawson, Slava Bekker, Sergey Y. Noskov, Vladimir Yarov-Yarovoy, Igor Vorobyov, Colleen E. Clancy

1595-PLAT 9:45 AM FLUORESCENCE MICROSCOPE TOOLS TO STUDY THE HETEROMERIC ASSEMBLY OF AN ION CHANNEL. Gerardo Abbandonato, Alessandro Porro, Lorenzo Brocca, Anna Moroni

1596-PLAT 10:00 AM TARGETED DEUBIQUITINATION AS A GENERAL STRATEGY TO RESCUE TRAFFICKING-DEFICIENT ION CHANNELOPTHES. Scott A. Kanner, Zunaira Shuja, Papiya Choudhury, Ananya Jain, Henry M. Colecraft
Platform
Cardiac Muscle Regulation
8:15 AM - 10:15 AM, ROOM 30ABC

Co-Chairs
Osha Roopnarine, University of Minnesota Medical School
Danuta Szczesna-Cordary, University of Miami

1597-PLAT 8:15 AM
ACTIN-BINDING COMPOUNDS THAT AFFECT THE ATP-INDUCED DISSOCIATION OF THE ACTIN-MYOSIN COMPLEX. Osha Roopnarine, David D. Thomas

1598-PLAT 8:30 AM
A MOLECULAR DYNAMICS STUDY OF SMALL MOLECULES BOUND TO A FULL ATOMISTIC MODEL OF CARDIAC THIN FILAMENT AS A METHOD TO IDENTIFY POSSIBLE TREATMENTS FOR GENETIC CARDIOMYOPATHIES. Elango Munusamy, Steven D. Schwartz, Jill C. Tardiff

1599-PLAT 8:45 AM
FLEXIBLE SUBSTRATE IS KEY TO APPROPRIATE CONTRACTILE BEHAVIOUR OF HIPSC DERIVED CARDIOMYOCYTES. Eline Huetherost, Francis L. Burton, Nikolaj Gadegaard, Godfrey L. Smith

1600-PLAT 9:00 AM
TWO SMALL MOLECULE INHIBITORS OF MYOSIN DECREASE FORCE AND INCREASE RATES OF RELAXATION IN DEMEMBRANATED RAT LEFT VENTRICULAR TISSUE. Kristina B. Kooiker, Qing-Fen Gan, Ming Yu, Yuanna Cheng, Na Sa, Min Zhong, Tim McMillen, Farid Moussaiv-Harami, Michael Regnier

1601-PLAT 9:15 AM
TRAVERSE AWARDEE
MOLECULAR MECHANISMS AND THERAPEUTIC APPROACHES OF MYOFILAMENT GLYCATION AS A RESULT OF DIABETES. Maria Papadaki, Theerachat Kampaengsri, Raiza Bonomo, Chelsea White, Virginie Aubert, Greg Aubert, Stuart Campbell, Jonathan A. Kirk

1602-PLAT 9:30 AM
TRAVERSE AWARDEE
STOPPED-FLOW CALCIUM KINETICS OF HYPERTROPHIC CARDIOMYOPATHY-ASSOCIATED TROPONIN T MUTATIONS. Matthew M. Klass, Grace Hefferon, Garrett Hauck, Sarah Lehman, Jonathan P. Davis, Jill C. Tardiff

1603-PLAT 9:45 AM
DISTINCT MUTATION-SPECIFIC EFFECTS ON THIN FILAMENT ACTIVATION LEAD TO DILATED CARDIOMYOPATHY PHENOTYPE IN CELLS. Samantha K. Barrick, Lina Greenberg, Michael J. Greenberg

1604-PLAT 10:00 AM
TRAVERSE AWARDEE
DELETION OF THE N-TERMINUS OF MYOSIN ESSENTIAL LIGHT CHAIN (N-ELC) IN THE BACKGROUND OF HCM-A57G MUTATION IN DOUBLE MUTANT MICE RESCUES HYPERCONTRACTILE MYOSIN PHENOTYPE. Yoel H. Sitbon, Katarzyna Kazmierczak, Melanie Veerasamy, Jingsheng Liang, Danuta Szczesna-Cordary

Platform
Calcium Signaling
8:15 AM - 10:15 AM, ROOM 31ABC

Co-Chairs
Christopher Weber, University of Chicago
Lisha Yang, University of Nevada, Reno

1605-PLAT 8:15 AM
TARGETING CA2+ FLUXES IN ATRIAL FIBRILLATION. Wenli Dai, Stefano Morotti, Iva Moskowitz, Eleonora Grandi, Christopher Weber

1606-PLAT 8:30 AM
PKA-DEPENDENT PHOSPHORYLATION OF MITOCONDRIAL SK2 CHANNELS REGULATES MITOCONDRIAL CALCIUM UPTAKE IN VENTRICULAR CARDIOMYOCYTES. Shanna Hamilton, Radmila Terentyeva, Benjamin Martin, Karim Roder, Gideon Koren, Richard T. Clements, Dmitry Terentyev

1607-PLAT 8:45 AM
BETA-ADRENERGIC SIGNALING IN ISOLATED CARDIOMYOCYTES PROPAGATES SPATIALLY OVER TIME. Thomas R. Shannon, Dan J. Bare, Shayan Raofi, Kenneth S. Ginsburg, Donald M. Bers

1608-PLAT 9:00 AM
MITOCONDRIAL NCX INHIBITION REDUCES OXIDATIVE STRESS AND SR CALCIUM LEAK IN DIABETIC MYOCYTES. Sathya Velumurugan, Amanda Hoskins, Sarah Fleischer, Florin Despa, Sanda I. Despa

1609-PLAT 9:15 AM
SODIUM-CALCIUM EXCHANGE (NCX1) IS ESSENTIAL FOR ATRIOVENTRICULAR NODE AUTOMATICITY AND CONDUCTION, AS REVEALED THROUGH ATRIAL-SPECIFIC KNOCKOUT OF NCX1. Adina Hazan, Rui Zhang, Sabine Lotteau, Yen-Nien Lin, Devina Gonzalez, Kenneth D. Philipson, Michela Ottolia, Joshua I. Goldhaber

1610-PLAT 9:30 AM
STIM1 MAINTAINS STABLE PERIPHERAL COUPLING IN FULLY DIFFERENTIATED CONTRACTILE VASCULAR SMOOTH MUSCLE CELLS INDEPENDENTLY OF CA2+ STORE DEPLETION. Vivek Krishnan, Sher Ali, Prattish Thakore, Martin Johnson, Evan Yamasaki, Mohamed Trebak, Scott Earley

1611-PLAT 9:45 AM
MEMBRANE DEPOLARIZATION IS ESSENTIAL FOR TRIGGERING CA2+ INFLUX INTO ADRENAL CHROMAFFIN CELLS EXPOSED TO NANOSECOND ELECTRIC PULSES. Lisha Yang, Sophia Pierce, Gale L. Craviso, Normand Leblanc

1612-PLAT 10:00 AM

Subgroup Chairs Meeting
9:00 AM - 10:30 AM, ROOM 32A

Career Development Center Workshop
Looking Beyond Academia: Identifying Your Career Options Using MyIDP, LinkedIn & More
9:30 AM - 10:30 AM, ROOM 26A

Not sure where your professional future lies or how to approach the process in an organized and strategic manner? This presentation provides a framework and resources for moving forward with confidence towards the next step in your professional future. In addition, it will provide specific examples of how to build out your knowledge of a new potential career field and forge valuable connections that can facilitate a successful transition.

Exhibitor Presentation
Sophion Bioscience A/S
9:30 AM - 11:00 AM, ROOM 33A

Characterization of the Rapidly Desensitizing α7 Nicotinic Acetylcholine Receptor on the Qube, NaV1.1 Assays on Automated Electrophysiology Platforms and Developing NMDA Assays on the Qube System

Successful ion channel drug discovery requires the integration of multiple technologies and workflows. Sophion Bioscience is a leader in automated patch clamp technology, providing medium to high throughput, automated patch clamp to the pharmaceutical industry and universities. The QPatch and Qube are fully automated patch clamp systems, executing simultane-
uous 8, 16, 48 or 384 parallel patch clamp recordings in conjunction with computer controlled liquid handling and on-board cell handling. Sophion partners with other biotech companies to create robust, ion channel and electrophysiological workflows for drug development for ion channel targets. During this workshop, three industry speakers will provide insight into the use of these systems in the drug discovery process. Dr Sung Hoon Park will present Qube data to show the characterization of rapidly desensitizing α7 nicotinic acetylcholine receptor on the Qube. Next, Dr Shanti Amagasu from Amgen will present data from Amgen’s Nav1.1 work on automated electrophysiological platforms. Finally, Dr Abigail Marklew will present on the development of NMDA Assays on the Qube system.

Speakers
Sung Hoon Park, Field Application Scientist, Sophion Bioscience A/S
Shanti Amagasu, Senior Scientist, Amgen
Abigail Marklew, Scientist, Charles River Laboratories

Exhibits
10:00 AM - 4:00 PM, EXHIBIT HALL

Coffee Break
10:15 AM - 11:00 AM, EXHIBIT HALL

Symposium
10:45 AM - 12:45 PM, BALLROOM 20A

Chair
David Piston, Washington University in St. Louis and BPS President

No Abstract
10:45 AM
PAPER OF THE YEAR. Carlos R. Baiz

No Abstract
10:57 AM
IGNACIO TINOCO AWARD. Elliot L. Elson

No Abstract
11:09 AM
FOUNDDERS AWARD. Dan M. Herschlag

No Abstract
11:21 AM
MARGARET OAKLEY DAYHOFF AWARD. Valeria Vásquez

No Abstract
11:33 AM
MICHAEL AND KATE BÁRÁNY AWARD. Clifford P. Brangwynne

No Abstract
11:45 AM
AVANTI AWARD IN LIPIIDS. Akihiro Kusumi

No Abstract
11:57 AM
BIOPHYSICS IN HEALTH AND DISEASE. Alexandra C. Newton

No Abstract
12:09 PM
KAZUHIKO KINOSITA AWARD IN SINGLE MOLECULE BIOPHYSICS. Yale E. Goldman

No Abstract
12:21 PM
INNOVATION AWARD. G. Marius Clore

No Abstract
12:33 PM
ANATRACE MEMBRANE PROTEIN AWARD. Gunnar von Heijne

Platform
Optical Microscopy and Superresolution Imaging III
10:45 AM - 12:45 PM, BALLROOM 20BC

Co-Chairs
Anthony Fernandez, University of Southern California
Madoka Suzuki, Osaka University, Japan

1613-PLAT
10:45 AM
DUAL-FUNCTIONALIZED FLUORESCENT NANODIAMOND AS NANOHEATER AND NANOTHERMOMETER IN CELLS. Chongxia Zhong, Shingo Sotoma, Taras Plakhnotik, James Chen Yong Kah, Yoshie Harada, Madoka Suzuki

1614-PLAT
11:00 AM
TRAVEL AWARDEE
MULTI-PARAMETER FLUORESCENCE LIFETIME IMAGING MICROSCOPY (FLIM) FOR IMAGING METABOLISM IN THE INTESTINAL ORGANOIDS MODEL. Ruslan Dmitriev, Irina Okkelman

1615-PLAT
11:15 AM
NANOSCALE NUCLEI CLENS DYNAMICS AND SPATIAL ORGANIZATION OF THE MUSCULAR DYSTROPHY PROTEIN EMERIN. Anthony M. Fernandez, Markville B. Bautista, Fabien Pinaud

1616-PLAT
11:30 AM
SUPERRESOLUTION MAPPING OF INTRINSICALLY DISORDERED REGIONS OF NUCLEOPRINS IN SITU. Miao Yu, Nike Andrea Heinss, Sofya Mikhailova, Jun Hee Kang, Edward A. Lemke

1617-PLAT
11:45 AM
SUPERRESOLUTION TRACTION FORCE MAPPING WITH STRUCTURED ILLUMINATION MOLECULAR FORCE MICROSCOPY. Aaron Blanchard, Dale Combs, Joshua Brockman, Alexa L. Mattheyses, Khalid Salaita

1618-PLAT
12:00 PM
ACTIVE FEEDBACK 3D SINGLE-MOLECULE TRACKING. Shangguo Hou, Jack C. Exell, Kevin D. Welsher

1619-PLAT
12:15 PM
MAPPING PROTEIN COUNTS IN LIVE CELLS. Derek Thirstrup, Winfried Wiegrabe, Allen Institute for Cell Science Team

1620-PLAT
12:30 PM
N-COLOR SPATIAL CUMULANT ANALYSIS TO DETECT G-PROTEIN DYNAMICS. Derek Thirstrup, Winfried Wiegrabe, Allen Institute for Cell Science Team

1621-PLAT
10:45 AM
STRUCTURAL DETERMINANTS OF THE HYPERPOLARIZATION-DEPENDENT GATING OF HCN CHANNELS. Gucan Dai, William N. Zagotta

1622-PLAT
11:00 AM
GATING MECHANISM OF HYPERPOLARIZATION-ACTIVATED HCN PACEMAKER CHANNELS. Rosamary Ramon, Marta E. Perez, Peter H. Larsson

1623-PLAT
11:15 AM
CONSERVED VOLTAGE-DEPENDENT GATING ELEMENTS BETWEEN SHAKE AND HERG KV CHANNELS. Ana I. Fernández-Mariño, Kenton Swartz

1624-PLAT
11:30 AM
IKS ION-CHANNEL PORE CONDUCTANCE CAN RESULT FROM INDIVIDUAL VOLTAGE SENSOR MOVEMENTS. David Fedida, Maartje F. Westhoff, Jodene R. Elstrom, Christopher I. Murray, Emely Thompson
Cohesin is a motor that bends and compacts DNA. Maxim Molodtsov, Benedikt Bauer, Iain Davidson, Alipasha Vaziri, Jan-Michael Peters

Folding kinetics of multiple G-quadruplex telomeric DNA structures. Emil L. Kristoffersen, Andrea Coletta, Line Lund, Birgit Schiøtt, Victoria Birkedal

Platform
Protein Stability, Folding, and Chaperones
10:45 AM - 12:45 PM, Room 30ABC

Co-Chairs
Stephen Fried, Johns Hopkins University
Meredith Jackrel, Washington University

Ubiquitination modulates a protein energy landscape site-specifically with consequences for proteasomal degradation. Emma Carroll, Eric R. Greene, Andreas Martin, Susan Marqusee

Investigation of natural and synthetic aggregation inhibitors using microfluidic applications. Tom Scheidt, Jacqueline Carozza, Justin L. Benesch, Paolo Arosio, Sara Linse, Tuomas P. J. Knowles

Open and closed states of the AAA+ protease Lon provide the structural basis for distinct operational modes. Mia Shin, Cristina Puchades Garcia, Ananya Asmita, Eric Adjei, R. L. Wiseman, A. W. Karzai, Gabriel C. Landers
Career Development Center Workshop
Negotiation for Nerds: Negotiation Strategies and Tactics and Evaluating a Job Offer
11:30 AM - 12:30 PM, ROOM 26A

Funding Opportunities for Faculty at Primarily Undergraduate Institutions
12:00 PM - 1:30 PM, ROOM 29AB

Information regarding how PUI faculty can generate funds to support their undergraduate research laboratory will be covered in this session.

Moderators
Elizabeth Yates, United States Naval Academy
Kambiz Hamadani, California State University, San Marcos

Presenters
Wilson Francisco, NSF
Silvia Ronco, Research Corporation for Science Advancement
Joe Gindhart, NIH

Postdoc to Faculty Q&A
Transitions Forum and Luncheon
12:00 PM - 1:30 PM, ROOM 32AB

This question-and-answer luncheon is designed for postdocs finishing and actively applying for academic faculty positions. Discussion will be led by a panel of new faculty in basic science and/or medical school departments and experienced faculty who have served as department chairs and/or part of faculty search committees. Topics for discussion include how to prepare the curriculum vitae, the interview process, networking, how to negotiate the job offer, and advice for new faculty as they balance research with their department obligations. Pre-registration was required for lunch. If you are interested in attending and did not register in advance, you are welcome to participate in the discussion on a space-available basis.

Chairs
David Warshaw, University of Vermont
Stephen Cannon, University of California, Los Angeles

Panelists
Howard Young, University of Alberta, Canada
David Jones, University of Michigan
Sarah Hiessler, Ohio State University
Krishna Chinthalapudi, Ohio State University

The Biophysicist Editorial Board Meeting
1:00 PM - 3:00 PM, ROOM 30D

Climate Change We Want to See
Mitigating Unconscious Bias in the Biophysical Professions
1:15 PM - 2:45 PM, ROOM 28AB

Why does the same uncontrollable, subconscious feeling that tells us to flock to a flower and flee from an insect rear its head in our professional lives? Whether it’s instantaneous like a microaggression or spans decades like salary disparities, it matters. We are talking about bias. We all have it and we can never escape it fully, so let’s learn how to deal with it.

Heather Metcalf and Aspen Russell of the Association for Women in Science (AWIS) will be presenting an hour-long workshop on unconscious bias. In this workshop, participants will learn the history of bias, how it manifests in STEM, and lastly, how to work together to enact
solutions to actively combat against it so we don’t have to wait until after the year 2100 for women in biophysical professions to finally reach parity.

Speakers
Heather Metcalf, Association for Women in Science
Aspen Russell, Association for Women in Science

The Nuts and Bolts of Preparing Your NIH Grant
1:30 PM - 3:00 PM, ROOM 28CDE

The National Institutes of Health is the world's largest funder of fundamental biomedical research. You have likely spent years training and are now ready to apply for a NIH grant. But where do you start? At this session, program directors and officers with expertise in biophysics will be providing details on the NIH grant-making process as it currently stands, with a particular emphasis on grant writing and submission for new and early career investigators.

Moderator
Eric Sundberg, Emory University School of Medicine

Speaker
Michele McGuirl, NIH
Peter Preusch, NIH
Ruth Grossman, NIH
Eleazar Cohen, NIH
Manana Sukhareva, NIH

Exhibitor Presentation
HORIBA Scientific
1:30 PM - 3:00 PM, ROOM 33A

A New Imaging Camera Technology Featuring TDC In-Pixel Architecture for Simple Dynamic FLIM Imaging at Video Rates

A new wide-field video rate TCSPC imaging camera from HORIBA Instruments will be introduced. This camera is a CMOS manufactured array of single photon avalanche diode (SPAD) detectors, with each detection "pixel" having its own time-to-digital converter (TDC). Thus each pixel is capable of measuring precise fluorescence decays in time-domain, and the entire camera is providing a complete fluorescence lifetime image map (FLIM) with each frame of the camera. This new technology is much faster than traditional scanning FLIM modalities thus making it ideal for live cell FLIM dynamics.

Speaker
Cary Davies, Global Product Manager-Fluorescence Division, HORIBA Scientific

Snack Break
1:45 PM - 3:00 PM, EXHIBIT HALL

Poster Presentations and Late Posters
1:45 PM - 3:45 PM, EXHIBIT HALL

Career Development Center Workshop
Going Live: Preparing for Interviews in Industry and Academia
2:30 PM - 3:30 PM, ROOM 26A

Education Committee Meeting
3:00 PM - 5:00 PM, ROOM 30D

Symposium
Neuron–glia Interactions
4:00 PM - 6:00 PM, BALLROOM 20A

Chair
Kira Poskanzer, University of California, San Francisco

1661-Symp 4:00 PM
CONSEQUENCES OF ASTROGLIAL MODULATION OF EXTRACELLULAR CALCIUM CONCENTRATION ON NEURONAL FIRING INVOLVING SODIUM CHANNELS. Arlette Kolta

No Abstract 4:30 PM
DISSECTING THE METABOLIC RESPONSE TO NEURONAL STIMULATION. Gary Yellen

No Abstract 5:00 PM
NEURON-Glia INTERACTION IN THE LIGHT OF TWO-PHOTON IMAGING. Bruno Weber

1662-Symp 5:30 PM
OPTICALLY DECODING ASTROCYTIC NETWORKS. Kira Poskanzer

Symposium
Exocytosis & Autophagy
4:00 PM - 6:00 PM, BALLROOM 20D

Chair
Arun Anantharam, University of Michigan

1663-Symp 4:00 PM
ARCHITECTURE OF MAMMALIAN RETROMER BY SINGLE PARTICLE CRYO-EM. Amy K. Kendall, Boyang Xie, Peng Xu, Elad Binshtein, Hui Wei, Todd Graham, Terunaga Nakagawa, Lauren P. Jackson

1664-Symp 4:30 PM
EXOCYST TETHERING COMPLEX REGULATION OF SNARE PROTEINS AND MEMBRANE FUSION. Mary Munson, Dante Lepore, Michael Feyder, Guendalina Rossi, Alexander B. Czuchra, Lillian Kenner, Leonora Martinez-Nunez, Jacqueline M. Forson, Adam Frost, Patrick Brennwald

1665-Symp 5:00 PM
CA2+- AND PHOSPHOLIPID-DEPENDENT MECHANISMS FOR THE COUPLING OF SYNAPTIC VESICLE CONSUMPTION AND RE-SUPPLY RATES. Noa Lipstein-Thoms, Shuwen Chang, KunHan Lin, Holger Taschenberger, Nils Brose

1666-Symp 5:30 PM
PRE- AND POST-SYNAPTIC ROLES OF SYNAPTOTAGMIN-7 IN EXOCYTOSIS. Arun Anantharam

Platform
Intrinsically Disordered Proteins (IDP) and Aggregates II
4:00 PM - 6:00 PM, BALLROOM 20BC

Co-Chairs
Elisar Barbar, Oregon State University
Tanja Mittag, St. Jude Children's Research Hospital

1667-Plat 4:00 PM
GLOBAL DIMENSIONS REPORT ON PHASE SEPARATION OF LCDS WITH A WIDE RANGE OF SEQUENCE FEATURES. Anne Bremer, Erik W. Martin, Matthew J. Cuneo, Tanja Mittag

1668-Plat 4:15 PM
EMERGING FEATURES OF LINEAR MOTIF-BINDING HUB PROTEINS. Elisar J. Barbar, Nathan Jespersen
Platform
Membrane Active Peptides and Toxins
4:00 PM - 6:00 PM, ROOM 23ABC

Co-Chairs
Sónia Troeira Henriques, Queensland University of Technology, Australia
Marc-Antoine Sani, University of Melbourne, Australia

1669-PLAT 4:30 PM
A DESIGNER FG-NUP THAT RECONSTITUTES THE SELECTIVE TRANSPORT BARRIER OF THE NUCLEAR PORE COMPLEX. Alessio Fragasso, Henry de Vries, Eli van der Sluis, Erik Van der Giessen, Patrick R. Onck, Cees Dekker

1670-PLAT 4:45 PM
INSIGHTS INTO SPO-SPUBE-BSTRATE BEHAVIOR THROUGH STUDIES OF PDX1-SPO-INTERACTIONS. Grace A. Usher, Roman Rohac, Nafiseh Sabri, Tanja Mattig, Amie K. Boal, Scott A. Showalter

1671-PLAT 5:00 PM
DECIPHERING THE CONFORMATIONAL STATE OF FG-NUCLEOPORINS IN SITU. Sofya Mikhailova, Piau Siong Tan, Miao Yu, Edward A. Lemke

1672-PLAT 5:15 PM
MOLECULAR DETERMINANTS OF LARGE CARGO TRANSPORT INTO THE NUCLEUS. Joana Caria, Giulia Paci, Tiantian Zheng, Anton Zilman, Edward A. Lemke

1673-PLAT 5:30 PM
SPECIFIC SEQUENCE FEATURES REGULATE THE TRANSIENT BINDING BETWEEN FG NUCLEOPORINS AND CARGO COMPLEXES. Mohaddeseh Peyro, Mohammad Movafad

1674-PLAT 5:45 PM
COARSE-GRAINED MODELING OF NUCLEAR PORE COMPLEX MIMICS COMPRISING DESIGNER FG-NUCLEOPORINS. Henry de Vries, Alessio Fragasso, Eli O. van der Sluis, Cees Dekker, Erik Van der Giessen, Patrick R. Onck

Platform
Cardiac, Smooth, and Skeletal Muscle Electrophysiology and Regulation I
4:00 PM - 6:00 PM, ROOM 24ABC

Co-Chairs
Eleonora Grandi, University of California, Davis
Hailey Jansen, University of Calgary, Canada

1683-PLAT 4:00 PM
QUANTITATIVE CROSS-SPECIES PREDICTION OF B-ADRENERGIC RESPONSE IN VENTRICULAR MYOCYTES. Stefano Morotti, Haibo Ni, Lianguo Wang, Alex Fogli Ieppe, Donald M. Bers, Andrew G. Edwards, Crystal M. Ripplinger, Eleonora Grandi

1684-PLAT 4:15 PM
HEXOSAMINE PATHWAY INDUCES CARDIAC ARRHYTHMIA VIA MODULATION OF SUSTAINED POTASSIUM CURRENT MODULATION OF SUSTAINED POTASSIUM CURRENT. Matthieu Douard, Fanny Vaillant, Emma Abell, Pierre Dos Santos, Fabien Brette

1685-PLAT 4:30 PM
REGIONAL AND TEMPORAL CHANGES IN ATRIAL ELECTROPHYSIOLOGY CONTRIBUTE TO ATRIAL FIBRILLATION IN ANGIOTENSIN II INDUCED HYPERTENSION. Hailey J. Jansen, Robert A. Rose

1686-PLAT 4:45 PM
HIERARCHICAL PACEMAKER CLUSTERING WITHIN THE RABBIT SINOATRIAL NODE IS DRIVEN BY DYNAMIC INTERACTION BETWEEN THE COMPONENTS OF THE COUPLED-CLOCK SYSTEM. Xiaoyu Yuan, Lucas N. Ratajczyk, Francisco Alvarado, Hector H. Valdivia, Alexey V. Glukhov, Di Lang

1687-PLAT 5:00 PM
DYNAMIC REGULATION OF K AND CA CURRENTS IN LIPOTOXIC SUPRAVENTRICULAR ARRHYTHMIAS. Laura Martinez-Mateu, Claudia Ademuyiwa, Marco Lang, Paul Last, Phung N. Thai, Raghavender R. Gopireddy, Valery Timofeyev, Hannah A. Ledford, Ryan L. Woltz, Seojin Park, Claudia M. Moreno, Luis F. Santana, Alan C. Conti, Yang K. Xiang, Vladimir Yarov-Yarovoy, Ebenezer I. Nyonoh, Manuel F. Navedo, Dario C. Gerasimov, Shantanu Guha, Mohammadali Moghtadaei, Robert A. Rose

1688-PLAT 5:15 PM
FUNCTIONAL MICRODOMAIN OF ADENYLYL CYCLASE ISOFORM 1 CONTRIBUTES TO SINOATRIAL NODE AUTOMATICITY VIA B-ADRENERGIC RECEPTOR PATHWAY. Lu Ren, Phung N. Thai, Raghavender R. Gopireddy, Valery Timofeyev, Hannah A. Ledford, Ryan L. Woltz, Seojin Park, Claudia M. Moreno, Luis F. Santana, Alan C. Conti, Yang K. Xiang, Vladimir Yarov-Yarovoy, Ebenezer N. Yamoah, Manuel F. Navedo, Nipavan Chiamvimonvat

1689-PLAT 5:30 PM
ELECTRICAL REMODELLING CONTRIBUTES TO ATRIAL FIBRILLATION IN TYPE 2 DIABETES MELLITUS. Loryn J. Bohne, Hailey J. Jansen, Motahareh Moghtadaei, Robert A. Rose

1690-PLAT 5:45 PM
STABILIZER CELLS: A LESS-IS-MORE GENE THERAPY STRATEGY TO PREVENT CARDIAC ARRHYTHMIAS. Michael B. Liu, Silvia Priori, Zhilin Qu, James N. Weiss
1701-PLAT 4:30 PM

1702-PLAT 4:45 PM
A MICROFLUIDIC DEVICE FOR MULTIPLE ANALYSIS OF SINGLE EXOSOMES. Quentin Lubart, Sune Levin, Stephan Block, Silver Jøemetsa, Sriram Kesari, P. Amal, Fredrik Hook, Marta Bally, Fredrik Westerlund, Elin Ebsjöner

1703-PLAT 5:00 PM
DEVELOPMENT OF SIMPLE AND RAPID FABRICATIONS FOR SOLID-STATE NANOPORES. Natsumi Takai, Masaki Matsuhashi, Kan Shoie, Tei Maki, Ryuji Kawano

1704-PLAT 5:15 PM
DIRECT IDENTIFICATION AND COUNTING OF MiRNA IN SINGLE CELLS BY TRANSIENT HYBRIDIZATION AND KINETIC FINGERPRINTING. Karen Montoya, Lidan Li, Greg Shelley, Evan Keller, Nils G. Walter

1705-PLAT 5:30 PM
INVERSE HEXAGONAL LIPID PHASE ENCAPSULATING SIRNA IN LIPID NANOPARTICLES. Roy Pattipeiluhu

1706-PLAT 5:45 PM
POLYMER FORCE CLAMPS FOR THE MECHANICAL UNFOLDING OF TARGET MOLECULES. Haibin Su, Joshua Brockman, Aaron Blanchard, Travis Meyer, Yuxin Duan, Zheng Liu, Jing Zhao, Yang Liu, Victor Pui-Yan Ma, Kornelia Galior, Richard B. Dyer, Yonggang Ke, Khalid Salaita

Platform
Cytoskeletal Assemblies, Dynamics, Transport, and Motility

4:00 PM - 6:00 PM, ROOM 31ABC

Co-Chairs
Rae Anderson, University of San Diego
Wolfgang Losert, University of Maryland

1707-PLAT 4:00 PM
EXTRACTION OF ACTIVE RHOGTPASES BY RHODGI REGULATES SPATIO-TEMPORAL PATTERNING OF RHOGTPASES. Adriana Golding, Ilaria Visco, Peter Bieling, William Bement

1708-PLAT 4:15 PM
SHAPING THE CYTOSKELETON WITH ELECTRIC FIELDS. Wolfgang Losert

1709-PLAT 4:30 PM
BRIDGING MICROTUBULES PROMOTE CENTERING OF THE KINETOCHORES BY LENGTH-DEPENDENT PULLING FORCES. Agneza Bosilj, Mihaela Jagric, Jelena Martincic, Patrik Risteski, Nenad Pavin

1710-PLAT 4:45 PM
MACROMOLECULAR CROWDING MODULATES THE ORGANIZATION AND STRUCTURE OF ACTIN BUNDLES CROSSLINKED BY FASCIN AND ALPHA-ACTININ. Jinho Park, Myeongsang Lee, Briana Lee, Nicholas Castaneda, Lauren Greinert, Christoph Held, Hauke Harms, Thomas Maskow

1711-PLAT 5:00 PM
TAU DIFFERENTIALLY REGULATES THE DYNAMIC LOCALIZATION OF EARLY ENDOSOMES AND LYSOSOMES. Linda Balabanian, Christopher L. Berger, Adam G. Hendricks

1712-PLAT 5:15 PM
DYNAMICS AND OPTIMAL BEHAVIORAL STRATEGIES OF MOTILE NETWORKS. Ingmar H. Riedel-Kruse, Nate Cira
TRIGGERING SALT-INDUCED CONTRACTION OF CYTOSKELETAL NETWORKS WITH MICROFLUIDICS. Shea N. Ricketts, Pawan Khanal, Michael J. Rust, Moumita Das, Jennifer L. Ross, Rae M. Robertson-Anderson

EFFECT OF CYTOPLASM CONCENTRATION ON CYTOSKELETON DYNAMICS. Arthur T. Molines, Joel Lemiere, Gohta Goshima, Fred Chang

Dinner Meet-Ups
6:00 PM - 6:30 PM, SOCIETY BOOTH/LOBBY G
Interested in making new acquaintances and experiencing the cuisine of San Diego? Meet at the Society Booth today at 6:00 PM, where a BPS member will coordinate dinner at a local restaurant.

Publications Committee Meeting
6:00 PM - 10:00 PM, HILTON, COBALT 500AB

Workshop
Design and Constructing Quantitative Biosensors
7:30 PM - 9:30 PM, ROOM 24ABC

Chair
Edward Lemke, IMB Mainz, Germany

FOLDING-BASED ELECTROCHEMICAL BIOSENSORS: A GENERALIZABLE APPROACH TO REAL-TIME, IN-VIVO MOLECULAR MEASUREMENTS. Kevin W. Plaxco

TMP-TAG: A CHEMICAL SURROGATE TO THE FLUORESCENT PROTEINS FOR LIVE CELL IMAGING. Virginia W. Cornish

Workshop
Chemical Biology Tools for Biophysics
7:30 PM - 9:30 PM, ROOM 25ABC

Chair
Henry Colecraft, Columbia University

ADJUSTING MAIN-CHAIN CHEMISTRY IN ION CHANNEL VOLTAGE-SENSORS. Christopher A. Ahern

INSERTION OF SYNTHETIC PEPTIDES INTO PROTEINS BY TANDEM PROTEIN TRANS-SPlicing. Stephan A. Pless

GENETICALLY-ENCODED TAGS FOR CORRELATIVE FLUORESCENCE AND ELECTRON MICROSCOPY. Kimberly Beatty

No Abstract
CONTROLLING THE FATE AND FUNCTION OF PROTEINS WITH PHOTO-PHARMACOLOGY. Dirk Trauner

Workshop
Simulation Strategies for Large Scales
7:30 PM - 9:30 PM, ROOM 30ABC

Chair
Tobin Sosnick, University of Chicago

WEIGHTED ENSEMBLE SIMULATION: TACKLING THE CHALLENGES OF LONG-TIMESCALE KINETICS. Lillian Chong

ON THE ALGORITHMIC IDENTIFICATION OF OPTIMAL COARSE-GRAINED REPRESENTATIONS OF BIOMOLECULES. Raffaello Potestio

GOING BIG: MILLION ATOM SIMULATIONS OF RIBOSOMES AND BILLION ATOM SIMULATIONS OF CHROMATIN. Karissa Y. Sanbonmatsu

CHALLENGES TO THE CREATION OF DYNAMIC STRUCTURAL MODELS OF INTRACELLULAR SYSTEMS. Adrian H. Elcock

Workshop
Fluorescence Correlation Spectroscopy
7:30 PM - 9:30 PM, ROOM 31ABC

Chair
Elizabeth Hinde, University of Melbourne, Australia

MEASURING BARRIERS TO DIFFUSION IN LIVE CELLS. Enrico Gratton

APPLICATION OF SPOT VARIATION FCS (SVFCS) ANALYSIS TO T CELL MEMBRANE DYNAMICS. Yannick Hamon, Anne-Marie Sartre, Anthony Formisano, Sébastien Mailfert, Didier Marguet, Hai-Tao He

PITCHING SINGLE FOCUS CONFOCAL ANALYSIS ONE PHOTON AT A TIME WITH BAYESIAN NONPARAMETRICS. Steve Presse

MAPPING THE DIFFUSIVE ROUTE OF OLIGOMERIC TRANSCRIPTION FACTORS DURING DNA TARGET SEARCH. Elizabeth Hinde

SOBLA (The Society for Latinoamerican Biophysicists) Meeting
8:00 PM - 10:00 PM, ROOM 29C

No Abstract
TARGETED (DE)UBIQUITINATION OF ION CHANNELS: FROM MECHANISTIC INSIGHTS TO TRANSLATION. Henry Colecraft
TUESDAY POSTER SESSIONS
1:45 pm–3:45 pm, Exhibit Hall

Below is the list of poster presentations for Tuesday of abstracts submitted by October 1. The list of late abstracts scheduled for Tuesday is available in the Program Addendum, and those posters can be viewed on boards beginning with LB.

Posters should be mounted beginning at 6:00 pm on Monday and removed by 4:00 pm on Tuesday evening. Posters will be on view until 10:00 pm the night before presentation. Poster numbers refer to the program order of abstracts as they appear in the online Abstract Issue. Board numbers indicate where boards are located in the Exhibit Hall.

On Tuesday, the Exhibit Hall will close completely at 4:00 pm to accommodate the tear down of exhibit. ALL POSTERS MUST BE REMOVED BY 4:00 pm. Posters remaining on the boards after this time will be discarded. Posters being presented on Wednesday may be mounted beginning at 7:00 am on Wednesday.

Odd-Numbered Boards 1:45 pm–2:45 pm | Even-Numbered Boards 2:45 pm–3:45 pm

<table>
<thead>
<tr>
<th>Board Numbers</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 – B28</td>
<td>Protein Structure and Conformation III</td>
</tr>
<tr>
<td>B29 – B41</td>
<td>Protein Structure, Prediction, and Design II</td>
</tr>
<tr>
<td>B42 – B62</td>
<td>Membrane Protein Dynamics II</td>
</tr>
<tr>
<td>B63 – B74</td>
<td>Membrane Protein Folding</td>
</tr>
<tr>
<td>B75 – B97</td>
<td>Intrinsically Disordered Proteins (IDP) and Aggregates III</td>
</tr>
<tr>
<td>B98 – B114</td>
<td>DNA Replication, Recombination, and Repair</td>
</tr>
<tr>
<td>B115 – B134</td>
<td>Chromatin and the Nucleoid I</td>
</tr>
<tr>
<td>B135 – B155</td>
<td>Membrane Active Peptides and Toxins II</td>
</tr>
<tr>
<td>B156 – B186</td>
<td>Membrane Structure II</td>
</tr>
<tr>
<td>B187 – B208</td>
<td>Protein-Lipid Interactions: Structures</td>
</tr>
<tr>
<td>B209 – B226</td>
<td>Mechanosensation II</td>
</tr>
<tr>
<td>B227 – B251</td>
<td>Exocytosis and Endocytosis</td>
</tr>
<tr>
<td>B252 – B267</td>
<td>Calcium Signaling I</td>
</tr>
<tr>
<td>B268 – B282</td>
<td>Excitation-Contraction Coupling II</td>
</tr>
<tr>
<td>B283 – B309</td>
<td>TRP Channels</td>
</tr>
<tr>
<td>B310 – B334</td>
<td>Ion Channel Regulatory Mechanisms II</td>
</tr>
<tr>
<td>B335 – B365</td>
<td>Cardiac Muscle Mechanics and Structure</td>
</tr>
<tr>
<td>B366 – B392</td>
<td>Kinesins and Dyneins</td>
</tr>
<tr>
<td>B393 – B412</td>
<td>Myosins</td>
</tr>
<tr>
<td>B413 – B429</td>
<td>Cytoskeletal Assemblies and Dynamics</td>
</tr>
<tr>
<td>B430 – B448</td>
<td>Membrane Pumps, Transporters, and Exchangers II</td>
</tr>
<tr>
<td>B449 – B475</td>
<td>Mitochondria in Cell Life and Death</td>
</tr>
<tr>
<td>B476 – B488</td>
<td>Systems Biology and Disease</td>
</tr>
<tr>
<td>B489 – B504</td>
<td>Molecular and Cellular Neuroscience</td>
</tr>
<tr>
<td>B505 – B510</td>
<td>Sensory Neuroscience</td>
</tr>
<tr>
<td>B511 – B532</td>
<td>Computational Methods and Bioinformatics II</td>
</tr>
<tr>
<td>B533 – B542</td>
<td>Optical Microscopy and Superresolution Imaging III</td>
</tr>
<tr>
<td>B543 – B559</td>
<td>Single-Molecule Spectroscopy I</td>
</tr>
<tr>
<td>B560 – B582</td>
<td>Optical Spectroscopy: CD, UV-VIS, Vibrational, Fluorescence</td>
</tr>
<tr>
<td>B583 – B601</td>
<td>Biosensors II</td>
</tr>
<tr>
<td>B602 – B618</td>
<td>Biomaterials</td>
</tr>
</tbody>
</table>

It is the responsibility of the poster presenters to remove print materials from the board after their presentations. Please do not leave materials or belongings under poster boards or in the poster area. Posters will not be collected or stored for pick-up at a later time. The Biophysical Society is not responsible for any articles left in the poster area.
<table>
<thead>
<tr>
<th>Session</th>
<th>Board</th>
<th>Abstract Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Structure, Prediction, and Design II
(Boards B29 - B41)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1758-Pos</td>
<td>B28</td>
<td>BOARD B28</td>
<td>FLUORESCENT STUDY ON TETANUS NEUROTOXIN. Pierce O'Neill, Alexey Ladokhin, Liskin Swint-Kruse, Michael Baldwin</td>
</tr>
<tr>
<td>1759-Pos</td>
<td>B29</td>
<td>BOARD B29</td>
<td>A DUAL-LIGAND-MODULABLE FUNCTIONAL PROTEIN BASED ON LIGAND-INDUCIBLE GREEN FLUORESCENT PROTEIN AND CALMODULIN. Yoh Shitashima, Atsushi Miyawaki</td>
</tr>
<tr>
<td>1760-Pos</td>
<td>B30</td>
<td>TRAVEL Awardee</td>
<td>COMPUTATIONAL DESIGN OF PEPTIDES BOUND TO THE MAJOR HISTOCOMPATIBILITY COMPLEX CLASS II. Rodrigo Ochoa, Alessandro Laio, Pilar Cossio</td>
</tr>
<tr>
<td>1761-Pos</td>
<td>B31</td>
<td>BOARD B31</td>
<td>COMPUTATIONAL DESIGN OF TRANSMEMBRANE PEPTIDES THAT BIND AND INHIBIT THE ERYTHROPOIETIN RECEPTOR. Marco Mravic, William DeGrado</td>
</tr>
<tr>
<td>1762-Pos</td>
<td>B32</td>
<td>BOARD B32</td>
<td>ANALYSIS OF SOFTWARE METHODS FOR ESTIMATION OF PROTEIN-PROTEIN RELATIVE BINDING AFFINITY. Kyle Martin, Jagdish Patel, Tawny Gonzalez</td>
</tr>
<tr>
<td>1763-Pos</td>
<td>B33</td>
<td>BOARD B33</td>
<td>RANKING DOCKING MODELS BY COEVOLUTION ANALYSIS. José Fiorote</td>
</tr>
<tr>
<td>1764-Pos</td>
<td>B34</td>
<td>BOARD B34</td>
<td>APPLICATION OF DOCKING TO PROTEIN MODELS. Amar Singh, Taras Dauzhkena, Petras Kundrotas, Michael J.E. Sternberg, Ilya Vakser</td>
</tr>
<tr>
<td>1765-Pos</td>
<td>B35</td>
<td>BOARD B35</td>
<td>INSIGHTS INTO POLYREACTIVITY VIA HIGH-THROUGHPUT BIOPHYSICAL CHARACTERIZATION OF ANTIBODY SEQUENCES. Christopher T. Boughter, Marta T. Borowska, Benoit Roux, Erin J. Adams</td>
</tr>
<tr>
<td>1766-Pos</td>
<td>B36</td>
<td>BOARD B36</td>
<td>SEMI-EXPlicit SOLVATION IMPROVES LIGAND BINDING SITE DESIGN IN AN ALLOSTERIC PROTEIN. Zion R. Perry, Anum A. Glasgow, Tanja Kortemme</td>
</tr>
<tr>
<td>1767-Pos</td>
<td>B37</td>
<td>BOARD B37</td>
<td>FLEXIBLE DOCKING BETWEEN ENZYME AND ITS INHIBITOR USING MULTICANONICAL MD SIMULATIONS AND BINDING FREE ENERGY CALCULATIONS. Narutoshi Kamiya, Gert-Jan Bekker</td>
</tr>
<tr>
<td>1768-Pos</td>
<td>B38</td>
<td>BOARD B38</td>
<td>IMPROVING THE SPEED AND GENERALITY OF MACHINE LEARNING APPROACHES TO LIGAND-BINDING PROTEIN DESIGN. Andrew Tao, Emilia Pecora de Barros, Rommie E. Amaro</td>
</tr>
<tr>
<td>1769-Pos</td>
<td>B39</td>
<td>BOARD B39</td>
<td>INSIGHTS IN THE BINDING MECHANISM OF GC7 IN SULFOLOBUS SOLFATARIUS: TOWARDS THE DESIGN OF NEW INHIBITORS OF THE DEOXYHYPUSSINE SYNTHASE. Mattia D'Agostino, Alice Romagnoli, Daniele Di Marino, Anna La Teana</td>
</tr>
<tr>
<td>1770-Pos</td>
<td>B40</td>
<td>BOARD B40</td>
<td>BIG DATA FROM SPARSE DATA: DIVERSE SCIENTIFIC BENCHMARKS REVEAL OPTIMIZATION IMPERATIVES FOR IMPLICIT MEMBRANE ENERGY FUNCTIONS. Rebecca F. Alford, Jeffrey J. Gray</td>
</tr>
<tr>
<td>1771-Pos</td>
<td>B41</td>
<td>BOARD B41</td>
<td>INACCURACIES IN CIRCULAR DICHRoISM SPECTROSCOPY BASED SECONDARY STRUCTURE ESTIMATES. Gabor Nagy, Helmut Grubmuller</td>
</tr>
</tbody>
</table>
1785-Pos Board B55 Travel Awardee Pore Assembly of Bacterial Alpha Pore-Forming Toxin (APFT), cytolysin A on Lipid Membranes. Satyaghosh Maurya, Sandhya Vishweshwaranah, Ganapathy Ayappa, Rahul Roy

1786-Pos Board B56 Quantitative Comparisons of Competing Models of Autotransporter Passenger-Domain Secretion. David Ryoo, Marcella O. Rydmark, Yui Tik Pang, Karl Lundquist, Dirk Linke, James C. Gumbart

1787-Pos Board B57 An Investigation of the YidC-Mediated Membrane Insertion of a Pf3 Coat Protein Using MD Simulations. Adithya Polasa, Jeevapani J. Hettige, Kalyan Immidissetty, Mahmoud Moradi

1788-Pos Board B58 The Role of Salt Bridge Switch in G Protein-Coupled Receptor Signaling. Libin Ye

1790-Pos Board B61 Dynamic Lateral Gate of Bama and Tama Regulated by Potra Domains. Jinchan Lui, James C. Gumbart

1791-Pos Board B62 Mechanistic Picture for Structural Transition of P-Glycoprotein during the Transport Cycle. Sepehr Dehghanighahnaviye, Karan Kapoor, Emad Tajkhorshid

1792-Pos Board B63 Transmembrane Domains of Ion Channels as “Anomalous Zones” of Cells: Confined Dynamics of Water in TRPV1 Pore. Yuri A. Trofimov, Nikolay A. Krylov, Roman G. Efremov

Membrane Protein Folding (Boards B63 - B74)

1793-Pos Board B64 Travel Awardee Energetics of Dimeric FKPA Binding to a Native Unfolded Membrane Protein Client. Michaela A. Roskopf, Dagan C. Marx, Karen G. Fleming

1794-Pos Board B65 Interrogating the Hybrid-Barrel Model of Bacterial Outer Membrane Protein Biogenesis by the Bam Complex. Katie M. Kuo, Karl Lundquist, James C. Gumbart

1795-Pos Board B66 Beta-Barrel Membrane Protein Folding into Nanodiscs. DeeAnn Asamoto

1796-Pos Board B67 Linking Folding Landscape with Function in the Human Mitochondrial VDAC2. Shashank R. Srivastava, Radhakrishnan Mahalakshmi

1797-Pos Board B68 Equilibrium Sampling Between Membrane Interior and the Aqueous Secyeg Channel Departs from the Biological Hydrophobicity Scale. Denis G. Knyazev, Roland Kuttner, Mirjam Zimmermann, Peter Pohl

1798-Pos Board B69 Sodium Ions Hinder the Membrane Insertion of the Ph-Low Insertion Peptide. Justin M. Westerfield, Chitrak Gupta, Haden L. Scott, Yujie Ye, Alayna Cameron, Blake Mertz, Francisco N. Barrera

1799-Pos Board B70 Mechanical Unfolding of Transporters. Samuel A. Gulaider Breen, Justin E. Molloy, Serni Garcia-Manyes, Paula J. Booth

1800-Pos Board B71 Interplay Between Amino Acid Sequences and Lipid Compositions in the GXXXG-Mediated Parallel Self-Association of Transmembrane Helices as Revealed by Single-Pair FRET. Takayuki Morise, Yoshiaki Yano, Katsumi Matsuzaki

1801-Pos Board B72 Determination of a Biological Hydrophobicity Scale for Seca-Guided Insertion of Single-Span Membrane Proteins. Stephen H. White, Eric Lindner

1803-Pos Board B74 The Peripheral Outer Membrane Protein BamB from E. coli Binds in a Random Surface Orientation to Lipid Membranes. A Site-Directed Fluorescence Study. Lisa Gerlach, Joerg H. Kleinschmidt

1804-Pos Board B75 Rhodopsin Oligomerization in Synthetic Lipid Bilayers and Native Cellular Membranes as Studied by Deer of a Spin-Labeled Retinal Analog. Maxim A. Voinov, Sergey Miklisiyants, Vladislav Perelygin, Melanie M. Chestnut, Rachel Munro, Leonid S. Brown, Vladimir Ladizhansky, Alex I. Smirnov

Intrinsically Disordered Proteins (IDP) and Aggregates III (Boards B75 - B97)

1805-Pos Board B76 Tuning the Aggregation of GhG by Changing Sample Concentration and Ph. Morgan Hesser, Lavenia Thurs, David DiGuiseppi, Todd Lewis, Nicolas Alvarez, Reinhard Schweitzer-Stenner

1806-Pos Board B77 The Role of Polymorpholyte Regions of Intrinsically Disordered Proteins in the Formation of Membraneless Organelles. Alexander V. Fonin, Iuliia A. Antfeeva, Olesya G. Shironok, Vladimir N. Uversky, Irina M. Kuznetsova, Konstantin K. Turoverov

1807-Pos Board B78 The Study of Selected Complexes of Human Serum Albumin with Amyloid Beta Peptides and Human Cystatin C. Adriana Żyła, Maciej Kozak, Irina D. Szymanska, Michal Taube, Augustyn Molinski, Igor Zhukov, Alexander Kuklin, Aneta Ladzihansky, Maciej Kozak

1808-Pos Board B79 Quantitative Proteomics Indicate a Strong Correlation Between Mitotic Phosphorylation/DePhosphorylation and Structural Properties of Substrate Domains. Hiyora Yamazaki, Hidetaka Kosako, Shige H. Yoshimura

1809-Pos Board B80 Glutamine Side-Chain to Main Chain Hydrogen Bonds Can Be Used to Design Single Alpha-Helices that are Stable at Room Temperature. Albert Escobedo, Busra Topal, Micha Kunze, Juan Aranda, Giulio Chiesa, Bahareh Eftekharzadeh, Roberta Pierattelli, Isabella C. Felli,
TARGETING INTRINSICALLY DISORDERED PROTEINS VIA NONSPECIFIC BINDING. Jianhan Chen

INTERACTION OF BENZOTHIAZOLE DYE THIOFLAVIN T WITH ACIDIC PROTEIN PROTHYMOsin ALPHA. Iuliiia A. Antifeeva, Alexander V. Fonin, Anna I. Sulatskaya, Maksim M. Karasev, Irina M. Kuznetsova, Konstantin K. Turoverov

TETRAMERIC A-SYNUCLEIN STABILITY IN A MIXED METAL ENVIRONMENT. Ricardo D. Fernandez, Heather R. Lucas

MOLECULAR FORCES IN THE LIQUID-LIQUID PHASE SEPARATION OF BIO MOLECULES. Timothy J. Welsh, Georg Krainer, Tuomas P. Knowles

KINETICS OF AGGREGATION USING SINGLE-MOLECULE FLUORESCENCE TECHNIQUES TO DETERMINE NUCLEATION AND ELONGATION RATE CONSTANTS OF AMYLOID GROWTH. Kanchan Garai, Subhas C. Bera, Shamasree Ghosh, Timir B. Sil

DNA Replication, Recombination, and Repair (Boards B98 - B114)

PROBING AND VISUALIZATION OF THE RECVQ HELICASE-INDUCED DNA BINDING MODE CHANGE OF THE BACTERIAL SINGLE-STRANDED DNA BINDING (SSB) PROTEIN. Zoltan J. Kovacs, Ágnes Hubert, Veronika Baráth, Lili Farkas, Yeonbee Seol, Keir C. Neuman, Gabor Harami, Mihaly Kovacs

ASSEMBLY AND BINDING OF E COLI RECOR PROTEINS TO SSB C TERMINAL TAILS. Min Kyung Shin, Alexander G. Kozlov, Timothy M. Lohman

SYNERGISTIC COORDINATION OF CHROMATIN TORSIONAL MECHANICS AND TOPOISOMERASE ACTIVITY. Tung T. Le, Xiang Gao, Seong Ha Park, Jaeyoon Lee, James T. Inman, Joyce H. Lee, Jessica L. Killian, Ryan P. Badman, James M. Berger, Michelle D. Wang

SINGLE-MOLECULE SUPER-LOCALIZATION OPTICAL MICROSCOPY REVEALS HOW BARRIERS TO DNA REPlication ARE RESOLVED IN LIVING CELLS. Mark C. Leake

IDENTIFYING EVOLUTIONARILY CONSERVED FEATURES OF NHEJ FROM PROKARYOTES TO EUKARYOTES USING SINGLE-MOLECULE FLUORESCENCE TECHNIQUES TO DETERMINE NUCLEATION AND ELONGATION RATE CONSTANTS OF AMYLOID GROWTH. Kanchan Garai, Subhas C. Bera, Shamasree Ghosh, Timir B. Sil

DNA Replication, Recombination, and Repair (Boards B98 - B114)
Chromatin and the Nucleoid I
(Boards B115 - B134)

1845-Pos Board B115
THE CURIOUS CASE OF STRONGLY BENT DNA. Alexey V. Onufriev

1846-Pos Board B116
SEQUENCE-MODULATED ELECTROSTATICS OF POLY-PEPTIDES-DNA INTERACTIONS. Raju Timsplita, Xiangyun Qiu

1847-Pos Board B117
IN VITRO, IN VIVO CHARACTERIZATION OF STRUCTURE-BASED NUCLEOSOME BINDING PEPTIDES. Kaian A. Teles, Vinicius Fernandes, Isabel Torres, Manuela Leite, Vincenzo Lobbio, Cesar Grisolia, Hugo van Ingen, Werner Treptow, Guilherme Santos

1848-Pos Board B118
STRUCTURAL AND SINGLE-MOLECULE STUDIES ON THE ASSEMBLY MECHANISM OF HISTONE H3-H4 BY FISSION YEAST AAA’ATPASE ABO1. Yujin Kang, Ja Yi Lee

1849-Pos Board B119
HISTONE-DNA INTERACTIONS IN THE ARCHAEOON METHANOALDODOCUCUS JANNASCHII. Alice E. Carty, Finn Werner, Justin E. Molloy

1850-Pos Board B120
NUCLEOSOME ASSEMBLY STATE GOVERNS HISTONE H3 TAIL CONFORMATION AND DYNAMICS. Emma A. Morrison, Lokesh Baweja, Jeffery M. Weresczynski, Catherine A. Musselman

1851-Pos Board B121
THE EFFECT OF H2A.B HISTONE VARIANT SUBSTITUTION ON NUCLEOSOME DYNAMICS AND INTERACTIONS. Havva Kohestani, Jeffery Weresczynski

1852-Pos Board B122
THE CHARACTERIZATION OF HUMAN TESTIS-SPECIFIC HISTONE VARIANT H2BFW ON NUCLEOSOME STABILITY AND ITS FUNCTIONAL ROLE IN SPERMATOTOGENESIS. Yu Hin Pang, Dongbo Ding, Xulun Sun, Toyotaka Ishibashi

1853-Pos Board B123
THE EFFECTS OF THE LINKER HISTONE BINDING STATES ON CHROMATOSOME DYNAMICS. Dustin C. Woods, Jeffery Weresczynski

1854-Pos Board B124
PIECES OF THE PUZZLE: INDIVIDUAL HFACT SUBDOMAINS COORDINATE TO REMODEL NUCLEOSOMES. Micah J. McCauley, Ran Hua, Emily Navarrete, Nicole A. Becker, Qi Hu, Uma Muthurajan, Ioulia Rouzina, Karolin Luger, Georges Mer, L. James Maher, Nathan Israeloff, Mark C. Williams

1855-Pos Board B125
THE EFFECT OF HISTONE H4 K20 METHYLATION ON CHROMATIN COMPACTION. Nesreen Elathram, Galla T. Debelsouchara

1856-Pos Board B126
COMPUTATIONAL STUDY OF STRUCTURE-BASED NUCLEOSOME BINDING PEPTIDES. Kaian Teles, Vinicius Fernandes, Isabel Torres, Werner Treptow, Guilherme Santos

1857-Pos Board B127

1858-Pos Board B128
EXPLORING INTERACTIONS OF NUCLEOSOME VIA INTERACTOME ANALYSIS AND INTEGRATIVE MODELING. Yunhui Peng, Yaroslav Markov, David Landsman, Anna R. Panchenko

1859-Pos Board B129
POSITIVE TORSIONAL STRESS ON DNA ENHANCES UNWRAPPING OF NUCLEOSOMAL DNA. Hisashi Ishida, Hidetoshi Kono

1860-Pos Board B130
BUNGEE JUMPING INTO ELASTICITY OF FRAGILE SITES. Yamini Dalal

1861-Pos Board B131
DETECTION OF NUCLEOSOME-RCC1 COMPLEXES USING NANOPORES. Sumanth K. Maheshwaram, Jyoti Sharma, Gautam V. Soni

1862-Pos Board B132
TRAVEL AWARDEE
SINGLE-MOLECULE INVESTIGATION OF PRC2 NON-ADJACENT NUCLEOSOME BRIDGING. Rachel Leicher, Eva Ge, Xingchong Lin, Matthew J. Reynolds, Thomas Walz, Bin Zhang, Tom Muir, Shixin Liu

1863-Pos Board B133
DNA-LOOP EXTRUDING CONDENSIN COMPLEXES CAN TRAVERSE ONE ANOTHER. Eugene Kim, Jacob Kerssemakers, Indra Shaltiel, Christian Haering, Cees Dekker

1864-Pos Board B134
CHARACTERIZING THE STABILITY OF AN ENGINEERED REGULATORY DNA LOOP IN LIVING E. COLI CELLS. Nicole A. Becker, William J. Phillips, Jordan P. Wallace, Tanya L. Schwab, Karl J. Clark, L. James Maher
MEMBRANE ACTIVE PEPTIDES AND TOXINS II (BOARDS B135 - B155)

1865-POS BOARD B135
ANTIMICROBIAL PEPTIDE FUNCTIONALIZED BIOMATERIALS INVESTIGATED BY MOLECULAR DYNAMICS SIMULATIONS. Fatihina T. Doole, Chun Kit Chan, Minkyu Kim, Abhishek Singharoy, Michael F. Brown

1866-POS BOARD B136
SMALL ION TRANSPORT PROPERTIES OF THE ANTHRAX TOXIN CHANNELS. Goli Yamini, Albabat Alshehri, Ekaterina M. Nestorovich

1867-POS BOARD B137
BETA-BLOCKERS ALTER LIPID BILAYER PROPERTIES. Radda Rusinova, Kendra Zhang, Olaf S. Andersen

1868-POS BOARD B138
UNRAVELLING THE MECHANISM OF ACTION OF PEPR, A VIRAL-DERIVED MEMBRANE-ACTIVE PEPTIDE, AGAINST STAPHYLOCOCCUS AUREUS BIOFILMS. Ana Salomé Veiga, Sandra N. Pinto, Susana A. Dias, Ana F. Cruz, Dalila Mi-Homens, Fábio Fernandes, Javier Valle, David Andreu, Manuel Prieto, Miguel A. Castanho, Ana Coutinho

1869-POS BOARD B139
CONSTANT PH SIMULATIONS REVEAL EFFECTS OF SALT AND POINT MUTATIONS ON BEHAVIOR OF THE PH-LOW INSERTION PEPTIDE IN SOLUTION. Nicolas C. Frazee, Blake Mertz

1870-POS BOARD B140
TRAVEL Awardee MEMBRANE DISRUPTION AND PEPTIDE/LIPID CO-ASSEMBLY BY THE AMYLOID-FORMING PEPTIDE, PAP.265-286. Eleanor W. Vane, Abhinav Nath

1871-POS BOARD B141
DYNAMICS OF MELTIN PORES IN LIPOSOMES PROBED BY ALL-ATOM SIMULATIONS. Jung-Hsin Lin

1872-POS BOARD B142
A LAYER OF DEAD CELLS AT THE PERIPHERY PROTECTS BIOFILMS FROM ANTIMICROBIAL PEPTIDES. Sattar Taheri-Araghi, Ohannes Guerbidjian

1873-POS BOARD B143
INHIBITION OF TOLAASIN HEMOLYTIC ACTIVITY BY INCREASE IN GD1-INDUCED MEMBRANE RIGIDITY. Young-Kee Kim, Yeong-Bae Yun

1874-POS BOARD B144
SECRETION OF PORE-FORMING PEPTIDE TOXIN, TOLAASIN, BY PTA TYPE STRAINS OF PSEUDOMONAS TOLAASII, BUT NOT BY PBT TYPE STRAINS. Yeong-Bae Yun, Young-Kee Kim

1875-POS BOARD B145
TRAVEL Awardee LIPOSOMES IMPEDE EXOTOXINS CYTOLYTIC EFFECTS. Marcelo Ayllon, Zoe Hutchinson, Ana Velasquez, Catherine Alex, Daniel Fologea

1876-POS BOARD B146

1877-POS BOARD B147
DIFFERENTIAL GENE EXPRESSION ANALYSIS OF RNA-SEQ DATA FOR DETECTING INTERNAL TARGETS OF ANTIMICROBIAL PEPTIDES. Salimeh Mohammadi, Federico Prokopczuk, Xintian Li, Sattar Taheri-Araghi

1878-POS BOARD B148
HETERO-MULTIVALENT BINDING OF LECTIN TO GLYCANS ON CELL MEMBRANES. Hung-Jen Wu, Akshi Singla, Joseph S. Kwon, Hyun-Kyu Choi, Dongheon Lee

1879-POS BOARD B149
STEROL INTERACTIONS WITH AMPHOTERICIN SPONGE: DYNAMICS DRIVE AFFINITY. Kevin J. Cheng, Ashley M. De Lio, Agnieszka Lewandowska, Lisa Della Ripa, Martin D. Burke, Chad M. Rienstra, Taras V. Pogorelov

1880-POS BOARD B150
INDUCED MEMBRANE PERMEABILIZATION AND VESICLE FUSION: SYMTHETIC ANTIMICROBIALS ACTING ON MODEL MEMBRANES. Shuai Shi, Ndjali Quarta, Runhui Liu, Maria Hoernke

1881-POS BOARD B151
CYTOSOLIC DELIVERY OF ANTIBODIES AND OTHER MACROMOLECULES. Eric Wu, Sarah Y. Kim, Kalina Hristova, William C. Wimley

1882-POS BOARD B152
DESIGN OF NOVEL ANTIMICROBIAL PEPTIDES IN A MULTI-STAGE IN SILICO APPROACH. Alexandra Faracas, Luiza Buimaga-larinca, Calvin Floare, Lorant Janosi

1883-POS BOARD B153
UNDERSTANDING THE MECHANISM OF ANTIMICROBIAL PEPTIDES USING SMALL-ANGLE X-RAY AND NEUTRON SCATTERING TECHNIQUES. Josefine Elso Nielsen, Reidar Lund

1884-POS BOARD B154

1885-POS BOARD B155
A FLUORESCENT-BASED APPROACH TO UNRAVEL PROTEIN-PROTEIN INTERACTIONS IN ACTINOPORINS. Juan Palacios-Ortega, Esperanza Rivera, Sara García-Linares, Jose G. Gavilanes, Álvaro Martínez-del-Pozo, J Peter Suttle

MEMBRANE STRUCTURE II (BOARDS B156 - B186)

1886-POS BOARD B156
EFFECT OF MELATONIN ON LIPID MEMBRANE STRUCTURE AND MEMBRANE INTERACTIONS WITH AMYLOID. AN NMR AND LSPPR STUDY. Nanqin Mei, Morgan Robinson, James H. Davis, Zoya Leonenko

1887-POS BOARD B157
STRUCTURE OF LUNG SURFACANT FROM DIFFERENT SOURCES: A SMALL-ANGLE-X-RAY SCATTERING (SAXS) STUDY. José C. Castillo-Sanchez, Jenny M. Andersson, Barbara Eicher, Emma Batflori-Badia, Alberto Galindo, Georg Pabst, Antonio Cruz, Kevin Roger, Jesus Perez-Gil

1888-POS BOARD B158
A GENERIC PROTOCOL FOR CONSTRUCTING MOLECULAR MODELS OF NANO_DISCS IN SILICO. Lisbeth Ravnkilde Kjølbye, Birgit Schiatt

1889-POS BOARD B159
BEYOND THE MONOLAYER: PULMONARY SURFACANT FILMS ANALYSED BY A FLUID-INTERFACES-GRAZING-ANGLES-NEUTRON-REFLECTOMETER (FIGARO). José C. Castillo-Sanchez, Ainhoa Collada, Antonio Cruz, Armando Maestro, Jesus Perez-Gil

1890-POS BOARD B160
TRANSMEMBRANE PROTEIN EFFECTS ON LIPID BILAYER OXYGEN PERMEABILITY. Rachel J. Dotson, Sally C. Pias

1891-POS BOARD B161
IDENTIFYING SYSTEMATIC ERRORS IN THE ANALYSIS OF SIMULATED MEMBRANE FLUCTUATION SPECTRA. Muhammed F. Erguder, Markus Deserno

118

Biophysical Society
<table>
<thead>
<tr>
<th>Year</th>
<th>Board</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>B162</td>
<td>DIRECT IMAGING OF NANOSCALE LIPID ORGANIZATION IN PROBE-FREE BIOMIMETIC MEMBRANES. Frederick A. Heberle, Milka Doktorova, Haden L. Scott, Allison Skinke, Edward R. Lyman, Neal Waxham, Ilya Levental</td>
</tr>
<tr>
<td>1983</td>
<td>B163</td>
<td>SPONTANEOUS CURVATURE GENERATION IN ASYMMETRIC LIPID BILAYERS WITH TENSIONLESS LEAFLETS. Markus S. Miettinen, Reinhard Lipowsky</td>
</tr>
<tr>
<td>1984</td>
<td>B164</td>
<td>EXPERIMENTAL EVIDENCE THAT BILAYER ASYMMETRY DECREASES LO/LD LINE TENSION. Thais A. Enoki, Frederick A. Heberle, Gerald W. Feigenson</td>
</tr>
<tr>
<td>1985</td>
<td>B165</td>
<td>CHOLESTEROL SPATIAL DISTRIBUTION IN ASYMMETRIC LIPID BILAYERS. Mohammadreza (Reza) Aghaaminiha (Amini), Sumit Sharma</td>
</tr>
<tr>
<td>1986</td>
<td>B166</td>
<td>THE EFFECTS OF PHOTOSENSITIZED LIPID OXIDATION ON SUPPORTED LIPID BILAYER FORMATION AND MEMBRANE DEFORMATION. Ashley M. Baxter, Nathan J. Wittenberg</td>
</tr>
<tr>
<td>1987</td>
<td>B167</td>
<td>A MEMBRANE TUbULE BILAYER ASSAY FOR CURVATURE SORTING OF PHOSPHATIDIC ACID. Broderick L. Bills, Michelle K. Knowles</td>
</tr>
<tr>
<td>1988</td>
<td>B168</td>
<td>MEASUREMENTS OF LIPID COMPOSITION FLUCTUATIONS AROUND A PLASMA MEMBRANE ION CHANNEL: IMPLICATIONS FOR FUNCTION. Thomas R. Shaw, Sarah L. Veatch</td>
</tr>
<tr>
<td>1989</td>
<td>B169</td>
<td>THE ROLE OF LIPID STRUCTURE IN DISRUPTION OF LIPID MEMBRANES BY SILICA NANOPIERCLES. Saeed Nazemidashtarjandi, Amir Farnoud</td>
</tr>
<tr>
<td>1990</td>
<td>B170</td>
<td>COLLOIDAL GUEST PARTICLES IN CUBIC MO-PHASES: TRANSITORY STATES AND PHASE DISTORTION. Christian K. Christensen, Chen Shen, Tanaka Shinpe, Beate M. Klösgen</td>
</tr>
<tr>
<td>1991</td>
<td>B171</td>
<td>INTERLEAFLET INTERACTION IN PHASE SEPARATED ASYMMETRIC LIPID BILAYERS. Ali Saltov, Krystina Pluhackova, Timur R. Galimzyanov, Rainer Böckmann, Sergey A. Akimov, Peter Pohl</td>
</tr>
<tr>
<td>1992</td>
<td>B172</td>
<td>FUNCTIONAL AND STRUCTURAL CHARACTERIZATION OF A LYPHILIZED PULMONARY SURFACTANT DIRECTLY APPLIED ONTO THE AIR-LIQUID INTERFACE. Mercedes Echaide, Sonia Vazquez-Sanchez, Antonio Cruz, Jesus Perez-Gil</td>
</tr>
<tr>
<td>1994</td>
<td>B174</td>
<td>SPHERICAL NANOVESICLES TRANSFORM INTO A MULTITUDE OF NON-Spherical SHAPE. Rikhia Ghosh, Vahid Satarifard, Andrea Grafmüller, Reinhard Lipowsky</td>
</tr>
<tr>
<td>1995</td>
<td>B175</td>
<td>ON THE MECHANISM OF BILAYER SEPARATION BY EXTRUSION; OR, WHY YOUR LARGE UNILAMELLAR VESICLES ARE NOT REALLY UNILAMEL-LAR. Haden L. Scott, Allison Skinke, Elizabeth G. Kelley, Neal Waxham, Ilya Levental, Frederick A. Heberle</td>
</tr>
<tr>
<td>1996</td>
<td>B176</td>
<td>POTENTIALS OF MEAN FORCE OF BILAYER DEFORMATION. Giacomo Fiorin, Fabrizio Marinelli, José D. Faraldo-Gómez</td>
</tr>
<tr>
<td>1997</td>
<td>B177</td>
<td>DIFFERENTIATING BETWEEN MEMBRANE TOPOGRAPHY AND MOLECULAR CLUSTERING. Ingela Parmyrd, Sven-Goran Eriksson, Kristoffer Bernheim, Jeremy Adler</td>
</tr>
<tr>
<td>1998</td>
<td>B178</td>
<td>SIMULATIONS OF AN ASYMMETRIC MAMMALIAN LIPIDOME. Milka Doktorova, Kandice R. Levental, Erđinc Sezgin, Ilya Levental, Edward R. Lyman</td>
</tr>
<tr>
<td>1999</td>
<td>B179</td>
<td>CANNABIDIOL AFFECTS CHAIN PACKING IN LIPID MEMBRANES. Arika R. Watkins, Tejas Phaterpekar, Peter C. Ruben, Jenifer L. Thewalt</td>
</tr>
<tr>
<td>2000</td>
<td>B180</td>
<td>ALTERATION OF LIPID BILAYER STRUCTURE BY FREE FATTY ACID: A COMPARATIVE STUDY OF FREE FATTY ACID AND CHOLESTEROL. Mohammad Alwarawrah, Jacquelyne Rea</td>
</tr>
<tr>
<td>2001</td>
<td>B181</td>
<td>THE EFFECT OF SEROTONIN ON THE LATERAL SEGREGATION OF A RAFT MEMBRANE MIXTURE. Oskar Engberg, Simly Dey, Holger A. Scheidt, Sudipta Maiti, Daniel Huster</td>
</tr>
<tr>
<td>2002</td>
<td>B182</td>
<td>ORIGIN OF LIPID TILT IN FLAT LIPID MONOLAYERS AND BILAYERS. Boris B. Kheyfets, Timur R. Galimzyanov, Sergei I. Mukhin</td>
</tr>
<tr>
<td>2003</td>
<td>B183</td>
<td>EFFECT OF LIPID STRUCTURE AND MATERIAL PROPERTIES ON THE MEMBRANE STABILITY TO PORE FORMATION. Timur R. Galimzyanov, Andrew H. Beaven, Maxim A. Kaluttsky, Alexander J. Sott, Paul S. Blank, Joshua Zimmerberg, Sergey A. Akimov, Oleg V. Batishchev</td>
</tr>
<tr>
<td>2004</td>
<td>B184</td>
<td>PROPERTIES OF ASYMMETRIC MEMBRANES FROM COARSE GRAINED MOLECULAR DYNAMICS SIMULATIONS. Samuel Foley, Markus Deserno</td>
</tr>
<tr>
<td>2005</td>
<td>B185</td>
<td>STUDY ON ERGOSTEROL AND CHOLESTEROL CONFORMATIONAL FREEDOM AND THEIR DIFFERENT INTERACTION WITH A POPC/SM BILAYER. AN AFM AND MD STUDY. Arturo Galván-Hernández, Jorge Hernández-Cobos, Armando Antillón, Ivan Ortega-Blake</td>
</tr>
<tr>
<td>2006</td>
<td>B186</td>
<td>CHARACTERIZATION OF PHOSPHOLIPID COMPOSITION IN THE OUTER LEAFLET OF RED BLOOD CELLS. Amid Vahedi, Amir Farnoud</td>
</tr>
<tr>
<td>2007</td>
<td>B187</td>
<td>INTERACTION OF ALPHA-SYNUCLEIN WITH RAFT CONTAINING MODEL LIPID MEMBRANES: MORPHOLOGY AND STRUCTURE. Loredana Casalis, Pietro Parisse, Fabio Perissinotto, Valeria M. Rondelli, Denis Scaini, Giuseppe A. Legname, Chiaramaria Stani</td>
</tr>
<tr>
<td>2008</td>
<td>B188</td>
<td>MOLECULAR DYNAMICS STUDY OF MULTIDRUG EFFLUX TRANSPORTER ACRA-ACRB-ACRA-TOLC COMPLEX EMBEDDED IN LIPID BILAYER. Keiko Shindó</td>
</tr>
<tr>
<td>2009</td>
<td>B189</td>
<td>BINDING AND INTERACTION OF HUMAN BETA DEFENSIN TYPE 3 WITH MIXED PIP2 LIPID MEMBRANES. Liquan Zhang</td>
</tr>
<tr>
<td>2010</td>
<td>B190</td>
<td>EFFECT OF CHARGED LIPIDS ON THE IONIZATION BEHAVIOR OF GLUTAMIC ACID-CONTAINING TRANSMEMBRANE HELICES. Brooke Nunn, Matthew McKay, Denise V. Greathouse, Roger E. Koeppen</td>
</tr>
</tbody>
</table>
1921-Pos BOARD B191 SOLIDSTATE NMR INVESTIGATIONS OF THE MHC II TRANSMEMBRANE DOMAINS: TOPOLOGICAL EQUILIBRIA AND LIPID INTERACTIONS. Evgeny Salnikov, Christopher Aisenbrey, Bianca Pokrandan, Britta Bruegger, Burkhard Bechinger

1922-Pos BOARD B192 A MOLECULAR SIMULATION METHOD TO PREDICT THE SOLVATION, FOLD, SELF-ASSEMBLY, AND PORATION OF PEPTIDES AND PROTEINS IN MEMBRANES. Jingjing Huang, Régis Pomès

1924-Pos BOARD B194 CELL-FREE EXPRESSION SYSTEMS: PROBING NUCLEAR MECHANOTRANSDUCTION USING NOVEL ENGINEERING PLATFORMS. Sagardip Majumder

1925-Pos BOARD B195 A SINGLE PARTICLE TRACKING STUDY OF MORE NATIVELY FOLDED RECOMBINANT HUMAN AQUAPORIN-4 ORTHOGONAL ARRAY OF PARTICLES. Jessica D. Carder, Michael J. Martinez, Francesco Pisani, Antonio Frigeri, Grazi P. Nicchia, James A. Brozik

1926-Pos BOARD B196 LIPID-DEPENDENT TITRATION OF GLUTAMIC ACID AT A MEMBRANE INTERFACE. Roger E. Koepp, Matthew J. McKay

1927-Pos BOARD B197 EFFECT OF PH AND LIPID COMPOSITION ON MEMBRANE-SPANNING HELICES WITH GLUTAMIC ACID EXAMINED BY SOLID-STATE NMR. Kelsey A. Marr, Matthew McKay, Denise V. Greathouse, Roger E. Koepp

1928-Pos BOARD B198 THE INFLUENCE OF LIPID TAIL COMPOSITION ON BID-MEDIATED BAX PORE FORMATION. Ahmad Mahmood, Helen M. Zhu, Cécile Fradin

1929-Pos BOARD B199 DISPOSITION OF ESCHERICHIA COLI SECA ATPASE MOTOR PROTEIN BOUND TO LIPID VESICLES. Guillaume Roussel, Stephen H. White

1930-Pos BOARD B200 STRUCTURAL TRANSITIONS IN MEMBRANE PROTEINS REVEALED BY INFRARED REFLECTION ABSORPTION SPECTROSCOPY. Christian Schwieger

1931-Pos BOARD B201 PROBING THE INTERACTIONS BETWEEN THE SMALL GTPASE ARF1 AND ITS ARF GAP ASAP1 AT THE MEMBRANE INTERFACE. Olivier Soubias, Frank Heinrich, Shashank Pant, Yue Zhang, Paul Randazzo, Mathias Losche, Emad Tajkhorshid, Robert A. Byrd

1932-Pos BOARD B202 RECONSTITUTION REVEALS HOW MYOSIN-VI SELF-ORGANISES TO GENERATE A DYNAMIC MECHANISM OF MEMBRANE SCULPTING. Dario Saczko-Brack, Benoit Rogez, Laeschkir Wörthner, Anastasia B. Petrova, Felix Zierhut, Maria-Ana Huergo, Christopher Batters, Erwin Frey, Claudia Veigel

1933-Pos BOARD B203 SIGNIFICANCE OF SECONDARY STRUCTURE DETERMINATION WHEN EVALUATING RATIONALLY DESIGNED ANTIMICROBIAL PEPTIDES. Aria Salyapongse, Anja Penk, Daniel Huster, Robert K. Ernst, Berthony Deslouches, Y.P. Peter Di, Stephanie A. Tristram-Nagle

1935-Pos BOARD B205 NATIVE LUMINESCENCE AND LUMINESCENCE LIFETIME OF CYTOCHROME P450 3A4 WITHIN ENDOPLASMIC RETICULUM BIOMIMETIC NANODISCS. Michael J. Martinez, Bryan C. Borders, Stephen Mather, Carlo Barnaba, Bixia Zhang, ChuHee Kang, James A. Brozik

1936-Pos BOARD B206 USING HIGH-THROUGHPUT STRUCTURE PREDICTION AND EVOLUTIONARY ALIGNMENT TO MAP ELECTROSTATIC PROTEIN-MEMBRANE INTERACTIONS. Nara L. Chon, Sherleen Tran, Christopher S. Miller, Hai Lin, Jefferson D. Knight

1937-Pos BOARD B207 ATTEMPTED “RESCUE” OF GLUTAMIC ACID BY ARGININE IN A TRANS-MEMBRANE HELIX. Jake R. Price, Fahmida Afrose, Roger E. Koepp

1938-Pos BOARD B208 INVESTIGATING THE STRUCTURE AND TOPOLOGY OF THE PINHOLIN MEMBRANE PROTEIN USING PULSED DEER AND CW-EPR SPECTROSCOPIC TECHNIQUES. Gary A. Lorigan, Tanbir Ahammad, Rasal Khan

Mechanosensation II (Boards B209 - B226)

1939-Pos BOARD B209 GLYCOSYLATION INHIBITS JUNCTION MECHANICS BY PERTURBING ACTIN AND FOCAL ADHESIONS IN ENDOTHELIAL CELLS. Gregory J. Schwarz, Priyanka Gajwani, Jalees Rehman, Deborah E. Leckband

1940-Pos BOARD B210 MATRIX STIFFNESS MEDIATES RADIO-RESISTANCE OF HEPATOCELLULAR CARCINOMA THROUGH REGULATION OF REACTIVE OXYGEN SPECIES. Lihan Chung, Megha Jhunjhunwala, Yu-Ying Hsieh, Yu-Tung Weng, Chi-Shuo Chen

1941-Pos BOARD B211 QUANTIFICATION OF THE FORCES INVOLVED IN ROLLING ADHESION WITH DNA FORCE SENSORS AND FLUORESCENCE IMAGING. Adam B. Yasunaga

1942-Pos BOARD B212 EFFECTS OF MECHANICAL STRESS ON CALCIUM TRANSPORT IN CELLS OF THE IMMUNE SYSTEM. Rosey Whiting, Daniel Fologea

1943-Pos BOARD B213 LARGE GLYCOSALXY PROTEINS ARE EXCLUDED FROM THE INTERFACE BETWEEN CELL MEMBRANE AND VERTICAL NANOSTRUCTURES. Chih-Hao Lu, Taylor Jones, Kayvon Pedram, Carolyn Bertozzi, Matthew Paszek, Bianxiao Cui

1944-Pos BOARD B214 TALIN IMPACTS FORCE-INDUCED VINCULIN ACTIVATION THROUGH ‘LOOSENING’ THE VINCULIN INACTIVE STATE. Florian S. Franz, Csaba Daday, Frauke Gräter

1945-Pos BOARD B215 AN OSMOSENSITIVE CATION CHANNEL REQUIRED FOR HEARING. Yun S. Shi

1946-Pos BOARD B216 PIEZO2 INTEGRATES MECHANICAL AND THERMAL CUES IN VERTEBRATE MECHANORECEPTORS. Yury A. Nikolaev, Wang Zheng, Elena O. Gracheva, Sviatoslav N. Bagriantsev

1947-Pos BOARD B217 DOMAIN-DEPENDENT FORCE SELECTIVITY IN THE MECHANOSENSITIVE ION CHANNEL PIEZO1. Alper D. Ozkan, Jerome J. Lacroix

1948-Pos BOARD B218 SINGLE-MOLECULE MECHANICS OF THE TALIN-INTTEGRIN BOND. Mihai-Adrian Bodescu, Marco Grison, Jonas Aretz, Matthias Rief, Reinhard Fassler
Exocytosis and Endocytosis
(Boards B227 - B251)

1949-Pos Board B219
CALCIUM INFUX THROUGH PIEZO1 CHANNELS TRANSIENTLY CLUSTERS P(4,5)P2 AND RECRUTS ACTIN POLYMERIZATION. Michael Zucker, Arnd Pralle

1950-Pos Board B220
VISCOELASTIC MECHANICAL MODELS OF THE LINC COMPLEX. Kamyar Behrouzi, Zeinab Jahed, Mohammad Mofrad

1951-Pos Board B221
STRESS FIBER CONTRACTILITY IS ESSENTIAL IN MOTOR-CLUTCH DYNAMICS AND CELL REMODELING UNDER CYCLIC STRETCH. Namrata Gundiah, Siddhartha Jaddiivada

1952-Pos Board B222
MARGARIC ACID DECREASES SENSORY NEURONS MECHANICAL EXCITABILITY BY INHIBITING PIEZO2 CHANNELS. Luis O. Romero, Julio F. Cordero-Morales, Valeria Vasquez

1953-Pos Board B223
HETEROGENEOUSLY STRAINED TISSUE COLLAGEN RESISTS COLLAGENASE DEGRADATION WHERE STRAINS ARE HIGH. Karanvir Saini, Manu Tewari, Sangkyun Cho, Abdelaziz Jalil, Jerome Irianto, Manasvita Vashisth, Charlotte Pfeifer, Lawrence J. Dooling, Cory Alvey, Alex Kasznels, David Chenoweth, Kazihiro Yamamoto, Dennis E. Discher

1954-Pos Board B244
A NOVEL ROLE FOR PIEZO1 IN DIABETES-ASSOCIATED THROMBOSIS. Wandi Zhu, Cissy Nsubuga, Shane Wright, Manu Beeners, Tuomas Kiviniemi, Vanessa Raskin, Rahul C. Deo, Calum A. MacRae

1955-Pos Board B224
CHARACTERIZATION OF KINDLIN-2 VARIANTS’ MOLECULAR BEHAVIOR UNDER APPLIED TENSION. Fayyaz R. Ahamed, Brian Jeffers, Zeinab Jahed, Mohammad Mofrad

1956-Pos Board B225
MEASURING THE EFFECT OF SUBSTRATE STIFFNESS ON CELL MEMBRANE TENSION USING OPTICAL TWEEZERS. Jeffrey Mc Hugh, Eva Kreyssing, Sarah K. Foster, Kurt Andersen, Kristian Franze, Ulrich F. Keyser

1957-Pos Board B227
CATIONIC CELL-PENETRATING PEPTIDES TRAVERE MEMBRANES THROUGH LYSIS OR DIRECT TRANSLATION PROTEINS. Jason M. Warner, Dong An, Benjamin S. Stratton, Ben O’Shaughnessy

1958-Pos Board B228
VESICLE SHRINKING AND ENLARGEMENT: THE YIN AND YANG OF EXOCYTOTIC CONTENT RELEASE. Wonchul Shin, Gianvito Arpino, Satish Thiyagarajan, Rui Su, Zachary A. McDargh, Lihao Ge, Xiaoli Guo, Lisi Wei, Oleg Shupliakov, Albert J. Woodbury, Zachary A. McDargh, Albert J. Jin, Ben O’Shaughnessy, Ling-Gang Wu

1959-Pos Board B229
EFFECT OF SIMPLE ANESTHETICS ON SNARE FUSION PROTEINS AND ON FUSING MEMBRANES. Robert E. Coffman, Samuel W. Shumway, Andrew T. Barton, Mark T. Parsons, Austin L. Zimmerman, Ryan D. Sorensen, Dixon J. Woodbury

1960-Pos Board B230
SYNAPTIC VESICLE RELEASE PROBABILITY, KINETICS, AND CA-SENSITIVITY ARE REGULATED BY SNARE-PROTEINS. Zachary A. McDargh, Ben O’Shaughnessy

1961-Pos Board B231
INHIBITION OF AIRWAY EPITHELIAL SNARE/SYNAPTOTAGMIN MEDIATED MEMBRANE FUSION BY HYDROCARBON-STAPLED PEPTIDES. Ying Lai, Giorgio Fois, Manfred Frick, Burton Dickey, Axel T. Brunger

1962-Pos Board B232
A POLYBASED PATCH ON SYNAPTOTAGMIN-1 C2A DOMAIN IS ESSENTIAL FOR EVOKED RELEASE AND DILATION OF FUSION PORES. Zhenyong Wu, Lu Ma, Jie Zhu, Nicholas Courtney, Yongli Zhang, Edwin R. Chapman, Erdem Karatekin

1963-Pos Board B233
THE SYNAPTOTAGMIN-1 ARGinine APEX BINDS TO MEMBRANES AND THE SNARE-COMPLEX, BUT ONLY TO MEMBRANES IN THE PRESENCE OF ATP/MG2+. Sarah B. N yenhu is, Nakul Karandikar, Anusa Thapa, Binyong Liang, Lukas K. Tamm, David S. Caffso

1964-Pos Board B234
IN VITRO CONFIGURATION OF MUNC13-1 BRIDGING OF PHOSPHOLIPID BILAYERS AT RESTING CONDITIONS. Kirill S. Grushin, R. Venkat Kalyana Sundaram, Kimberly Gibson, Shyam S. Krishnakumar, Charles V. Sindelar, James Rothman

1965-Pos Board B235
MUNC13-1 AND MUNC18-1 COOPERATIVELY CHAPERONE SNARE ASSEMBLY THROUGH A TETRAMERIC COMPLEX. Yongli Zhang, Tong Shu, James Rothman

1966-Pos Board B236
MUNC13 RECRUITS SNAP25 TO FACILITATE SNARE COMPLEX ASSEMBLY. R Venkat Kalyana Sundaram, Feng Li, Jeff Coleman, Frederic Pincet, James Rothman, Shyam S. Krishnakumar

1967-Pos Board B237
THE C2C-MCT DOMAIN OF MUNC13 IS ESSENTIAL FOR PRIMING SYNAPTIC VESICLES. Murugesh Narayanapapa, Haowen Liu, Lei Li, Francesco Michelassi, Zhihao Hu, Jeremy Dittman

1968-Pos Board B238
BINDING OF COMPLEXIN TO T-SNARE COMPLEX IS MEDIATED BY SNAP25. Binyong Liang, Julian Stashower, Alex J. Kreutzberger, Volker Kiessling, Lukas K. Tamm

1969-Pos Board B239

1970-Pos Board B240
PLASMA MEMBRANE ORDER REGULATES INSULIN GRANULE EXOCYTOSIS. Chase Amos, Noah Schenk, Volker Kiessling, Alex J. Kreutzberger, Weronika Tomaka, Mounir Bendahmane, Hitomi Seki, Yosuke Niko, Andrey S. Klymchenko, Lukas K. Tamm

1971-Pos Board B241
TWO DISTINCT POPULATIONS OF INSULIN GRANULES THAT HAVE UNIQUE PROPERTIES. Alex J. Kreutzberger, Noah Schenk, Amanda E. Ward, Catherine A. Doyle, Megan T. Harris, Binyong Liang, Arun Anantharam, Volker Kiessling, Lukas K. Tamm, J. David Castle

1972-Pos Board B242
SPATIOTEMPORAL ORGANIZATION OF MMP9 AND ITS EXOCYTOTIC ORGANIZING ELEMENTS IN MCF7 BREAST CANCER CELLS. Dominique C. Stephens

1973-Pos Board B243
USING FLUORESCENT PROTEINS TO MONITOR GLUCAGON GRANULES IN LIVE CELLS. Alessandro Ustione, Priya Mathur, David W. Pinston
1974-Pos BOARD B244 CAVI CAPTURE LIMITS CATECHOLAMINE RELEASE FROM VESICLES. Meyer B. Jackson, Yu-Tien Hsiao, Che-Wei Chang

1975-Pos BOARD B245 CA2+ -INDEPENDENT BUT VOLTAGE-DEPENDENT QUANTAL CATECHOLAMINE SECRETION (CIVDS) IN SYMPATHETIC NERVOUS SYSTEM. Zhuan Zhou, Rong Huang, Yuan Wang, Jie Li, Xiaohan Jiang, Yinglin Li, Xi Wu, Yongxin Xu, Xingyu Du, Yuqi Hang, Feipeng Zhu

1976-Pos BOARD B246 RECEPTORS UTILIZE COATED VESICLE HETEROGENEITY TO EVADE COMPETITION DURING ENDOCYTOSIS. Andre DeGroot, Sadhana Gollapudi, Chi Zhao, Carl C. Hayden, Jeanne C. Stachowiak

1977-Pos BOARD B247 CLATHRIN-COATED PITS FORM FROM ELASTICALLY LOADED CLATHRIN LATTICES. Grigory Tagilsev, Simon Scheuring

1978-Pos BOARD B248 TRAVEL Awardee LINKING THE DYNAMICS OF CLATHRIN-MEDIATED ENDOCYTOSIS WITH MEMBRANE SHAPE CHANGES IN LIVING CELLS WITH NANOMETER AXIAL RESOLUTION. Tomasz J. Nawara, Tejeshwar C. Rao, Gracemarie Cepero-Lopez, Alexa L. Mattheyes

1979-Pos BOARD B249 MULTISCALE MOLECULAR MODELING OF DYNAMIN PROTEIN-PROTEIN INTERACTIONS. Frank X. Vázquez, Dalia M. Hassan, Joseph A. Marte, Patsy J. Griffin, Teagan F. Sweet

1980-Pos BOARD B250 DYNAMICS OF DYNAMIN BY CRYO-EM. Nidhi Kundu, John Jimah, Abigail Stanton, Lieza M. Chan, Venkata P. Dandey, Clinton S. Potter, Bridget Carragher, Jenny E. Hinshaw

1981-Pos BOARD B251 PREFUSED LYSOSOMES CLUSTER ON AUTO PHAGOSOME REGULATED BY VAMP8. Jiajie Diao

Calcium Signaling I
(Boards B252 - B267)

1982-Pos BOARD B252 THE EFFECT OF OESTROGEN WITHDRAWAL ON CA2+ REGULATION AND THE INFLUENCE OF GPER1. Alice J. Francis, Jahn M. Firth, Najah Islam, Julia Gorenlik, Kenneth T. Macleod

1983-Pos BOARD B253 LONG-QT SYNDROME-ASSOCIATED CALMODULIN MUTATIONS AND THEIR INTERACTIONS AT THE KV7.1 POTASSIUM CHANNEL. Liam F. McCormick, Nitika Gupta, Lee P. Haynes, Svetlana Antonyuk, Caroline Dart, Nordine Helassa

1984-Pos BOARD B254 TRAVEL Awardee REGULATION OF ORAI1/STIM1 FUNCTION BY S-ACYLATION. Savannah J. West, Qiaochu Wang, Michael X. Zhu, Askar M. Akimzhanov, Darren Boehning

1985-Pos BOARD B255 DIFFERENT WAYS OF CALCIUM SIGNALING DISRUPTION IN HUNTINGTON’S DISEASE AND SPINOCEREBELLAR ATAXIA TYPE 1. Dmitry Grekhnov, Vladimir Vigont, Elena Kaznacheyeva

1986-Pos BOARD B256 DESIGN AND APPLICATION OF ULTRAFAST FLUORESCENT CALCIUM INDICATORS FOR MONITORING SUBCELLULAR CALCIUM DYNAMICS. Xiaonan Deng, Cassandra L. Miller, Bin Dong, Florence N. Reddish, You Zhuo, Cheyenne McBean, Daniel Ouedraogo, Giovanni Gadda, Ning Fang, Jenny J. Yang

1987-Pos BOARD B257 RYANODINE RECEPTOR-1 MEDITED ENDOPLASMATIC RETICULUM - MITOCHONDRIAL CALCIUM TRANSFER IN HIGH-GRADE SERIAL SQUAMES OCCYRAN CANCER CELLS (HGSOC). Kay-Pong D. Yip, Byeong-Jik Cha, Omkar Paudel, Samuel C. Mok, James S. Sham

1988-Pos BOARD B258 TRAVEL Awardee LQTS-ASSOCIATED MUTANTS OF CALMODULIN SHOW DISRUPTED INTERACTION WITH L-TYPE CALCIUM CHANNELS. Nitika Gupta, Liam F. McCormick, Lee P. Haynes, Caroline Dart, Nordine Helassa

1989-Pos BOARD B259 TRANSPORT OF VITAMIN A VIA STRA6 IS CALCIUM-DEPENDENT. Brianna Young

1990-Pos BOARD B260 PYRIDOSTIGMINE REDUCES ARRHYTHMOGENIC STORE OPERATED CALCIUM ENTRY IN A TRANSVERSE AORTIC CONSTRUCTION HF MODEL IN MICE. Stephen H. Baine, Ingrid M. Bonilla, Andriy E. Belevych, Sandor Gyorko

1991-Pos BOARD B261 TRAVEL Awardee PLASMA MEMBRANE PERMEABILIZATION TO CA2+ IN ADRENAL CHROMAFFIN CELLS DEPENDS ON THE DURATION OF APPLIED NANOSECOND ELECTRIC PULSES. Sophia Pierce, Lisha Yang, Normand Leblanc, Gale L. Craviso

1992-Pos BOARD B262 TRAVEL Awardee SOCE CONTRIBUTES TO NORMAL CALCIUM HOMEOSTASIS AND RHYTHMIC ACTIVITY OF ATRIAL MYOCARDIUM. Ingrid M. Bonilla, Stephen Baine, Andrei Stepanov, Jiaoni Li, Andriy E. Belevych, Przemyslaw Radwanski, Pomeol Volpe, Silvia Priori, Dmitry A. Terentyev, Sandor Gyorko

1993-Pos BOARD B263 THE ANTIARRHYTHMIC COMPOUND EFSEVIN BINDS TO THE VOLTAGE-DEPENDENT ANION CHANNEL 2 AND MODULATES CHANNEL GATING. Fabiola Witting, Robin Kopp, Philip A. Gurney, Anna Schedel, Nathan J. Dupper, Ohyun Kwon, Annette C. Nicke, Thomas Gudermann, Johann Schredlatsker

1994-Pos BOARD B264 TRAVEL Awardee DUAL EFFECTS OF SUBCELLULAR CALCIUM HETEROGENEITY AND HEART RATE VARIABILITY ON CARDIAC ELECTROMECHANICAL DYNAMICS. Vrishti M. Phadumdeo, Seth H. Weinstein

1995-Pos BOARD B265 A DUAL ROLE FOR SARAF IN REGULATION OF CALCIUM-RELEASE ACTIVATED CALCIUM (CRAC) CHANNEL ACTIVITY. Elia Zmot, Hadas Achildiev, Raz Palty

1996-Pos BOARD B266 ACUTE GENETIC ABLATION OF CARDIAC SODIUM-CALCIUM EXCHANGE SUPPRESSES ARRHYTHMOGENIC DELAYED AFTER DEPOLARIZATIONS. Sabine Lotteau, Rui Zhang, Adina Hazan, Devina Gonzalez, Nils Bögeholz, Kenneth D. Philipson, Michela Ottolia, Joshua I. Goldhaber

1997-Pos BOARD B267 TRAVEL Awardee REVERSE-MODE MITOCHONDRIAL NA+/CA2+ EXCHANGE, NOT THE MCU, IS THE PRIMARY MODE OF CA2+ IMPORT INTO THE MITOCHONDRIA DURING ISCHEMIA/REPERFUSION IN NEONATAL CARDIAC MYOCYTES. Deepthi Ashok, Kyriakos Papanicolaou, Ting Liu, Brian O’Rourke

Excitation-Contraction Coupling II
(Boards B268 - B282)

1998-Pos BOARD B268 FORMATION OF DYADs DURING POSTNATAL CARDIAC DEVELOPMENT IN RATS. Alexandra Zahradnikova Jr, Simona Kazmerova, Marta Novotova, Ivan Zahradnik, Alexandra Zahradnikova

Biophysical Society
2024-Pos Board B294
STRUCTURAL BASIS OF TRPV3 ACTIVATION AND INACTIVATION.
Zengqin Deng, Grigory Maksaev, Michael Rau, Zili Xie, Hongzhen Hu, James A.J. Fitzpatrick, Peng Yuan

2025-Pos Board B295
AUTOINHIBITION OF TRPV6 CHANNEL BY INTRAMOLECULAR INTERACTIONS. Ruqi Cai, Xiong Liu, Lauria Hofmann, Wang Zheng, Qiaolin Hu, Veit Flockerzi, Xing-Zhen Chen

2026-Pos Board B296
HUNTING FOR THE ACTIVATING ADPRT BINDING SITE OF THE NVTRPM2 CHANNEL. Balazs Toth, Iordan Iordanow, Laszlo Csanady

2027-Pos Board B297
ISOLATION OF FUNCTIONAL TEMPERATURE ACTIVATED TRANSMEMBRANE DOMAIN OF HUMAN TRPM8. Dustin Luu, Po-Lin Chiu, Wade D. Van Horn

2028-Pos Board B298
CHARACTERIZATION OF HTRPM8 CONFORMATIONAL DYNAMIC UTILIZING SOLUTION NMR. Mubark Mebrat, Jacob K. Hilton, Danielle Morelan, Wade D. Van Horn

2029-Pos Board B299
MOLECULAR MECHANISMS UNDERLYING MENTHOL BINDING AND ACTIVATION OF TRPM8 ION CHANNEL. Lichen Xu, Yalan Han, Xiaoying Chen, Aeziguli Aierken, Hongkun Wang, Xiancu Li, Zhenye Zhao, Ping Liang, Wei Yang, Han Wen, Wenjun Zheng, Shilong Yang, Fan Yang

2030-Pos Board B300
MECHANISTIC AND STRUCTURAL STUDIES OF PIRT REGULATION OF TRPM8. Wade D. Van Horn, Dustin D. Luu, Minjoo Kim, Jacob K. Hilton, Camila Montano

2031-Pos Board B301
ROLE OF EPIDERMAL TRP CHANNELS IN THE DEVELOPMENT OF PRURITIC SIGNALS. Anita Vladar, Erika Lisztes, Balazs Kelemen, Martin Hanyicska, Tamás Bíró, Balázs István Tóth

2032-Pos Board B302
PATHOPHYSIOLOGICAL CONTRIBUTION OF TRPM7 CHANNEL TO PULMONARY ARTERIAL HYPERTENSION. Keizo Hiraishi, Lin-Hai Kurahara, Yuanyuan Cui, Ryuji Inoue

2033-Pos Board B303
TRPM3 MEDIATES PAIN BUT NOT ITCH. Balazs Kelemen, Silvia Pinto, Erika Lisztes, Martin Hanyicska, Anita Vladar, Thomas Voets, Tamás Bíró, Balázs István Tóth

2034-Pos Board B304
THE ION CHANNEL FUNCTION OF PKD1 REVEALED BY A GAIN-OF-FUNCTION PKD1/TRPP2 COMPLEX. Zhifei Wang, Courtney Ng, Xiong Liu, Yan Wang, R. Todd Alexander, Feng Qian, Xing-Zhen Chen, Yong Yu

2035-Pos Board B305
EFFECTS OF TRPM7 KINASE INACTIVATION IN MACROPHAGES. Jananie Rockwood, Pavanee Beesetty, Masayuki Matsushita, J. Ashot Kozak

2036-Pos Board B306
ALL-OPTICAL ANALYSIS OF TRPC3/6 SIGNALLING IN MAST CELLS. Bernadett Bacska, Oleksandra Tiapko, Annarita Graziani, Sanja Curcic, Klaus Groschner

2037-Pos Board B307
ROLE OF TRPC6 ON SINGLE CELL MECHANICS IN MOUSE CARDIOMYOCYTES. Yohei Yamaguchi, Gentaro Iribe, Keiji Naruse, Akira Takai

2038-Pos Board B308
THE ROLE OF TRPC-ORAI CHANNELS MEDIATED CALCIUM ENTRY IN HUMAN INDUCED PLURIPOTENT STEM CELL DERIVED CARDIOMYOCYTES. Zi Yang, Gary Aistrup

2039-Pos Board B309
SPATIAL ARRANGEMENT OF TRPC1, 3 AND 6 CHANNELS IN RABBIT VENTRICULAR CARDIOMYOCYTES. Molly E. Streiff, Azmi A. Ahmad, Chris Hunter, Frank B. Sachse

Ion Channel Regulatory Mechanisms II (Boards B310 - B334)

2040-Pos Board B310
DYNAMIC REGULATION OF BICARBONATE PERMEABILITY THROUGH CFTR CHANNEL BY WNK1. Yonjung Kim, Ikhyun Jun, Dong Hoon Shin, Jihoon G. Yoon, Jinseung Jung, Hyun Woo Park, Mary H. Cheng, Ivet Bahar, David C. Whitcomb, Min Goo Lee

2041-Pos Board B311
HETERODIMERIZATION OF TALK SUBUNITS. Lamyaa Khoubza, Franck Chatelain, Sylvain Feliciangeli, Delphine Bichet, Florian Lesage

2042-Pos Board B312
THE ROLE OF HCN CHANNEL HELICES D AND E IN THE MODULATION OF CAMP AFFINITY. Alessandro Porro, Federica Gasparri, Filippo Cona, Gerhard Thiel, Federico Thei, Bina Santoro, Andrea Saponaro, Anna Moroni

2043-Pos Board B313
GATING OF BACTERIAL BETA-BARREL CHANNELS IS REGULATED BY SALT CONCENTRATION AND LIPID COMPOSITION. Deborah Aurora Perini, Antonio Alcaraz, Maria Queralt-Martin

2044-Pos Board B314
CYTOSKELETON DEPENDENT ACTIVATION OF TENTONIN3/TMEM150C, A NOVEL MECHANOSENSITIVE CHANNEL. Gyu-Sung Hong, Uhtaek Oh

2045-Pos Board B315
DUAL Ca2+-DEPENDENT GATES IN HUMAN BESTROPHIN1 UNDERLIE DISEASE-CAUSING MECHANISMS OF GAIN-OF-FUNCTION MUTATIONS. Changyi Ji, Alec Kittredge, Austin Hopiavuori, Nancy Ward, Shoudeng Chen, Yohta Fukuda, Yu Zhang, Tingting Yang

2046-Pos Board B316
UNDERSTANDING THE PHENOMENA OF CHARGE INVERSION AND VOLTAGE GATING IN MODEL SINGLE DIGIT NANOPORES (SDNS) USING TRIVALENT IONS. Wilfred S. Russell

2047-Pos Board B317
AN EPILEPSY-ASSOCIATED LARGE CONDUCTANCE BK MUTATION MODULATES FUNCTIONAL AND PORE PROPERTIES OF THE GAMMA SUBUNIT C-TERMINAL PEPTIDE. Guanxing Chen, Jie Li, Xinyan Lai, Meng Huang, Yonjung Kim, Jerod S. Denton, Kevin Strange

2048-Pos Board B318
ALLOSTERIC NETWORK ANALYSIS IN THE NMDA RECEPTOR. Nils A. Berglund, Jose C. Flores-Canales, Birgit Schiött

2049-Pos Board B319
BK CHANNEL MODULATION BY THE GAMMA SUBUNIT C-TERMINAL PEPTIDES. Guanxing Chen, Qin Li, Jilsheng Yan

2050-Pos Board B320
P(3,4)P2-DEPENDENT MODULATION OF VOLTAGE DEPENDENCE IN TWO-PORE CHANNEL 3. Takushi Shimomura, Yoshihiro Kubo

2051-Pos Board B321
FUNCTIONAL AND PORE PROPERTIES OF THE LRRCA8 HOMOMERIC CHANNEL ARE DISTINCT FROM THOSE OF LRRCA CHIMERAS AND HETEROIMRESES. Toshiki Yamada, Jerod S. Denton, Kevin Strange

2052-Pos Board B322
MODULATION OF A GIRK1 ACTIVE MUTANT SUBUNIT BY PROTEIN KINASE C ISOFORMS. Ashwarya Chandrashekar, Kirin Gada, Yu Xu, Takeharu Kawano, Leigh D. Plant, Diomedes E. Logothetis
Cardiac Muscle Mechanics and Structure (Boards B335 - B365)
2078-Pos BOARD B348
3D IMAGING AND MORPHOMETRY OF THE CORONARY MICROCIRCULATION IN SPONTANEOUSLY HYPERVENTILATING RATS AND NORMOTENSION CONTROLS. Camilla Olianti, Francesco Giardini, Erica Lazzeri, Irene Costantini, Claudia Crocini, Leonardo Bocchi, Francesco S. Pavone, Paolo Camici, Leonardo Sacconi

2079-Pos BOARD B349
UNIQUE ALLELIC EXPRESSION OF MUTATED CARDIAC TROPONIN I FROM CELL-TO-CELL MAY INDUCE CONTRACTILE IMBALANCE IN HYPERVENTILATING CARDIOMYOPATHY. Valentin Burkart, Julia Beck, Kathrin Kowalski, Jolanda van der Velden, Cris G. dos Remedios, Judith Montag, Theresa Krag

2080-Pos BOARD B350
MICROTUBULE ACETYLATION REGULATES STRIATED MUSCLE MECHANOTRANSDUCTION. Andrew K. Coleman, Humberto Cavalcante Joca, Guoli Shi, W. Jonathan Lederer, Christopher W. Ward

2081-Pos BOARD B351
MICROILED ILLUMINATION TOWARDS LIQUID CRYSTALLINE ELASTOMERS BASED CARDIAC CONTRACTION ASSISTANCE. Silvia Querceto, Cecilia Ferrantini, Bruno Grandinetti, Daniele Martella, José Manuel Pioner, Diederik Sybolt Wiersma, Elisabetta Cerbai, Francesco Saverio Pavone, Chiara Tesi, Corrado Poggesi, Leonardo Sacconi, Camilla Parmeggiani

2082-Pos BOARD B352
ALTERED THICK AND THIN FILAMENT STRUCTURAL DYNAMICS IN MOUSE MYOCARDIUM DUE TO ABOLITION AND PHOSPHORYLATION OF MYOSIN BINDING PROTEIN-C. Alexey Dvornikov, Thomas A. Bunch, Victoria C. Lepak, Brett A. Colson

2083-Pos BOARD B353
TRAVEL Awardee IMPACT OF REGULATORY LIGHT CHAIN MUTATION (K104E) ON THE ATPASE AND MOTOR PROPERTIES OF HUMAN CARDIAC MYOSIN. David Rasici, Orville Kirkland, Wanjian Tang, Rohini Desetty, Christopher M. Yengo

2084-Pos BOARD B354

2085-Pos BOARD B355
NUCLEOTIDE-DEPENDENT ALLOGENIC COMMUNICATION IN MYOSIN. Matthew C. Childers, Valerie Daggett, Michael Regnier

2086-Pos BOARD B356
THE ROLE OF MYOPOPLADIN IN CARDIAC MUSCLE FUNCTION AND DISEASE. Vinay Kumar Kadarla

2087-Pos BOARD B357
ROLE OF A FUNCTIONAL SNP OF THE GENE CODING BRAIN SEROTONIN SYNTHESIS RATE-LIMITING ENZYME TPH2 IN DILATED CARDIOMYOPATHY. Sachio Morimoto, Kengo Hayamizu, Miki Nonaka, Lei Li, Yuanyuan Wang

2088-Pos BOARD B358
ENGINEERING SYNTHETIC DNA NANTOTUBE THICK FILAMENTS TO DISSECT BETA-CARDIAC MYOSIN AND CARDIAC MYOSIN-BINDING PROTEIN C INTERACTIONS. Anja M. Touma, Ashim Rai, Christopher M. Yengo, Samantha B. Previs, David M. Warshaw, Sivaraj Sivaramakrishnan

2089-Pos BOARD B359
MEASUREMENTS OF ACTIN LAYER LINES IN PERMEABILIZED HEART TISSUE REVEAL NEW STRUCTURAL PROPERTIES OF THE CARDIAC THIN FILAMENT. Maicon Landim Vieira, Weikang Ma, Jamie Johnston, Prescott B. Chase, Thomas C. Irving, J. Renato D. Pinto

2090-Pos BOARD B360
CLASSIFICATION OF GENETIC CARDIAC MUTATIONS USING COMPUTATIONAL CHEMISTRY. Allison B. Smith, Anthony P. Baldo, Jil C. Tardiff, Steven D. Schwartz

2091-Pos BOARD B361
HIPSIS DERIVED CARDIOMYOCYTES OVEREXPRESSING DEOXY ATP TO RESTORE CARDIAC FUNCTION. Ketaki N. Mhatre, Julie Mathieu, Charles E. Murry, Michael Regnier

2092-Pos BOARD B362
INTRINSIC MODIFIER EFFECT OF CTNT ISOFORM SWITCHING IN SARCO-MERIC CARDIOMYOPATHIES. Melissa L. Lynn, Lauren Grinspan, Catherine Vasquez, Teryn A. Holeman, Jian-Ping Jin, Jil C. Tardiff

2093-Pos BOARD B363
IMPACT OF ANTI-S2 PEPTIDES ON MYOSIN S2 ISOFORMS AND HCM MUTANTS. Neger Aboonamshiraz, Douglas D. Root

2094-Pos BOARD B364
TIME-RESOLVED FRET CONFIRMS HUMAN CARDIAC MYOSIN HEAD-TAIL INTERACTION. Alexandra N. Hurst, Shiril Bhardwaj, Akhil Gargey, Yuri Nesmelov

2095-Pos BOARD B365
RAPID TRANSITIONS BETWEEN THE OFF AND ON STATES OF MYOSIN CONTRIBUTE TO CONTRACTION-RELAXATION COUPLING IN CARDIAC MUSCLE. Faruk H. Moonschi, Kenneth S. Campbell

Kinesins and Dyneins (Boards B366 - B392)

2096-Pos BOARD B366
MOLECULAR INSIGHTS INTO DYNEIN AUTOINHIBITION. Matthew G. Marzo

2097-Pos BOARD B367
SINGLE-MOLECULE IMAGING OF CYTOPLASMIC DYNEIN IN VIVO REVEALS THE MECHANISM OF MOTOR ACTIVATION AND CARGO CAPTURE. Nireekshita Addanki Tirumala

2098-Pos BOARD B368
HIGH RESOLUTION CRYO-EM STRUCTURES OF DYNACTIN’S SHOULDER AND POINTED END. Clinton K. Lau, Andrew Carter

2099-Pos BOARD B369

2100-Pos BOARD B370
LS11 PROMOTES THE FORMATION OF ACTIVATED CYTOPLASMIC DYNEIN-1 COMPLEXES. John P. Gillies, Zaw Min Htet, Richard W. Baker, Andres Leschziner, Morgan E. DeSantis, Samara L. Reck-Peterson

2101-Pos BOARD B371
THE REGULATORY ROLE OF LS1 ON THE MECHANICS OF DYNEIN MOTILITY. Emre Kusakci

2102-Pos BOARD B372
CARGO ADAPTORS REGULATE THE STEPPING AND FORCE GENERATION OF MAMMALIAN DYNEIN-DYNACTIN. John Canty

2103-Pos BOARD B373
OSCILLATORY MOVEMENT OF A DYNEIN-MICROTUBULE COMPLEX CROSS-LINKED WITH DNA-ORIGAMI. Shimaa A. AbdelLatef, Hisashi Tadakuma, Yuichi Kondo, Kangmin Yan, Rofia Boudria, Kodai Fukumoto, Takashi Fujimori, Hideo Higuchi, Keiko Hirose

Biophysical Society
<table>
<thead>
<tr>
<th>ID</th>
<th>BOARD</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2132-</td>
<td>B402</td>
<td>TRAVEL Awardee: Uncovering the Molecular and Structural Basis of Hyper-Trophic Cardiomyopathy-Causing Mutations in Myosin and Myosin Binding Protein-C. Neha Nandwani, Darshan V. Trivedi, Saswata S. Sarkar, Makenna Morck, Kathleen Ruppel, James A. Spudich</td>
</tr>
<tr>
<td>2133-</td>
<td>B403</td>
<td>TRAVEL Awardee: Study of HCM Causing B-Cardiac Myosin Mutations Located at Different Structurally Significant Regions of the Myosin-Head. Debanjan Bhowmik, Neha Nandwani, Kathleen Ruppel, Chao Liu, James A. Spudich</td>
</tr>
<tr>
<td>2135-</td>
<td>B405</td>
<td>The Direct Measurement of the Stepping Force of a Purified Vesicle Using a Single Beam Optical Trap. Justin J. Raupp, Takeshi Sakamoto</td>
</tr>
<tr>
<td>2136-</td>
<td>B406</td>
<td>Computational Study of the Effect of Point Mutations Perturbing the Recovery Stroke of Human Cardiac Beta-Myosin Using Metadynamics. Ananya Chakraborti, Jil C. Tardiff, Steven D. Schwartz</td>
</tr>
<tr>
<td>2137-</td>
<td>B407</td>
<td>Buffer Exchange While Probing a Single Actomyosin Interaction in the Optical Trap. Aaron Snoberger, Donald A. Winkelmann, E. Michael Ostap, Yale E. Goldman</td>
</tr>
<tr>
<td>2138-</td>
<td>B408</td>
<td>Computational Evaluation of Point Mutation Perturbations to the Recovery Stroke of Dictyostelium Myosin II with Metadynamics. Anthony P. Baldo, Jil C. Tardiff, Steven D. Schwartz</td>
</tr>
<tr>
<td>2140-</td>
<td>B410</td>
<td>Actin Network Organization by the Monomeric Myosin Ixa. Markus Kröss, Dario Saczko-Brack, Christopher Batters, Claudia Veigel</td>
</tr>
<tr>
<td>2141-</td>
<td>B411</td>
<td>A Landscape-Based View on the Stepping Movement of Myosin VI. Tomoki P. Terada, Qing-Miao Nie, Masaki Sasai</td>
</tr>
<tr>
<td>2142-</td>
<td>B412</td>
<td>Utilization of Transition Path Sampling to Perform Dynamically Unbiased Simulations of ATP Hydrolysis in Two Isoforms of Myosin II. Ananya Chakraborti, Anthony Baldo, Jil C. Tardiff, Steven D. Schwartz</td>
</tr>
</tbody>
</table>

Cytoskeletal Assemblies and Dynamics (Boards B413 - B429)

<table>
<thead>
<tr>
<th>ID</th>
<th>BOARD</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2143-</td>
<td>B413</td>
<td>Modeling Actin Networks in Realistic Geometries of Dendritic Spines. Andrew Nguyen, Justin L. Oshiro, Christopher T. Lee, Michael Holst, Padmini Rangamani</td>
</tr>
<tr>
<td>2144-</td>
<td>B414</td>
<td>Primary Cilium Submicron Organization and Dynamics. Belén Torrado, Lorenzo Scipioni, Enrico Gratton, José L. Badano, Leonel S. Malacrida, Florencia Irigoin</td>
</tr>
<tr>
<td>2145-</td>
<td>B415</td>
<td>The Effects of X-ray Contrast Media on Actin. Gábor Hild, Elek Telek, Zoltan Ujfalusi</td>
</tr>
<tr>
<td>2146-</td>
<td>B416</td>
<td>Mechanisms Underlying Nwasp Activation by Synergistic Pairs of Signaling Molecules. Aniruddha Chattaraj, Leslie M. Loew</td>
</tr>
<tr>
<td>2147-</td>
<td>B417</td>
<td>Intercellular Force Transmission in Wound Closure. Ai Kia Yip, Keng-Hwee Chiam</td>
</tr>
<tr>
<td>2148-</td>
<td>B418</td>
<td>Mechanical Force-Driven Registry of Non-Muscle Myosin in Fibroblasts. Kinjal Dasbiswas, Shiqiong Hu, Alexander D. Bershadsky, Samuel Safran</td>
</tr>
<tr>
<td>2149-</td>
<td>B419</td>
<td>Sliding Filament and Fixed Filament Mechanisms Contribute to Tension of the Fission Yeast Cytokinin Ring. Roberto Alonso-Matilla, Sathish Thyagarajan, Ben O'Shaughnessy</td>
</tr>
<tr>
<td>2150-</td>
<td>B420</td>
<td>Real Time AFM Imaging of Depolymerizing Microtubule Arrays at Single Prototubule Resolution. Radhika Subramanian, Sithara Wijeratne</td>
</tr>
<tr>
<td>2151-</td>
<td>B421</td>
<td>Bending of Actin Filaments into Rings by IQGAP Family of Proteins. Saravanan Palani, Tzer Chyn Lim, Mohan K. BALASUBRAMANIAN, Darius V. Koester</td>
</tr>
<tr>
<td>2152-</td>
<td>B422</td>
<td>Dynamics of Force-Regulated Branched Actin Network Density. Tai-De Li, Peter Bieling, Dyche Mullins, Daniel A. Fletcher</td>
</tr>
<tr>
<td>2153-</td>
<td>B423</td>
<td>Change in the Helical Symmetry of Chlamydomonas and Ciona Flagellar Axonemes Coupled with the Change in Ca2+ Concentrations Revealed by X-ray Fiber Diffraction. Kazuhiro Oiwa, Hiroyuki Iwamoto, Kogiku Shibata, Kazuo Inaba, Hitoshi Sakakibara</td>
</tr>
<tr>
<td>2155-</td>
<td>B425</td>
<td>Measurement and Modeling of Microtubule Tip Dynamics. Joseph M. Cleary</td>
</tr>
<tr>
<td>2156-</td>
<td>B426</td>
<td>Targeting Tumor Cells by Actin-Regulated Nuclear Envelope Rupture. Marc-Antoine Rodrigue, Claire Dziengelowski, Kévin Jacquet, Alexia Caillier, Jonathan Bergeman, François Bordeleau, Marc-Étienne Huot, José N. Lavoie</td>
</tr>
<tr>
<td>2157-</td>
<td>B427</td>
<td>Contractile Ring Constriction and Cell Wall Growth Are Regulated by Mechanical Feedback and Destabilized by Mutations in Fission Yeast. Satish Thyagarajan, Zachary A. McDargh, Shuyuan Wang, Ben O'Shaughnessy</td>
</tr>
<tr>
<td>2158-</td>
<td>B428</td>
<td>Replacement of myosin Molecules Within Cardiac Thick Filaments in Intact Mouse Hearts. Michael J. Previs, Jody L. Martin, Jeffrey L. Spees, Thomas S. O'Leary</td>
</tr>
<tr>
<td>2159-</td>
<td>B429</td>
<td>Microrheology of Actin-VIMENTIN-MICROTUBULE Composite Cytoskeletal Networks. Yinan Shen</td>
</tr>
</tbody>
</table>
Determination of the number of permeability transition pores in single mitochondrion. Maria A. Neginskaya, Jasiel O. Strubbe, Giuseppe F. Amodeo, Jason N. Bazil, Evgeny V. Pavlov

Acetylation of cyclophilin D increases calcium sensitivity of the permeability transition pore. Gisela Beutner, George A. Porter

Identification of role of mitochondrial chloride intracellular channel (CLIC) protein, CLIC4 and CLIC5 in cardioprotection from IR injury via probably modulating the opening of MPTP pore. Devasana Ponnalagu, Piotr Bednarczyk, Jessica West, Erhe Gao, Walter Koch, Mahmood Khan, Adam M. Szewczyk, Harpreet Singh

Structural and functional alterations in sinoatrial node mitochondria during heart failure. Lu Ren, Xiao-Dong Zhang, Elena N. Dedkova, Phung N. Thai, Nipavan Chiamvimovnat

SPATIOTEMPORAL SUBCELLULAR CHARACTERIZATION OF ABSOLUTE NADH CONCENTRATION OVER THE DYNAMIC COURSE OF METAPHASE, ANAPHASE, TELOPHASE AND CYTOKINESIS USING THE PHASOR APPROACH TO FLIM. Rachel Cinco, Ny’Kerria Leonard, Michelle A. Digman, Enrico Gratton

Therapeutic concentrations of statins hyperpolarize mitochondria and inhibit cell proliferation without promoting cell death in hepatocarcinoma cells. Elizabeth G. Hunt, Diana Fang, Amandine Rovini, Charleston F. Christie, Kareem A. Heslop, Eduardo N. Maldonado

Monitoring CAMKII in mitochondria. Kevin R. Murphy, Qinchuan Wang, Jonathan Granger, Vedika Karandikar, Gianna Bortoli, Xi Zhang, Jonathan Feng, Amandine Rovini, Charleston F. Christie, Kareem A. Heslop, Eduardo N. Maldonado

Aged diabetic mice exhibit diastolic dysfunction associated with alterations in myocardial mitochondrial oxidative phosphorylation protein expression and complex assemblies. Wenzhou MA, Scarlett Hutch, Thomas Mancini, Alex Yang, Shanna Hamilton, Radmila Terentyeva, Dmitry A. Terentyev, Gaurav Choudhary, Richard T. Clements

Membrane interaction of mitochondrial intermembrane space kinases. Uwe Schlattner

TRIC-A channel modulates CA\(^+\) homeostasis in mitochondria. Ang Li, Xuejun Li, Jianxun Yi, Xinyu Zhou, Ki Ho Park, Miyuki Nishi, Hiroshi Takashima, Jianjie Ma, Jing-song Zhou

Reduced affinity of mitochondrial VDAC3 for cytosolic proteins reveals a mechanism for VDAC isoform-specific physiology. Maria Queralt-Martín, Lucie A. Bergdoll, Jeff Abramson, Sergey M. Bezrukov, Tatiana K. Rostovtseva

Peripheral binding of hexokinase-2 to the rim of VDAC1 mediated by the mitochondrial outer membrane. Nandan Haloi, Po-Chao Wen, Qunil Cheng, Meiying Yang, Amadou K. Camara, Wai-Meng Kwok, Emad Tajkhorshid

Oxidative thiol modifications as molecular redox sensors in human mitochondria. Radhakrishnan Mahalakshmi

Multi-modal actions of BAX and BTK1 on mitochondrial bioenergetics and membrane integrity. Jonathan Feng, Qunil Cheng, Gayathri K. Natarajan, Amadou K. Camara, Wai-Meng Kwok

Proton transport in mitochondrial UCP2 is regulated by a matrix-oriented salt-bridge network. Afshan Ardalai, Shahin Sowlati-Hashjin, Mikko Karrtunen, Matthew D. Smith, Masoud Jelokhani-Niaraki

Protonic capacitor bioenergetics: Why mitochondria develop cristae? James W. Lee

Mitochondrial redox signaling and cristae morphology changes upon 2-keto-isocaprate and fatty acid-stimulated insulin secretion. Petr Jezek, Blanka Holendova, Martin Jaburek, Jan Tauber, Lydie Plecitá-Hlavatá, Andrea Dlaskova

Mitochondrion reimagined - fueling synthetic life. Leonardo Nogueira, Ellen C. Breen

Enhanced \(\text{O}_2\)-dependent mitochondrial activation in myofibers from \(\text{CM}-\text{NGLYCOLYLNEURAMINIC ACID HYDROXYLASE (CMAH)}\) gene inactivated mice. David Flores, Micah B. Olivas, Mandeep Kaur, Koshka Raval, Joel Castillo, Anthony Waterston, Alam Hasson, Laurent M. Dejean

Systems Biology and Disease (Boards B476 - B488)

Peripheral equilibrium entropy of cancer based on Gompertzian growth. Preet Sharma, Randal Hallford, Salvatore Capotosto, Bailey Smoot

A biophysical basis for a targeted therapy exceptional response KRAS mutation. Edward C. Stites, Thomas McFall

Biophysical model of ion transport and energy depletion in the inner ear. Julia Lasater, Robert M. Raphael

Zebrafish airine me target search and optimal curvature. Sohyeon Park, Hyunjoong Kim, Dae Seok Eom, Jun F. Allard

Determinants of influenza a diffusion through the mucus barrier to infection. Logan Kaler, Shahed Bader, Gregg Duncan
2211-Pos Board B481 STRAIN ACCUMULATION VISCO-ELASTIC VENTRICULOMEGALY HYPOTHESIS FOR THE ONSET OF IDIOPATHIC NORMAL PRESSURE HYDROCEPHALUS (INPH). Stephanie Sincomb, Victor Haughton, Antonio Sanchez, Ernesto Criado-Hidalgo, Juan C. Lasheras

2212-Pos Board B482 ATOM CONTACT PROFILE BY ALPHA-SHAPE IMPROVES PREDICTION OF EFFECTS OF MISSENSE VARIANT. Boshen Wang, Xue Lei, Wei Tian, Alan Perez-Rathke, Yan Yuan Tseng, Jie Liang

2213-Pos Board B483 RESOLVING THE CONNECTION BETWEEN MAJOR HISTOCOMPUTABILITY COMPLEXES AND IMMUNE OUTCOMES USING UNSUPERVISED CLUSTERING OF MOLECULAR DYNAMICS SIMULATIONS. Eric A. Wilson, Karen Anderson, Abhishek Singhary

2214-Pos Board B484 CELLULAR NOISE AND RESPONSE TO ANTIBIOTICS. Shahla Nemati, Daniel M. Weinreich, Andreas E. Vasdekis

2215-Pos Board B485 SINGLE-CELL ANALYSIS ON BACTERIAL COMPETITION BETWEEN MICROCOLONIES. Tianyi Ma, Joshua Milstein

2216-Pos Board B486 DELAYED ONSET MUSCLE SORENESS (DOMS): COMPARATIVE ION HOMOSTASIS MODELING SHOWS HOW DONNAN EFFECTS PROTECT DAMAGED MUSCLE FIBERS. Catherine E. Morris, Joshua J. Wheeler, Bela Joos

2217-Pos Board B487 AMELIORATIVE EFFECTS OF TRANSCRIPTION FACTOR DFOXO OVER-EXPRESSION IN A DROSOPHILA CARDIOVASCULAR DISEASE MODEL. Marissa Sumathipala, Meera C. Viswanathan, Anna C. Blice-Baum

2218-Pos Board B488 IMPAIRED MYOCARDIAL ENERGETICS CONTRIBUTES TO MECHANICAL DYSFUNCTION IN DECOMPENSATED FAILING HEARTS. Rachel Lopez, Xin Gao, Bahador Marzban, Ellen Lauinger, Françoise Van den Bergh, Daniel A. Beard

Molecular and Cellular Neuroscience (Boards B489 - B504)

2219-Pos Board B489 DIFFERENCES IN POTASSIUM CHANNEL COMPOSITION UNDERLY DISTINCT ACTION POTENTIAL KINETICS IN TRANSCRIPTOMICALLY IDENTIFIED NEOCORTICAL MOUSE CELL TYPES. Jim Berg, Brian Lee, Rusty Mann, Lindsay Ng, Agata Budzillo, Brian Kalmbach, Katherine Baker, Hongkui Zeng, Gabe Murphy

2220-Pos Board B490 THE DEVELOPMENT OF COOPERATIVE CHANNELS EXPLAINS THE MATURATION OF HAIR CELL'S MECHANOTRANSDUCTION. Francesco Gianoli, Thomas Risler, Andrei S. Kozlov

2221-Pos Board B491 NANOSCALE DYNAMICS OF VOLTAGE-GATED CALCIUM CHANNELS AT PRESYNAPTIC ACTIVE ZONES IN LIVE C. ELEGANS. Yunke Zhao

2222-Pos Board B492 COUNTING THE NUMBER OF GLUTAMATE MOLECULES IN SINGLE SYNAPTIC VESICLES. Ann-Sofie U. Cans, Yuanmo Wang, Hoda Mashadi Fathali, Devesh Mishra, Thomas Olsson, Jacqueline Keighron, Karolina Skibicka

2223-Pos Board B493 RAPID CELL TYPE-DEPENDENT UPTAKE OF ON4R TAU MONOMER IS NOT SOLELY HEPARIN SULFATE PROTEOGLYCAN DEPENDENT. Anne S. Robinson, Daniel Oseid, Evan Wells, Liqing Song

2224-Pos Board B494 PLASMA MEMBRANE DYNAMICS AND PROTEOLYTIC PROCESSING OF APP FROM A SINGLE MOLECULE/SINGLE CELL PERSPECTIVE. Claudia Capittini, Cristina Cecchi, Francesco S. Pavone, Martino Calamai

2225-Pos Board B495 ACETYL MIMICKING K274Q MUTATION ENHANCES TAU AGGREGATION, INCREASES THE AFFINITY OF TAU FOR METAL IONS AND REDUCES ITS ABILITY TO PROTECT DNA. Jitendra S. Rane, Anuradha Kumari, Dulal Panda

2226-Pos Board B496 CONFORMATIONAL STATES OF NITRIC OXIDE SYNTHASE CHARACTERIZED BY TIME-RESOLVED FLUORESCENCE. Carey K. Johnson, Alexa A. Snyder, Alexandria K. Gambill, David C. Arnett, Brian C. Smith

2227-Pos Board B497 SUPERRESOLUTION MICROSCOPY TO STUDY THE ENDOGENOUS ROLE OF ALPHA-SYNUCLEIN IN SYNAPTOSOMES. Pedro P. Vallejo Ramirez

2228-Pos Board B498 A SNAKE UNCOILED: ACTIVATION OF PARKIN, A UBIQUITIN LIGASE INVOLVED IN PARKINSON'S DISEASE. Kalle Gehring, Véronique Sauvé

2229-Pos Board B499 EFFECTS OF AU-FE NANOCLUSTER ON NEURON DIFFERENTIATION WITH ELECTRIC STIMULATION. Yu-Tung Weng, Yu-Jhe Chiu, Li-Han Chung, Yu-Ying Hsieh, Tsan-Yao Chen, Chi-Shuo Chen

2230-Pos Board B500 REAL-TIME IMAGING FOR THE INVESTIGATION OF CORRELATION BETWEEN FACTOR AGGREGATION AND TRANSPORT MECHANISM VARIATION OF MOTOR PROTEIN IN NEURONAL CELLS. Yo Han Song, Kyujin Shin, Kang Taek Lee

2231-Pos Board B501 SIGNAL INTEGRATION MECHANISM OF CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE II REVEALED BY HIGH-SPEED AFM. Mikihiro Shibata, Hideji Murakoshi

2232-Pos Board B502 NEURODEGENERATIVE DISEASE AND CAMP SIGNALING DYNAMICS. Elsa Roush, Kevin Harlen, Mike Hendrickson, Thomas E. Hughes

2233-Pos Board B503 ACTIVITY-DEPENDENT PLASTICITY AT ASSOCIATIVE MEMORY CELLS IN THE PREFRONTAL CORTEX. Jin-Hui Wang, Jing Feng, Wei Lu

2234-Pos Board B504 THE REGULATORY MEMBRANE PROTEIN FXYD6: LOCALIZATION IN THE CNS AND INTERACTION WITH THE NA+ K+-ATPASE. Ryan Sweazey, Craig Gatto, Pablo Artigas

Sensory Neuroscience (Boards B505 - B510)

2235-Pos Board B505 THE GROWTH DYNAMICS OF DROSOPHILA CLASS IV DENDRITES ACCORDING TO A THREE-STATE MARKOV MODEL. Sabyasachi Sutradhar, Sonal Shree, Kevin Harlen, Craig Trottier, Jonathon Howard

2236-Pos Board B506 ACTION POTENTIAL ACTIVITY AND MEMBRANE STRUCTURE IN NEURONS OF THE GOLDFISH RETINA UNDERGO SEASONAL CHANGES. Michael G. Jonz, Michael W. Country, Katrin Blank, Jeffrey C. Smith

2237-Pos Board B507 NONLINEAR DYNAMICS OF HEARING. Dolores Bozovic
2238-Pos BOARD B508
STIM1 THERMOSENSITIVITY DEFINES THE OPTIMAL PREFERENCE TEMPERATURE FOR WARM SENSATION IN MICE. Xiaoling Liu, Haiping Wang, Yan Jiang, Qiu Zheng, Matt Petrus, Mingmin Zhang, Sizi Zheng, Christian Schmidt, Xinzhong Dong, Bailong Xiao

2239-Pos BOARD B509
EVALUATION OF THE COGNITIVE EVOKE POTENTIAL P300 IN MEDICAL STUDENTS UNDER DIFFERENT LEVELS OF ACADEMIC STRESS. Ana Luisa Alvarez, Marco Antonio Delaney Martinez, Raúl Sampieri

2240-Pos BOARD B510
THE OSMOSENSITIVE CATION CHANNEL TMEM63B IS REQUIRED FOR AUDITORY SYSTEM. Chang Ye

Computational Methods and Bioinformatics II (Boards B511 - B532)

2241-Pos BOARD B511
SINGLE-PARTICLE TRACKING OF DNA-BINDING BIOMOLECULES IN THE NUCLEUS: WHY A POWER-LAW DISTRIBUTION OF DWELL TIMES? Michael J. Saxton

2242-Pos BOARD B512
REALISTIC, VECTORIAL MODELING OF THE DETECTION POINT SPREAD FUNCTION FOR SINGLE MOLECULE AND BRIGHTFIELD MICROSCOPY. Michael J. Nasse, Jorg C. Woehl

2243-Pos BOARD B513
THREE-DIMENSIONAL FAST OPTIMIZED CLUSTERING ALGORITHM (FOCAL3D) FOR SINGLE-MOLECULE LOCALIZATION MICROSCOPY. Daniel F. Nino, Joshua N. Milstein

2244-Pos BOARD B514
DECODING THE VARIANCE IN INTRACELLULAR ORGANIZATION OF THE UNDIFFERENTIATED HIPS CELL. Matheus Palhares Viana, Susanne M. Rafelski

2245-Pos BOARD B515
OPERATOR ALGEBRAS FOR DYNAMIC TOPOLOGY MODELS OF CYTOSKELETON. Eric Mjolsness

2246-Pos BOARD B516
BAYESIAN CELL FORCE ESTIMATION INTRODUCING CELL SHAPE PRIOR. Ryosuke Fujikawa, Satoshi Kozawa, Kentarou Baba, Naoyuki Inagaki, Kazushi Ikeda, Yuichi Sakamura

2247-Pos BOARD B517
MODELLING IN VITRO AGGREGATION OF CANCER CELLS. Léo L. Adenis, Olivier Seksek, Marjorie Juchaux, Christophe Derouleurs, Mathilde Badoual

2248-Pos BOARD B518
LIPIDOME PROFILES OF GLIOBLASTOMA AND DUCTAL CARCINOMA CELL LINES. Edmundo Medina-Gurrola, Steve Berruecos, Michael C. Canton, Alexis S. Torres, Barry Dungan, F. Omar Holguin, Elba E. Serrano

2249-Pos BOARD B519
SUPPRESSING ALTERNANS BY FEEDBACK CONTROL DEPENDS ON UNDERLYING INSTABILITY FACTORS. Arvind Krishnan, Daisuke Sato

2250-Pos BOARD B520
ANALYSIS OF DIFFERENTIAL GENE EXPRESSION IN RESPONSE TO ANISOTROPIC STRETCH USING A SYSTEMS MODEL OF CARDIAC MYOCYTE MECHANOTRANSDUCTION. Shulin Cao, Kyle Buchholz, Philip M. Tan, Yasser Aboelkassem, Jennifer C. Stowe, Jeffrey J. Saucerman, Jeffrey Omens, Andrew D. McCulloch

2251-Pos BOARD B521
WHOLE-ATRIA OPTICAL ANALYSIS OF TRANSVERSE-AXIAL TUBULE SYSTEM FOR IDENTIFICATION OF VULNERABLE “HOT SPOTS” FOR ARRHYTHMIA DEVELOPMENT. Lucas N. Ratajczyk, Ashley K. Irwin, Di Lang, Alexey V. Glukhov

2252-Pos BOARD B522
BREAKDOWN IN THE CONTINUUM: EXPLORING THE LIMITATIONS OF CONTINUUM MODELS OF CALCIUM ION SIGNALING IN DENDRITIC SPIINES. Meagan P. Rowan, Mason V. Holst, Miriam Bell, Christopher T. Lee, Michael J. Holst, Padmangi Rangamani

2253-Pos BOARD B523
BIOLOGICAL APPLICATIONS FOR ONLINE METHODS OF RESOURCE ALLOCATION. Andrea Boskovic, Ashley Carter, Jeeyon Jeong

2254-Pos BOARD B524

2255-Pos BOARD B525
MODELLING THE GENETIC INFORMATION PROCESSES OF A GENETICALLY MINIMAL CELL. Zane R. Thornburg, Marcelo Cardoso dos Reis Melo, David Bianchi, Troy A. Brier, Marian Breuer, Hamilton O. Smith, Clyde A. Hutchison III, John I. Glass, Zaida Luthey-Schulten

2256-Pos BOARD B526
FUNCTIONAL ANNOTATION OF CODING AND NON-CODING RNA IN NON-MODEL ORGANISMS. Sayane Shome, Robert L. Jernigan

2257-Pos BOARD B527
3D MOVEMENT ANALYSIS USING DEEP LEARNING ALGORITHMS REVEALS ALTERATIONS IN MOTOR FUNCTIONS AFTER NEUROLOGICAL INJURIES IN RAT SPASTICITY MODEL. Demeter Túrós, Adami I. Horvath, Mate Gyimesi, Andras Malmasi-Csizmadia

2258-Pos BOARD B528

2259-Pos BOARD B529
MATHEMATICAL MODELING OF CELL VOLUME CONTROL. Maria Jesus Munoz Lopez, Yoichiro Mori

2260-Pos BOARD B530
3D CONVOLUTIONAL NEURAL NETWORK FOR PREDICTING FREE ENERGIES OF PARTITIONING. Stewart He, Helgi Ingolfsson, Delin Sun, W.F. Drew Bennett, Jonathan Allen, Felice C. Lightstone, Camille Biloadeau

2261-Pos BOARD B531
AN OPEN SOURCE PLATFORM FOR CONTINUUM SIMULATIONS OF BIOLOGICAL MEMBRANES. Yulong Pan, Yannick Azhri Din Omar, Arvind Krishnan, Farid Manuchehrfar, Anna Terebus, Jie Liang
Optical Microscopy and Superresolution Imaging III (Boards B533 - B542)

2263-Pos BOARD B533 TRAVEL Awardee
A COMPARISON OF HISTO-CHEMICAL AND HISTO-MAGNETIC DETECTION OF IRON. Kevin J. Walsh, Stavan Shah, Ping Wei, Samuel Oberdick, Dana McGuie, Gunjan Agarwal

2264-Pos BOARD B534 INTERPLAY OF RADITATIVE AND NON RADITATIVE RATE CONSTANTS IN THE PHOTOPHYSICS OF FLUORESCENT PROTEINS. Srijit Mukherjee

2266-Pos BOARD B536 PUMPLESS MICROFLUIDIC SYSTEM FOR BONE MARROW NICHE-ON-A-CHIP IN VITRO MODELLING AND MULTIPHOTON IMAGING IN LEUKEMIA. Giulia Borile, Giulia Borella, Camille Charoy, Andrea Filippi, Filippo Romanato, Martina Pigazzi, Kurt Anderson

2267-Pos BOARD B537 EXCLUSION OF RNA-ASSOCIATED PROTEINS FROM THE CELL CYTOSOL OBSERVED BY DUAL COLOR Z-SCAN FLUORESCENCE MICROSCOPY. Siddarth Reddy Karuka, Isaac Angert, John Kohler, Louis M. Mansky, Joachim D. Mueller

2268-Pos BOARD B538 AN ULTRA-SENSITIVE IMMUNOHISTOCHEMICAL (IHC) IMAGING METHOD FOR LOW-ABUNDANT TARGETS DETECTION. Haiyan Wu, Shu Kan, Deven Patel, Qin Zhao, Pengfei Dong, Liu Jixiang, Jinfang Liao, Zhenjun Diwu

2269-Pos BOARD B539 REAL-TIME POINT SPREAD FUNCTION ENGINEERING FOR ISCAT. Vivien Walter, Mark I. Wallace

2270-Pos BOARD B540 LARGE-SCALE SPECIES-SPECIFIC MICROBIAL IDENTIFICATION BY FLUORESCENCE IN SITU HYBRIDIZATION. Sungho Kim, Jae-Kyeong Im, Seungmin Yun, Hwasoooh Koh, Donghoon Kang, Taejoon Kwon, Hajin Kim

2271-Pos BOARD B541 SIMULTANEOUS IMAGING OF INSULIN VESICLE DYNAMICS AND CALCIUM ACTIVITY IN LIVE INTACT MOUSE ISLETS BY DISPIM. Xue Wen Ng, Michael R. DiGruccio, Tomasz S. Tkaczyk, David W. Piston

2272-Pos BOARD B542 POINT SPREAD FUNCTION ENGINEERING TO MAP 3D PARTICLE MOTION. Keith Bonin, Sudhakar Prasad, Paul Kefer, George M. Holzwarth, Pierre-Alexandre Vidi

Single-Molecule Spectroscopy I
(Boards B543 - B559)

2274-Pos BOARD B544 THE ROTARY MOTOR OF LIFE: SINGLE-MOLECULE IMAGING AND MOLECULAR DYNAMICS SIMULATION OF F1-ATPASE. Nathan Suiter, Jason Portillo, Matthew A. Anderson

2275-Pos BOARD B545 EGFR MEMBRANE DYNAMICS AND ORGANIZATION INVESTIGATED BY CAMERA-BASED MULTI-PARAMETER FLUORESCENCE IMAGING WITH HIGH SPATIOTEMPORAL RESOLUTION. Thorsten Wohland, Jagadish Santhanaran, Harikrishnan Balasubramanian

2276-Pos BOARD B546 INSIDE-OUT REGULATION OF CADHERIN ADHESION. Ramesh Koirala, Andrew V. Priest, Soichiro Yamada, Martijn Gloerich, Sanjeevi Sivasankar

2277-Pos BOARD B547 RAISING THE BAR ON SINGLE-MOLECULE BIOPHYSICS: DNA/RNA SECONDARY/TERTIARY FOLDING USING EXTREME PRESSURE AS A CONTROL VARIABLE. Hsuan-Lei Sun, David J. Nesbitt

2278-Pos BOARD B548 SINGLE-MOLECULE G-QUADRUPLEX NANOPORE ASSAY. Filip N. Boskovic, Jinbo Zhu, Kaikai Chen, Ulrich F. Keyser

2279-Pos BOARD B549 TRAVEL Awardee
CGP METHYLATION DETECTION WITH SINGLE-MOLECULE RECOGNITION THROUGH EQUILIBRIUM POISSON SAMPLING. Liuhian Dai, Alexander Johnson-Buck, Muneesh Tewari, Nils G. Walter

2280-Pos BOARD B550 SPCAS9 DISPLAYS BIASED ONE-DIMENSIONAL DIFFUSION ON DSDNA TO SEARCH FOR A TARGET. Chunjai Chen, Mengyi Yang

2281-Pos BOARD B551 SPECTRAL ANALYSIS OF A FAST BIOMOLECULAR TRANSITION IN MAGNETIC TWEETERS MEASUREMENTS. Sebastian Belau, Ralf Seidel

2282-Pos BOARD B552 ANTIBODY BINDING BACTERIA SAMPLE THEIR ENVIRONMENT THROUGH A SECOND BINDING SITE, WHICH CAN ACT AS A FORCE-SENSOR UNDER MECHANICAL SHEER. Narayan Dahal, Joel Nowitzke, Annie Eis, Ionel Popa

2283-Pos BOARD B553 COMBINED SINGLE-MOLECULE FRET AND SINGLE-CHANNEL RECORDING TO LINK ION CHANNEL CONFORMATION AND FUNCTION. Steven Vanuytsel, Christopher L. Parperis, Mark I. Wallace

2284-Pos BOARD B554 RESOLUTION OF ANGSTROM-SCALE PROTEIN-CONFORMATIONAL CHANGES IN THE REGULATORY DOMAIN OF A K+ CHANNEL BY ANALYZING FLUORESCENCE ANISOTROPY. John H. Lewis, Zhe Lu

2285-Pos BOARD B555 MULTIVALENT EFFECTS ON INTERACTIONS BETWEEN THE LIGAND AND CELL-SURFACE RECEPTORS PROBED BY A BINDING FORCE SPECTROSCOPY. Lina A. Alhalhooly, Matthew Confeld, Yongki Choi, Sanku Malik

2286-Pos BOARD B556 USING SINGLE-MOLECULE SPECTROSCOPY TO DISSECT THE HEPATITIS C VIRUS NUCLEOCAPSID ASSEMBLY PATHWAY. Saptaswa Sen, Shamalungwai Durayalage, Erik D. Holmstrom

2287-Pos BOARD B557 A STUDY OF TRANSCRIPTIONAL ACTIVATION BY THE TRANSCRIPTION FACTOR GAL4 IN SACCHAROMYCES CEREVISIAE BY 3D ORBITAL TRACKING AND IN VIVO RNA LABELLING. Abigail Figueroa, Iris L. Torres, Julianna Goezler, Michael Pool, Tineke Lenstra, Matthew L. Ferguson

2288-Pos BOARD B558 TRAVEL Awardee
RNA TRAFFICKING BETWEEN MEMBRANELESS ORGANELLES AT SINGLE-MOLECULE RESOLUTION IN LIVE CELLS. Guoming Gao, Ameya P. Jallalha, Andreas Schmidt, Nils G. Walter

2289-Pos BOARD B559 SINGLE-MOLECULE MEASUREMENTS TO CAPTURE THE DISTRIBUTION OF CONFORMATIONAL AND DIMERIC STATES OF THE CYTOSOLIC PROTEIN CRAFT IN LIVE CELLS. Kenji Okamoto, Kayo Hibino, Yasushi Sako
Optical Spectroscopy: CD, UV-VIS, Vibrational, Fluorescence (Boards B560 - B582)

2290-Pos Board B560 Travel Awardee
IN SITU MEASUREMENT OF PROTEIN AND LIPID MASS BY NORMALIZED RAMAN IMAGING. Seungeun Oh, Changhee Lee, Dan Fu, Wenlong Yang, Ang Li, Chongzhao Ran, Wei Yin, Clifford J. Tabin, X. Sunnery Xie, Marc W. Kirschner

2291-Pos Board B561 Travel Awardee
MOLECULAR MICROSCOPY OF OIL BODY AND LIPID DROPLET CHEMISTRY IN SITU WITH PHYSILOGICALLY-RELEVANT READOUTS. Alexandra Paul, Sapun H. Parekh

2292-Pos Board B562
WEAK INTRINSIC LUMINESCENCE IN MONOMERIC PROTEINS ARISING FROM CHARGE RECOMBINATION. Amrendra Kumar, Dileep Ahari, Anurag Priyadarshi, Mohd. Z. Ansari, Rajaram Swaminathan

2293-Pos Board B563
MULTIMODAL NONLINEAR OPTICAL IMAGING OF PLASMA MEMBRANE BY DYE-BASED SUM-FREQUENCY GENERATION USING A COHERENT ANTI-STOKES RAMAN SCATTERING MICROSCOPE. Takaha Mizuguchi, Atsuya Momotake, Mafumi Hishida, Masato Yasui, Yasuhiko Yamamoto, Mutsuo Nuriya

2294-Pos Board B564
HIGH-THROUGHPUT FRET SCREENING IN LIVING CELLS BASED ON LIFETIME DETECTION TO IDENTIFY SMALL-MOLECULE EFFECTORS OF SERCA. Tony Schaff, Samantha Yuen, Andrew R. Thompson, Benjamin D. Grant, Ang Li, Evan Kleinboehl, Lauren Roelike, Ji Li, Razvan L. Cornea, David D. Thomas

2295-Pos Board B565
A SELF ALIGNING MACROSCOPIC SELECTIVE PLANE ILLUMINATION MICROSCOPE WITH NEAR UNIFORM AXIAL RESOLUTION. Arianna Gentile Polese, Gregory Seedorf, Dominik Stich, Douglas P. Shepherd

2296-Pos Board B566
UNRAVELING THE ORIGIN OF MULTI-EXponential FLUORESCENCE INTENSITY DECAY OF TRYPTOPHAN IN PROTEINS. Amrendra Kumar, Shah E. Alom, Anurag Priyadarshi, Dileep Ahari, Mohd. Z. Ansari, Rajaram Swaminathan

2297-Pos Board B567
INTERFEROMETRIC FLUORESCENCE CROSS CORRELATION SPECTROCOPY. Ipsita Saha, Savee Saffarian

2298-Pos Board B568
STEPS TOWARD FULL WAVELENGTH RANGE CALIBRATION FOR CIRCULAR DICHROISM SPECTROSCOPY. Curtis W. Meuse

2299-Pos Board B569

2300-Pos Board B570
TOPOLOGY, LANDSCAPES, AND BIOMOLECULAR ENERGY TRANSPORT. Michael Zwolak, Justin Elenewski

2301-Pos Board B571
ACRIDINIUM AND ACRIDONE CONSTRUCTS WITH RED-SHIFTED EMISSION. Kerry M. Swift, Richard Haack, Anastasiia A. Tikhomirova, Stefan Hershberger, Sergey Y. Tetin

2302-Pos Board B572
TOOLS AND RESOURCES FOR CIRCULAR DICHROISM SPECTROSCOPY. Bonnie A. Wallace, Robert W. Janes, Andrew Miles, Elliot D. Drew, Lee Whitmore, Sergio Gomes Ramalhi

2303-Pos Board B573
MODULATING AND DETECTING THE DYNAMIC CHANGES OF INTERMOLECULAR HYDROGEN BONDING IN PLASMONIC MOLECULAR JUNCTION. Jing Guo, Tao Ma, Eugene Li, Jin He

2304-Pos Board B574
LOCALIZED SURFACE PLASMON RESONANCE SPECTROSCOPY FOR THE DETECTION OF MICROTUBULE NUCLEATION. Runyao Yin, Dreycen Foiles, Otubek Nazarov, Evan Porter, Keisuke Hasegawa

2305-Pos Board B575
SYNCHRON-RELATED INFRARED MICROSCOPY STUDIES OF THE RADIOSENSITIZATION EFFECTS OF NANOPARTICLES USED IN RADIOTHERAPY. Immaculada Martinez-Rovira, Olivier Seksek, Ibraheem Yousef

2306-Pos Board B576
USE OF RAMAN SPECTRUM FROM CELLS TO EVALUATE GENETIC CARDIOMYOPATHY. Hideaki Fujita, Arno Germond, Kazuhiro Sudo, Kuniya Abe, Tomonobu Watanabe

2307-Pos Board B577
UTILIZING TYROSINE ANALOGS TO ALTER PHOTOPHYSICAL PROPERTIES OF GREEN FLUORESCENT PROTEIN. Darcy R. Harris, Scott H. Brewer, Christine M. Phillips-Piro

2308-Pos Board B578
QUALITATIVE ANALYSIS AND PHENOTYPING WITH RAMAN SPECTROCOPY. Mark A. Krimmer, Charles Farber, Dzmitry Kurouski

2309-Pos Board B579
FOLLOWING SPATIAL DISTRIBUTION OF PHOTOSYNTHETIC PIGMENTS ACROSS THE DEVELOPMENT OF A LEAF USING HYPERSPECTRAL FLUORESCENCE MICROSCOPY. Sandeep Pallikkuth, Roxana Khoshravesh, David T. Hanson, Jerilyn A. Timlin, Keith A. Lidke

2310-Pos Board B580
QUANTITATIVE FLUORESCENCE QUENCHING BY AROMATIC AMINO ACIDS. Danielle R. Latham, Arturo R. Diaz, Jake Ribich, Nabanita Saikia, Emma Mulry, Leah Casabianca, Feng Ding, Hugo Sanabria

2311-Pos Board B581
21-PLEX MICROFLUIDIC FLOW CYTOMETER AND ITS POTENTIAL APPLICATIONS TO PEDIATRIC MALARIAL IMMUNE RESPONSE ANALYSIS. Gillian McMahon, Judith R. Mourant, Kristen Wilding, Douglas J. Perkins

2312-Pos Board B582
INVESTIGATIONS OF PROTEIN AND BIOMOLECULES USING A 280 NM OR 295 NM PICOSECOND LASER FOR HIGH SPEED MEASUREMENTS AND HIGH TIME RESOLUTION. Christian Oelsner, Eugeny Ermilov, Thomas Schönaus, Dietmar Klemme, Guillaume Delport, Kristian Lauritsen, Rainer Erdmann

Biosensors II (Boards B583 - B601)

2313-Pos Board B583
NANOIMPACT BASED SINGLE-ENTITY DETECTION OF PROTEINS USING A NANOPORE-NANOELECTRODE NANOPIPETTE. Popular Pandey, Jin He

2314-Pos Board B584
MICROSCOPIC IMAGING OF ENGINEERED BIOLOGICAL NANOPORES Aiming FOR HIGH THROUGHPUT NANOPORE SENSING AND SEQUENCING. Shuo Huang
2315-Pos Board B585
STABLE HYBRID POLYMER-LIPID MEMBRANE FOR HIGH VOLTAGE BIOLOGICAL NANOPORE EXPERIMENTS. Lunying Yu, Xinqi Kang, Mohammad Amin Alibakhshi, Meni Wanunu

2316-Pos Board B586
MULTIPLEXED MOLECULAR COUNTERS USING A HIGH-VOLTAGE TRANSMEMBRANE PORE PLATFORM. Xinqi Kang, Mohammad Amin Alibakhshi, Meni Wanunu

2317-Pos Board B587
EXOSOME CHARACTERIZATION UTILIZING THE IMMUNE SYSTEM BASED ON THE INTERRUPTING CURRENTS BY SOLID STATE NANOPORE. Masato Nishio, Federico Thei

2318-Pos Board B588
EFFECT OF ELECTROOSMOSIS ON ANTIBIOTIC TRANSLLOCATION THROUGH OUTER MEMBRANE PORIN OMPF. Jayesh A. Bafna, Sushil Pangeni, Eshita Paul, Mathias Winterhalter, Alphan M. Aksoyoglu

2319-Pos Board B589
INTERACTION OF CUCURBITURIL MOLECULAR CONTAINERS WITH THE AEROLYSIN NANOPORE FOR MOLECULAR RECOGNITION. Hadjer Ouldali, Abdelghani Oukhaled

2320-Pos Board B590
DETECTION OF TUBULIN AND TAU PROTEINS AGGREGATIONS USING SOLID-STATE NANOPORE AND ATOMIC FORCE MICROSCOPY (AFM). Mitu C. Acharjee, Haopeng Li, Bo Ma, Steve Tung, Jiali Li

2321-Pos Board B591
REVEALING THE HETEROGENEOUS PHOSPHORYLATION STATES FOR A SINGLE OLIGONUCLEOTIDE AND PEPTIDE BY NANOPORE SENSOR. Meng-Yin Li, Yi-Lun Ying, Yi-Tao Long

2322-Pos Board B592
ANALYZING SINGLE-MOLECULE BEHAVIOR OF A SMALL PROTEIN IN CONFINED NANOSPACE OF A BIOLOGICAL NANOPORE. Misa Yamaji, Natsumi Takai, Mauro Chinappi, Ryuji Kawanoto

2323-Pos Board B593
CONSTRUCTION OF PROGRAMMABLE NANOPORE USING DE NOVO DESIGNED B-SHEET PEPTIDE. Keisuke Shimizu, Shungo Sakashita, Yoshio Hamada, Kenji Usui, Batsaiikhon Mijiddorj, Izuru Kawamura, Ryuji Kawanoto

2324-Pos Board B594
MASS-INDEPENDENT, HIGH-FIDELITY SINGLE-MOLECULE DIFFERENTIATION USING THE AEROLYSIN PROTEIN PORE. Tobias Ensslen, Hadjer Ouldali, Abdelghani Oukhaled, Jan C. Behrends

2325-Pos Board B595
PROTEIN FINGERPRINTING USING THE AEROLYSIN NANOPORE. Mazdak Afshar Bakshloo, Monasadat Talarimoghari, Hadjer Ouldali, Jan C. Behrends, Abdelghani Oukhaled

2326-Pos Board B596
KINETIC ANALYSIS OF THE EFFECT OF CHARGE NEUTRALIZATION ON SINGLE-MOLECULE ELECTRO-DIFFUSION BETWEEN TWO ENERGY MINIMA IN A PROTEIN PORE. Tobias Ensslen, Jan C. Behrends

2327-Pos Board B597
CAPTURE AND TRANSLLOCATION CHARACTERISTICS OF DNA NANOSTRUCTURES THROUGH SOLID-STATE NANOPORES. Liquan He, Martin Charron, Daniel Tessier, Kyle Briggs, Vincent Tabard-Cossa

2328-Pos Board B598
OPTIMIZING THE SENSITIVITY OF DNA CONCENTRATION MEASUREMENTS USING NANOPORES. Martin Charron, Lucas Philipp, Kyle Briggs, Vincent Tabard-Cossa

2329-Pos Board B599
NANOPORE DETERMINATION OF NUCLEIC ACIDS IN WHOLE BLOOD BASED ON A DISPLACEMENT REACTION STRATEGY. Liang Wang, Xiaohuan Chen, Yunjiao Wang, Shuo Zhou, Deqiang Wang, Xiyun Guan

2330-Pos Board B600
DIRECT MICRORNA SEQUENCING USING NANOPORE INDUCED PHASE-SHIFT SEQUENCING (NIPSS). Jinyue Zhang

2331-Pos Board B601
NANOPORE RESISTIVE PULSE SENSING WITH MULTIPLE ALPHA-HEMOLOYEE-SIN PORES IMPROVES THE DETECTION LIMIT OF MICRORNAs. Ruoyu Hu, Maurits R.R. de Planque

Biomaterials (Boards B602 - B618)

2332-Pos Board B602
DNA LOOING BY MULTIVALENT CATIONS. Donna M. Roscoe, Ashwin Balaji, Luka Matej Devenica, Ashley Carter

2333-Pos Board B603
IONS EXCLUSION BY THE BIO-INSPIRED WS2 LAMELLAR MEMBRANE UNDER DIFFERENT DRIVING FORCES. Laxmi K. Pandey, Bedangra Sapkota, Meni Wanunu

2334-Pos Board B604
UNUSUAL PROPERTIES OF WATER AT HETEROGENEOUS BIOLOGICAL INTERFACES. Jae Kyoo Lee, Hong Gil Nam, Richard Zare

2335-Pos Board B605
THE DYNAMICS OF LIGNIN IN MELT. Marcella Berg

2336-Pos Board B606
A MOLECULAR PROBE TO TRACK MITCHONDRIA-LYSOSOME INTERACTIONS IN LIVE CELLS. Qixin Chen, Hongbao Fang, Weijiang He, Jiajie Diao

2337-Pos Board B607
A FLUORESCENT NANOPORE TO DETECT LOCAL TEMPERATURE CHANGES DURING ANTITUMORAL HYPERTHERMIA THERAPY. Cynthia El Hedjaj, Imène Chebbi, Olivier Seksek, Edouard Alphandery

2338-Pos Board B608
PH RESPONSIVE UPCONVERSION MESOPOROUS SILICA NAPARICLES FOR TARGETED PHOTODYNAMIC AND PHOTOTHERMAL CANCER THERAPY. Palanimukaram Loganathan, Mazin M. Magzoub

2339-Pos Board B609
PHOTOSENSITIZATION OF HUMAN SERUM ALBUMIN PROMPTS DIFFERENTIAL UPTAKE OF PACLITAXEL IN CANCER CELLS. Omar J. Castillo, Sandra Cardona, Lorenzo Brancaloni

2340-Pos Board B610
CHARACTERIZATION OF BIOPHARMACEUTICAL CELL GROWTH MEDIA BY ABSORBANCE-TRANSMITTANCE EXCITATION-EMISSION (A-TEEM) SPECTROSCOPY AND EXTREME GRADIENT BOOSTING ANALYSES. Adam M. Gilmore, Karoly Csatorday

2341-Pos Board B611
CONJUGATED POLYMERS OPTICALLY REGULATE THE FATE OF ENDOTHELIAL COLONY FORMING CELLS. Francesco Lodola, Vittorio Rosti, Gabriele Tuilli, Andrea Desii, Laura Tapella, Paolo Catarsi, Dmitry Lim, Francesco Moccia, Maria Rosa Antognazza

2342-Pos Board B612
DE NOVO-DESIGNED NEAR-INFRARED NANO-AGGREGATES FOR THE SUPERRESOLUTION MONITORING OF LYSOSOMES IN CELLS, IN WHOLE ORGANOIDS, AND IN VIVO. Hongbao Fang, Jiajie Diao
<table>
<thead>
<tr>
<th>Time</th>
<th>Board</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2343-</td>
<td>Pos B613</td>
<td>MICROPATTERNED ADHESION SITES FOR SPHEROID CULTIVATION UNDER FLOW.</td>
<td>Miriam Balles, Shokoufeh Teymouri, Roman Zantl, Jan Schwarz</td>
</tr>
<tr>
<td>2344-</td>
<td>Pos B614</td>
<td>DESIGNING A MECHANO-CHEMICAL HYBRID HYDROGEL BASED ON A BISTABLE KINASE-PHOSPHATASE SWITCH INTEGRATED IN COLLAGEN MESHWORK.</td>
<td>Andrey Y. Mikheev, Aleksandr S. Maiorov, Fazly I. Ataul-lakhanov, Ekaterina L. Grishchuk</td>
</tr>
<tr>
<td>2345-</td>
<td>Pos B615</td>
<td>FLOW-INDUCED SELF-ASSEMBLY OF SPIDER SILK FROM MULTI-SCALE SIMULATIONS.</td>
<td>Ana M. Herrera, Anil Kumar Dasanna, Ulrich S. Schwarz, Frauke Gräter</td>
</tr>
<tr>
<td>2346-</td>
<td>Pos B616</td>
<td>FLOW-INDUCED SELF-ASSEMBLY OF SPIDER SILK FROM MULTI-SCALE SIMULATIONS.</td>
<td>Ana M. Herrera, Anil Kumar Dasanna, Ulrich S. Schwarz, Frauke Gräter</td>
</tr>
<tr>
<td>2347-</td>
<td>Pos B617</td>
<td>SIMULATED MECHANICAL AND ELECTRICAL PROPERTIES OF THREE-DIMENSIONAL PROTEIN LATTICES.</td>
<td>Rachel Baarda, Simon Kit Sang Chu, Tegan Marianchuk, Daniel L. Cox</td>
</tr>
<tr>
<td>2348-</td>
<td>Pos B618</td>
<td>HIGHLY PROCESSIVE DNA ORIGAMI NANOSCALE MOTORS.</td>
<td>Alisina Bazrafshan, Travis Meyer, Hanquan Su, Joshua Brockman, Selma Piranej, Aaron Blanchard, Khalid Salaita, Yonggang Ke</td>
</tr>
</tbody>
</table>
Daily Program Summary

All rooms are located in the San Diego Convention Center unless noted otherwise.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM–11:00 AM</td>
<td>New Council Meeting</td>
<td>Room 32A</td>
</tr>
<tr>
<td>8:00 AM–3:00 PM</td>
<td>Poster Viewing</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Symposium: Membrane Proteins in Infectious Disease</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>Chair: Francesca Marassi, Sanford Burnham Prebys Medical Discovery Institute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASSEMBLY AND BUDDING OF FILOVIRUSES FROM THE HOST CELL PLASMA MEMBRANE. Robert V. Stahelin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMALL MOLECULE INHIBITION OF MEMBRANE FUSION MEDIATED BY THE FLAVIVIRUS ENVELOPE PROTEIN. Priscilla L. Yang</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFORMATIONAL STATES OF THE HIV-1 ENVELOPE GLYCOPROTEIN OBSERVED BY SMFRET. Walther Mothes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOLECULAR BASIS FOR PATHOGEN-HOST INTERACTIONS. Francesca M. Marassi</td>
<td></td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Symposium: Shapeshifting: Proteins with More Than One Structure</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td></td>
<td>Chair: Sarah Bondos, Texas A&M University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDENTIFICATION AND PREDICTION OF FOLD-SWITCHING PROTEINS. Lauren Porter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVOLUTION OF A METAMORPHIC PROTEIN. Brian F. Volkman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROTEIN FOLDING AND CONFORMATIONAL FRUSTRATION. Shachi Gosavi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHAPE-SHIFTING TO REGULATE AND DIVERSIFY TRANSCRIPTION FACTOR FUNCTION. Sarah Bondos</td>
<td></td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Protein Structure, Prediction, and Design</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Other Channels</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Protein Assemblies</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 PM</td>
<td>Platform: NMR, Diffraction, and EM</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Exocytosis and Endocytosis</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>8:15 AM–10:15 AM</td>
<td>Platform: Protein-Nucleic Acid Interactions</td>
<td>Room 31ABC</td>
</tr>
<tr>
<td>10:30 AM–12:30 PM</td>
<td>Poster Presentations and Late Posters</td>
<td>Exhibit Hall</td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>Symposium: New and Notable</td>
<td>Ballroom 20A</td>
</tr>
<tr>
<td></td>
<td>Co-Chairs: Patricia Clark, University of Notre Dame, William Koberz, University of Massachusetts Medical School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SINGLE-MOLECULE TRAINSPOTTING: STUDIES OF EUKARYOTIC GENOME MAINTENANCE. Gheorghe Chistol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUPLING MOLECULAR ACTIVATION AND ITS FUNCTIONAL OUTPUT THROUGH MULTISCALE IMAGING. Dorit Hanein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOW INFLUENZA HEMAGGLUTININ ACTS WITHIN MEMBRANES TO DRIVE MEMBRANE FUSION. Peter Kasson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIPIDS AND CATIONS AS COUPLED REGULATORS OF MEMBRANE PROTEIN INSERTION AND FOLDING. Alexey S. Ladokhin</td>
<td></td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>Symposium: Personalized Medicine: Protein Sequence Variation on Human Health</td>
<td>Ballroom 20D</td>
</tr>
<tr>
<td></td>
<td>Chair: Christian Landry, Laval University, Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAKING AND MEASURING THE EFFECT OF MUTATIONS ON A MASSIVE SCALE. Douglas M. Fowler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DECODING MOLECULAR MECHANISMS OF DISEASE WITH MEDICAL BIOPHYSICS. Anna Panchenko</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVOLUTION-GUIDED DISSECTION AND ENHANCEMENT OF RESTRICTION OF VIRUSES BY HOST ANTIVIRAL PROTEINS. Harmit Malik</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARALOG DEPENDENCY INDIRECTLY AFFECTS THE ROBUSTNESS OF HUMAN CELLS. Christian Landry</td>
<td></td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>Platform: Intrinsically Disordered Proteins (IDP) and Aggregates III</td>
<td>Ballroom 20BC</td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>Platform: Cardiac, Smooth, and Skeletal Muscle Electrophysiology and Regulation I</td>
<td>Room 23ABC</td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>Platform: Skeletal and Smooth Muscle Mechanics, Structure, and Regulation</td>
<td>Room 24ABC</td>
</tr>
<tr>
<td>Time</td>
<td>Platform</td>
<td>Room</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>Platform: Protein-Lipid Interactions II</td>
<td>Room 25ABC</td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>Platform: Voltage-gated Na and Ca Channels</td>
<td>Room 30ABC</td>
</tr>
<tr>
<td>1:00 PM–3:00 PM</td>
<td>Platform: Protein Structure and Conformation IV</td>
<td>Room 31ABC</td>
</tr>
</tbody>
</table>
Wednesday, February 19

New Council Meeting
8:00 AM - 11:00 AM, ROOM 32A

Poster Viewing
8:00 AM - 3:00 PM, EXHIBIT HALL

Symposium
Membrane Proteins in Infectious Disease
8:15 AM - 10:15 AM, BALLROOM 20A

Chair
Francesca Marassi, Sanford Burnham Prebys Medical Discovery Institute

2349-Symp 8:15 AM
ASSEMBLY AND BUDDING OF FILOVIRUSES FROM THE HOST CELL PLASMA MEMBRANE. Robert V. Stahelin

2350-Symp 8:45 AM
SMALL MOLECULE INHIBITION OF MEMBRANE FUSION MEDIATED BY THE FLAVIVIRUS ENVELOPE PROTEIN. Priscilla L. Yang

No Abstract 9:15 AM
CONFORMATIONAL STATES OF THE HIV-1 ENVELOPE GLYCOPROTEIN OBSERVED BY SMFRET. Walther Mothes

2351-Symp 9:45 AM
MOLECULAR BASIS FOR PATHOGEN-Host INTERACTIONS. Francesca M. Marassi

Symposium
Shapeshifting: Proteins with More Than One Structure
8:15 AM - 10:15 AM, BALLROOM 20D

Chair
Sarah Bondos, Texas A&M University

2352-Symp 8:15 AM
IDENTIFICATION AND PREDICTION OF FOLD-SWITCHING PROTEINS. Loren Looger, Ananya K. Majumdar, Lauren Porter

2353-Symp 8:45 AM
EVOLUTION OF A METAMORPHIC PROTEIN. Brian F. Volkman

2354-Symp 9:15 AM
PROTEIN FOLDING AND CONFORMATIONAL FRUSTRATION. Shachi Gosavi

2355-Symp 9:45 AM
SHAPE-SHIFTING TO REGULATE AND DIVERSIFY TRANSCRIPTION FACTOR FUNCTION. Sarah Bondos, Kelly Churion, Rebecca Booth, Sydney Tippelt

Platform
Protein Structure, Prediction, and Design
8:15 AM - 10:15 AM, BALLROOM 20BC

Co-Chairs
Caitlin Davis, Yale University
Christopher Prior, Durham University, United Kingdom

2356-PLAT 8:15 AM
CHARACTERIZATION OF A PH-DEPENDENT CARGO-DELIVERY PROTEIN CHIMERA. Suzanne I. Sandin, Christopher Randolph, Eva de Alba

2357-PLAT 8:30 AM
DESIGN AND CONSTRUCTION OF AN AEROLYSIN SINGLE-MOLECULE INTERFACE FOR SINGLE-MOLECULE SENSING. Xue-yuan Wu, Meng-Yin Li, Yi-Lun Ying, Yi-Tao Long

2358-PLAT 8:45 AM
AB INITIO TERTIARY STRUCTURE PREDICTION FROM SMALL ANGLE SCATTERING DATA. Christopher Prior, Ehmke Pohl, Owen Davies

2359-PLAT 9:00 AM
DE NOVO PROTEIN STRUCTURE MODELING TOOL MAINMAST ENHANCED FOR MULTIPLE CHAIN COMPLEXES AND BOUND LIGANDS. Genki Terashi, Daisuke Kihara

2360-PLAT 9:15 AM
FRET-ASSISTED PROTEIN STRUCTURE POSTDICTION OF CASP13 TARGETS. Mykola Dimura, Holger Gohlke, Claus A. Seidel

2361-PLAT 9:30 AM
COMBINING PHYSICS-BASED AND EVOLUTION-BASED METHODS TO DESIGN ANTIBODIES AGAINST AN EVOLVING VIRUS. Eric Jakobsson, Amir Barati Farimani, Emad Tajkhorshid, Narayana Aluru

2362-PLAT 9:45 AM
TOWARDS THE DE NOVO DESIGN OF FUNCTIONAL METALLOPROTEINS. Ketaki Belsare, Nicholas Polilzi, Lior Shtayer, William DeGrado

2363-PLAT 10:00 AM
QUINARY STRUCTURE MODULATES CONSENSUS PROTEIN SEQUENCE STABILITY IN CELLS. Caitlin Davis, Martin Gruebele

Platform
Other Channels
8:15 AM - 10:15 AM, ROOM 23ABC

Co-Chairs
Michael Pusch, Istituto di Biofisica, CNR, Italy
Ingrid Skerrett, SUNY Buffalo State College

2364-PLAT 8:15 AM
FUNCTIONAL ANALYSIS OF THE ISOLATED VOLTAGE SENSOR DOMAIN PRESENT IN THE MAMMALIAN SPERM-SPECIFIC NA+/H+ EXCHANGER BY PATCH-CLAMP CURRENT RECORDING. César Arcos Hernández, Esteban Suarez, Leon Islas, Takuya Nishigaki

2365-PLAT 8:30 AM
A MODULAR TOOLBOX FOR OPTOGENETIC MANIPULATION OF K+ CONDUCTANCE. Gerhard Thiel, Anja J. Engel, Kerri Kukovetz, Kerri Kukovetz, Matea Cortolano, Sebastian Höler, Monica Beltrame, Anna Moroni

2366-PLAT 8:45 AM
MOLECULAR MECHANISMS UNDERLYING OXIDATION SENSITIVITY OF VRAC. Sara Bertelli, Michael Pusch

2367-PLAT 9:00 AM
CONNEXIN 31 MUTATIONS ASSOCIATED WITH SKIN DISEASE AND DEAFNESS DISPLAY A VARIETY OF PHENOTYPES WHEN EXPRESSED IN XENOPUS OOCYTES. Samuel Sunners, Anhthi Tanguyen, Adedoyin Akingbade, Ingrid M. Skerrett

2368-PLAT 9:15 AM
REPURPOSING INTRACELLULAR FLUORESCENT BIOSENSORS TO VISUALIZE EXTRACELLULAR FLUXES. Daniel A. Gutierrez

2369-PLAT 9:30 AM
ROLES OF HYDROGEN-BONDING NETWORKS IN PROTON CHANNEL FUNCTION AS REVEALED THROUGH DE NOVO DESIGNED PROTON CHANNELS. Huong T. Kratochvil, John M. Nicoludis, William F. DeGrado
2370-PLAT 9:45 AM DE NOVO DESIGN OF ION CONDUCTING TRANSMEMBRANE PROTEIN NANOPORES. Siddhuja K. Marx, Anastassia Vorobjieva, Cameron Chow, Jonathan M. Craig, Hwanhee C. Kim, Sarah J. Abell, Jesse Huang, Stacey Gerben, David Baker, Jens H. Gundlach

2371-PLAT 10:00 AM EXPRESSION AND CHARACTERIZATION OF CONNEXIN30.3. Jesse Asiedu, Ingrid M. Skerrett

Platform Protein Assemblies
8:15 AM - 10:15 AM, ROOM 24ABC

Co-Chairs
Marcia Levitus, Arizona State University
Allen Minton, NIH, NIDDK

2372-PLAT 8:15 AM E. COLI SINGLE-STRANDED DNA BINDING (SSB) PROTEIN UNDERGOES DYNAMIC LIQUID-LIQUID PHASE SEPARATION CONTROLLED VIA PROTEIN-PROTEIN AND PROTEIN-DNA INTERACTIONS. Gabor Harami, Zoltan J. Kovacs, Janos Palinkas, Rita Pancsa, Veronika Bardath, Krisztian Tarnok, Hajnalka Harami-Papp, Andras Malnasi-Csizmadia, Mihaly Kovacs

2373-PLAT 8:30 AM DIRECT OBSERVATION OF PRION PROTEIN FIBRIL ELONGATION KINETICS. Yuanzi Sun, Mark Batchelor, John Collinge, Jan Bieschke

2374-PLAT 8:45 AM MODULATION OF THE OLIGOMERIZATION STATE OF PROTEINS BY IONS AND SMALL MOLECULES. AN FCS STUDY. Anirban Purohit, Linda B. Bloom, Marcia Levitus

2375-PLAT 9:00 AM SIMPLE CALCULATION OF PHASE DIAGRAMS FOR LIQUID-LIQUID PHASE TRANSITIONS IN SOLUTIONS OF TWO MACROMOLECULAR SOLUTE SPECIES. Allen P. Minton

2376-PLAT 9:15 AM COMPUTER SIMULATIONS OF KEY PEPTIDES INVOLVED IN PREECLAMPSIA AND ALZHEIMER’S DISEASE. Maksim Kouza, Andrzej Kolinski, Irina Buhimschi, Andrzej Kloczkowski

2377-PLAT 9:30 AM DETERMINING THE OLIGOMERIC STATE OF A GPI-ANCHORED MODEL PROTEIN VIA COLOCALIZATION-BASED SINGLE-MOLECULE MICROSCOPY. Clara Bodner, Mario Bramshuber, Gerhard J. Schütz

2378-PLAT 9:45 AM LIQUID-LIQUID PHASE SEPARATION OF WHEAT GLIADINS - TOWARDS PHYSIOLOGICAL CONDITIONS. Line Sahli, Denis Renard, Véronique Solé-Jamault, Adeline Boire

2379-PLAT 10:00 AM PS3 DEAMIDATION AS A MOLECULAR TIMER FOR CELL DEATH. Karola Gerecht, Sofia Margiola, Manuel M. Müller

Platform Exocytosis and Endocytosis
8:15 AM - 10:15 AM, ROOM 30ABC

Co-Chairs
Bianxiao Cui, Stanford University
Satish Thiyagarajan, Columbia University

2380-PLAT 8:15 AM CRYO-EM OF INTACT CLATHRIN-COATED VESICLES REVEALS ADAPTOR DISTRIBUTION AND NOVEL INTERACTIONS BETWEEN SUBUNITS. Mohammdreza Paraan, Scott M. Stagg

2381-PLAT 8:30 AM INDIRECT BACTERIAL TRANSCRIPTION-TRANSLATION COUPLING MECHANISM REVEALED BY IN SITU INTEGRATIVE STRUCTURAL BIOLOGY. Liang Xue, Francis O’Reilly, Ludwig Sinn, Jurij Rappaport, Julia Mahamid

2382-PLAT 8:45 AM THE IN SITU STRUCTURE OF PARKINSON’S DISEASE-LINKED LRRK2. Reika Watanabe, Robert Buschauer, Jan Böhnig, Martina Audagnotto, Keren Lasker, Tzan Wen Lu, Daniela Boassa, Susan S. Taylor, Elizabeth Villa

2383-PLAT 9:00 AM IN SITU ARRANGEMENT OF INFLUENZA A VIRUS MATRIX PROTEIN M1 RESOLVED BY CRYO ELECTRON TOMOGRAPHY SUGGESTS A MODEL FOR VIRUS ASSEMBLY. Julia Peukes, Serge Dmitrieff, John A.G. Briggs

2384-PLAT 9:15 AM NMR “CRYSTALLOGRAPHY” OF MEMBRANE PROTEINS ALIGNED IN NATIVE-LIKE BILAYERS. Joel Lapin, Emmanuel Awoseyanya, Alexander Nevzorov

2385-PLAT 9:30 AM AB INITIO ELECTRON DENSITY DETERMINATION DIRECTLY FROM SOLUTION SCATTERING DATA. Thomas D. Grant

2386-PLAT 9:45 AM PROTEIN CRYSTAL MOTIONS FROM TIME-RESOLVED DIFFRACTED X-RAY BLINKING. Yuji C. Sasaki, Masahiro Kuramochi, Kazuhiro Mio, Hiroshi Sekiguchi, Ayana Sato-Tomita, Naoya Shibayama

2387-PLAT 10:00 AM OVERHAUSER DYNAMIC NUCLEAR POLARIZATION: A TOOL FOR BUILDING MAPS OF HYDRATION WATER. John M. Franck

Platform NMR, Diffraction, and EM
8:15 AM - 10:15 PM, ROOM 25ABC

Co-Chairs
John Franck, Syracuse University
Jessica Rabuck-Gibbons, The Scripps Research Institute

2388-PLAT 8:15 AM CRYSOPT-III ASSEMBLES SIMULTANEOUSLY AND WITHOUT PREFERENCE ON SUPPORTED LIPID BILAYERS OF VARYING CURVATURES. Nebojsa Jukic, Alma P. Perrino, Simon Scheuring

2389-PLAT 8:30 AM DEMYSTIFYING DYNAMICS OF DYNAMIN DURING CLATHRIN MEDIATED ENDOCYTOSIS. Ning Fang, Xiaodong Cheng, Kuangcai Chen, Bin Dong

2390-PLAT 8:45 AM CRYO-EM STRUCTURES OF FULL-LENGTH DYNAMIN ASSEMBLED ON MEMBRANES IN VITRO AND WITHIN CELLS. John Jimah, Abigail Stanton, Kem A. Sochacki, Lieza M. Chan, Haifeng He, Huaibin Wang, Justin W. Taraska, Jenny E. Hinshaw

2391-PLAT 9:00 AM DEMYSTIFYING DYNAMICS OF DYNAMIN DURING CLATHRIN MEDIATED ENDOCYTOSIS. Ning Fang, Xiaodong Cheng, Kuangcai Chen, Bin Dong

2392-PLAT 9:15 AM CRYSOPT-III ASSEMBLES SIMULTANEOUSLY AND WITHOUT PREFERENCE ON SUPPORTED LIPID BILAYERS OF VARYING CURVATURES. Nebojsa Jukic, Alma P. Perrino, Simon Scheuring
Platform
Protein-Nucleic Acid Interactions
8:15 AM - 10:15 AM, ROOM 31ABC

Co-Chairs
Kumar Sarthak, University of Illinois Urbana-Champaign
Judong Fu, The Ohio State University

2396-Plat 8:15 AM
TRANSIENT_BINDING AND NON-ROTATIONAL COUPLED MOTION OF PS3 REVEALED BY SUB-MILLISECOND RESOLVED SINGLE-MOLECULE FLUORESCENCE TRACKING. Dwicky R.G. Subekti, Satoshi Takahashi, Kiyo Kamagata

2397-Plat 8:30 AM
CRYO-EM STRUCTURE OF SUBSTRATE-ENGAGED NUCLEAR EXOSOME TARGETING (NEXT) COMPLEX. Marc Rhyan Puno, Christopher D. Lima

2399-Plat 9:00 AM
THE UNCONVENTIONAL BIOPHYSICAL FUNCTION OF MICRORNA-1 IN MODULATING CARDIAC ELECTROPHYSIOLOGY. Dandan Yang

2401-Plat 9:30 AM
A DNA ORIGAMI PLATFORM FOR SINGLE-PAIR FÖRSTER RESONANCE ENERGY TRANSFER INVESTIGATION OF DNA-DNA AND DNA-PROTEIN INTERACTIONS. Kira Bartnik, Anders Barth, Mauricio Piló-Pais, Alvaro H. Crevenna, Tim Liedl, Don C. Lamb

Symposium
Personalized Medicine: Protein Sequence Variation on Human Health
1:00 PM - 3:00 PM, Ballroom 20D

Chair
Christian Landry, Laval University, Canada

2404-Symp 1:00 PM
MAKING AND MEASURING THE EFFECT OF MUTATIONS ON A MASSIVE SCALE. Douglas M. Fowler

2405-Symp 1:30 PM
DECODING MOLECULAR MECHANISMS OF DISEASE WITH MEDICAL BIOPHYSICS. Anna Panchenko

2406-Symp 2:00 PM
EVOLUTION-GUIDED DISSECTION AND ENHANCEMENT OF RESTRICTION OF VIRUSES BY HOST ANTIVIRAL PROTEINS. Harmit Malik

Symposium
Intrinsically Disordered Proteins (IDP) and Aggregates III
1:00 PM - 3:00 PM, Ballroom 20BC

Co-Chairs
Rajeswari Appadurai, Indian Institute of Science (IISc), India
Birthe Kragelund, University of Copenhagen, Denmark

2407-Plat 1:00 PM
CONTEXT MATTERS IN DISORDER BASED PROTEIN COMMUNICATION. Birthe B. Kragelund, Andreas Prestel, Nanna Wickmann, Joao Martins, Wouter Boomsma, Lasse Staby, Ruth Hendus-Altenburger, Karen Skriver

2408-Plat 1:15 PM
AN ADVANCED REPLICA EXCHANGE METHOD FOR EXPLORING UNCHARTED PROTEIN LANDSCAPES. Rajeswari Appadurai, Anand Srivastava

2409-Plat 1:30 PM
DIVERSE TRANSITION PATHS OF COUPLED BINDING AND FOLDING OF INTRINSICALLY DISORDERED PROTEIN PROVED BY THREE-COLOR SINGLE-MOLECULE FRET. Jae-Yeol Kim, Hoi Sung Chung
THE STICKERS AND SPACERS FRAMEWORK FOR DESCRIBING PHASE BEHAVIOR OF MULTIVALENT INTRINSICALLY DISORDERED PROTEINS.

2410-PLAT

THE STICKERS AND SPACERS FRAMEWORK FOR DESCRIBING PHASE BEHAVIOR OF MULTIVALENT INTRINSICALLY DISORDERED PROTEINS.

2411-PLAT

SIZE-DEPENDENT CHARACTERIZATION OF ALPHA-SYNUCLEIN AGGREGATES UNVEILS THEIR TOXICITY. Derya Emin, Margarida Rodrigues, Zengjie Xia, Antonina Kouli, Helen Henson, Caroline Williams-Gray, David Kienerman

2412-PLAT

QUANTIFYING THE THERMODYNAMIC STABILITY OF AMYLOID FIBRILS. Kimberley L. Callaghan, Quentin Peter, Janet R. Kumita, Tuomas P. Knowles, Christopher M. Dobson

2413-PLAT

BACKBONE DYNAMICS OF THE TAZ1 DOMAIN OF THE CREB-BINDING PROTEIN MODULATE COMPETITION BETWEEN DISORDERED LIGANDS. Rebecca B. Berlow, Jane Dyson, Peter E. Wright

2414-PLAT

RATIONAL DESIGN OF PEPTIDE TARGETING INTRINSICALLY DISORDERED PROTEIN P53 -REGULATION OF FUNCTION AND PHASE SEPARATION. Kyoto Kamagata, Ryo Kitahara, Tomoshi Kameda

Platform
Cardiac, Smooth, and Skeletal Muscle Electrophysiology and Regulation II

1:00 PM - 3:00 PM, ROOM 23ABC

Co-Chairs
Balazs Horvath, University of Debrecen, Hungary
Joyce Lin, California Polytechnic State University

2415-PLAT

TARGETED REMUSCULARIZATION CAN REDUCE VENTRICULAR TACHYCARDIA (VT) BURDEN IN A COMPUTATIONAL HUMAN HEART MODEL OF POST-MYOCARDIAL INFARCTION (MI). Jialiu A. Liang, Joseph K. Yu, Natalia A. Trayanova

2416-PLAT

2417-PLAT

A NEW MECHANISM OF CELLULAR AND TISSUE AUTOMATICITY. Steven Poelzing, James P. Keener, Kees McGahan

2418-PLAT

SPATIOTEMPORAL MODULATION OF ACTION POTENTIAL DURATION IN INTACT HEARTS BY SUB-THRESHOLDS OPTOGENETICS STIMULATION. Valentina Blasci, Marina Scardigli, Lorenzo Santini, Raffaele Coppini, Cecilia Ferranti, Caroline Muellenbroich, Leslie M. Loew, Elisabetta Cerbai, Corrado Poggesi, Marfina Campione, Francesco S. Pavone, Leonardo Sacconi

2419-PLAT

CREATING ION CHANNEL MODELS WITH UNBIASED GRAPHS. Kathryn Mangold, Jonathan R. Silva

2420-PLAT

EXPLORING THE EFFECTS OF CONDUCTION RESERVE AND EPHAPTIC COUPLING IN CARDIAC CELLS. Joyce Lin, Steven Poelzing, Sharon A. George, Amara Greer-Short, Matthew W. Kay

2421-PLAT

INTERPLAY BETWEEN B-ADRENERGIC STIMULATION AND CAMKII SIGNALING FAVORS HUMAN ATRIAL ARRHYTHMOGENESIS: INSIGHTS FROM POPULATIONS OF MODELS. Haibo Ni, Xianwei Zhang, Stefano Morotti, Eleonora Grandi

2422-PLAT

Platform
Skeletal and Smooth Muscle Mechanics, Structure, and Regulation

1:00 PM - 3:00 PM, ROOM 24ABC

Co-Chairs
Belinda Bullard, University of York, United Kingdom
Miklós Kellermayer, Semmelweis University, Hungary

2423-PLAT

STRUCTURAL INSIGHTS INTO F-ACTIN REGULATION AND SARCOMERE ASSEMBLY VIA MYOTILIN. Kristina Djinovic-Carugo, Julius Kostan

2424-PLAT

SAR ANALYSIS OF LINKER DERIVATIVES OF THE SMOOTH MUSCLE MYOSIN SPECIFIC CK-571 COMPOUND. Sharad K. Suthar, Mate Gyimesi, Csilla Kurdi, Andras Malnasi-Csizmadia

2425-PLAT

TROPOMYSOSIN AS A STRETCH SENSOR IN THE TROPONIN BRIDGES OF INSECT FLIGHT MUSCLE. Konstantinos Drousiotis, Demetris Koutalianos, Christoph G. Baumann, Belinda Bullard

2426-PLAT

2427-PLAT

MICROTUBULE REMODELING CONTRIBUTES TO THE LOSS OF FORCE AND POWER IN AGING SKELETAL MUSCLE. Humberto Cavalcante Joca, Anica Harriot, Jenna Leser, Andrew Coleman, Guol Shi, Joseph P. Stains, Christopher W. Ward

2428-PLAT

WEAKLY-BOUND, NON-LINEAR ELASTIC CROSS-BRIDGES ARE REQUIRED TO SELF-CONSISTENTLY MODEL THE FENN EFFECT, FORCE VELOCITY AND TENSION TRANSIENTS IN MUSCLE FIBERS. Katelyn Jarvis, Kaylyn Bell, Amy K. Loya, Douglas M. Swank, Sam Walcott

2429-PLAT

THICK FILAMENT ACTIVATION AND POST-TETANIC POTENTIATION MECHANISMS EVOLVED DIFFERENTLY IN INVERTEBRATE AND VERTEBRATE STRIATED MUSCLE. Raul Padron, Weikang Ma, Sebastian Duno Miranda, Natalia Koubassova, Kyounghwan Lee, Prince Tiwari, Antonio Pinto, Pura Bolaños, Andrey Tsaturyan, Thomas C. Irving, Roger Craig
Co-Chairs
Constance Agamasu, Frederick National Laboratory for Cancer Research
Alemayehu Gorfe, University of Texas Health Science Center at Houston

1:00 PM - 3:00 PM, ROOM 25ABC

Emerging Insights into the Membrane Binding Domain of Raf Engaging with the Plasma Membrane and Its Implication on Raf Activation. Constance Agamasu, De Chen, John Columbus, Frank Heinrich, Marco Tonelli, Christopher B. Stanley, Thomas Turbyville, Frank McCormick, Dwight V. Nissley, Andrew G. Stephen

1:15 PM
DHHIC20 Palmitoyl-Transferase Reshapes the Membrane to Foster Catalysis. Robyn Stix, James Song, Anirban Banerjee, José D. Faraldo-Gómez

1:30 PM
Using Machine Learning to Predict Membrane Protein States Based on Their Lipid Environment. Adam T. Moody, Gautham Dharaman, Timothy S. Carpenter, Helgi I. Ingolfsson, Brian C. Van Essen, James N. Gosli, Felice C. Lightstone

1:45 PM
State-Dependent and Mutation-Induced Differences in Protein-Lipid Interactions in the Na,K ATPase. Dhaní R. Mahato, Magnus Andersson

2:00 PM

2:15 PM
Cryo-EM Structures of the GIRK2 Channel Reveal Mechanisms for Lipid Modulation. Ian W. Glaser, Yamuna K. Mathiharan, Yulin Zhao, Georgios Skiniotis, Paul A. Slesinger

2:30 PM
Crystal Structure of MIDS1 Bound to Phospholipid. Nikhil Bharambe

2:45 PM
Dynamics of Oncogenic KRAS Mutants on Bilayer Surfaces. Priyanka Prakash Srivastava, Douglas B. Utwin, Liang Hong, Suparna Sarkar-Banerjee, Drew M. Dolino, Yong Zhou, Vasanthi Jayaraman, John F. Hancock, Alemayehu A. Gorfe

Co-Chairs
Constance Agamasu, Frederick National Laboratory for Cancer Research
Alemayehu Gorfe, University of Texas Health Science Center at Houston

1:00 PM - 3:00 PM, ROOM 31ABC

Targeting of NAV1.6 and NAV1.2 to Inhibit Excitatory vs Inhibitory Neural Circuits. Samuel J. Goodchild, Mohammad-Reza Ghovaneloo, Tagore Sanketh Bandaru, Koushik Choudhury, Mohamed Fouda, Kaveh Rayani, Daman Poburko, Lucie Delemotte, Peter C. Ruben

Comparative Study of the Effects of an SCNSA Mutation Within a Family Diagnosed with Brugada Syndrome Using iPSC-M. Rebecca Martinez-Moreno, David Carreras, Elisabet Selga, Georgia Sarquella-Brugada, Ramon Brugada, Guillermo J. Perez, Fabiana S. Scornik

Co-Chairs
Wei Liu, University of Science and Technology of China, China
Marc Ruff, IGBMC, CERBM, France

1:00 PM
Pathogenic Siderophore ABC Importer YBTPQ Adopts a Surprising Fold of Exporter. Zhiming Wang, Wenxin Hu, Hongjin Zheng

1:15 PM
Atomic Structure of the Human Herpesvirus 6B Capsid and Capsid-Associated tegument Complexes. Wei Liu, Yibo Zhang, Zhihang Li, Vinay Kumar, Ana L. Alvarez-Cabrera, Emily C. Leibovitch, Yanxiang Cui, Ye Mei, Guo-Qiang Bi, Steve Jacobson, Z. Hong Zhou

1:30 PM

Proteasome Conformational Regulation of Substrate Engagement and Degradation. Eric R. Greene, Ellen Goodall, Andres H. de la Peña, Mary Matyskiela, Gabriel Lander, Andreas Martin

2:00 PM
A Structural and Mechanistic Model for the Interaction of Parkinson’s Disease-Related LRRK2 with Microtubules. Colin K. Deniston, Andres Leschziner, John Saliogianis, David Sneyd, Indrajit Lahiri

Biophysical Society
64th Annual Meeting of the Biophysical Society
February 15–19, 2020 • San Diego, California

2020
2452-Plat 2:15 PM
STRUCTURAL STUDIES USING CRYO-EM TO UNRAVEL MECHANISTIC DETAILS OF P47 BINDING TO P97. Purbasha Nandi, Po-Lin Chiu

2453-Plat 2:30 PM
FTIP - AN ACCURATE AND EFFICIENT METHOD FOR GLOBAL PROTEIN SURFACE COMPARISON. Yuan Zhang, Xin Sui, Scott M. Stagg, Jinfeng Zhang

2454-Plat 2:45 PM
SINGLE-PARTICLE CRYO-EM STUDIES OF ERP44-ERAP1 AND ERP44-ERAP2 REVEAL THEIR ER-RETENTION MECHANISM. Richa Arya, Lawrence J. Stern
Below is the list of poster presentations for Wednesday of abstracts submitted by October 1. The list of late abstracts scheduled for Wednesday is available in the Program Addendum, and those posters can be viewed on boards beginning with LB.

Posters should be mounted beginning at 7:00 AM on Wednesday and removed by 3:00 PM. Poster numbers refer to the program order of abstracts as they appear in the online Abstract Issue. Board numbers indicate where boards are located in the Exhibit Hall.

Odd-Numbered Boards 10:30 AM–11:30 AM | Even-Numbered Boards 11:30 AM–12:30 PM

<table>
<thead>
<tr>
<th>Board Numbers</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 – B32</td>
<td>Protein Structure and Conformation IV</td>
</tr>
<tr>
<td>B33 – B51</td>
<td>Protein Stability, Folding, and Chaperones II</td>
</tr>
<tr>
<td>B52 – B71</td>
<td>Protein-Small Molecule Interactions II</td>
</tr>
<tr>
<td>B72 – B83</td>
<td>Protein Assemblies II</td>
</tr>
<tr>
<td>B84 – B106</td>
<td>Protein Dynamics and Allostery III</td>
</tr>
<tr>
<td>B107 – B124</td>
<td>Membrane Protein Structures II</td>
</tr>
<tr>
<td>B125 – B144</td>
<td>Membrane Protein Dynamics III</td>
</tr>
<tr>
<td>B145 – B170</td>
<td>Enzyme Function, Cofactors, and Post-translational Modifications</td>
</tr>
<tr>
<td>B171 – B196</td>
<td>Intrinsically Disordered Proteins (IDP) and Aggregates IV</td>
</tr>
<tr>
<td>B197 – B217</td>
<td>Transcription</td>
</tr>
<tr>
<td>B218 – B231</td>
<td>Ribosomes and Translation</td>
</tr>
<tr>
<td>B232 – B247</td>
<td>Chromatin and the Nucleoid II</td>
</tr>
<tr>
<td>B248 – B261</td>
<td>Membrane Fusion and Non-Bilayer Structures</td>
</tr>
<tr>
<td>B262 – B272</td>
<td>Protein-Lipid Interactions: Channels</td>
</tr>
<tr>
<td>B273 – B297</td>
<td>General Protein-Lipid Interactions II</td>
</tr>
<tr>
<td>B298 – B313</td>
<td>Calcium Signaling II</td>
</tr>
<tr>
<td>B314 – B330</td>
<td>Intracellular Calcium Channels and Calcium Sparks and Waves II</td>
</tr>
<tr>
<td>B331 – B345</td>
<td>Cardiac, Smooth, and Skeletal Muscle Electrophysiology II</td>
</tr>
<tr>
<td>B346 – B353</td>
<td>Intracellular Transport</td>
</tr>
<tr>
<td>B354 – B378</td>
<td>Voltage-gated Na Channels</td>
</tr>
<tr>
<td>B379 – B413</td>
<td>Ligand-gated Channels</td>
</tr>
<tr>
<td>B414 – B436</td>
<td>Ion Channels, Pharmacology, and Disease II</td>
</tr>
<tr>
<td>B437 – B458</td>
<td>Cardiac Muscle Regulation</td>
</tr>
<tr>
<td>B459 – B475</td>
<td>Microtubules, Structure, Dynamics, and Associated Proteins</td>
</tr>
<tr>
<td>B476 – B509</td>
<td>Cell Mechanics, Mechanosensing, and Motility II</td>
</tr>
<tr>
<td>B510 – B514</td>
<td>Cytoskeletal-based Intracellular Transport</td>
</tr>
<tr>
<td>B515 – B525</td>
<td>Electron and Proton Transfer</td>
</tr>
<tr>
<td>B526 – B535</td>
<td>Emerging Techniques and Synthetic Biology</td>
</tr>
<tr>
<td>B536 – B545</td>
<td>EPR and NMR: Spectroscopy and Imaging</td>
</tr>
<tr>
<td>B546 – B561</td>
<td>Single-Molecule Spectroscopy II</td>
</tr>
<tr>
<td>B562 – B579</td>
<td>Force Spectroscopy and Scanning Probe Microscopy</td>
</tr>
<tr>
<td>B580 – B600</td>
<td>Micro- and Nanotechnology II</td>
</tr>
</tbody>
</table>

It is the responsibility of the poster presenters to remove print materials from the board after their presentations. Please do not leave materials or belongings under poster boards or in the poster area. Posters will not be collected or stored for pick-up at a later time. The Biophysical Society is not responsible for any articles left in the poster area.
Protein Structure and Conformation IV (Boards B1 - B32)

2455-Pos Board B1 Travel Awardee
CONFORMATIONAL DYNAMICS OF ALANINE IN WATER AND WATER/ETHANOL MIXTURES: EXPERIMENTALLY DRIVEN EVALUATION OF MOLECULAR DYNAMICS FORCE FIELDS. Shuting Zhang, Reinhard Schweitzer-Stenner, Brígita Urbanc

2456-Pos Board B2
NANOMECHANICAL DIFFERENCES BETWEEN INACTIVE AND ACTIVE STATES OF RHODOPSIN FROM MOLECULAR-SCALE SIMULATION. Adolfo B. Poma, Slawomir Filipiak, Paul Park

2457-Pos Board B3
PROTEINS ON THE WATER/AIR INTERFACES: INSIGHTS FROM SIMULATIONS USING POLARIZABLE FORCE FIELDS. Jian Zhu, Zongyang Qiu, Jing Huang

2458-Pos Board B4

2459-Pos Board B5
LOCAL UNFOLDING RELATES TO PROTEOLYTIC SUSCEPTIBILITY OF THE MAJOR BIRCH POLLEN ALLERGEN BET V 1. Anna S. Kamenik, Florian Hofer, Klaus R. Liedl

2460-Pos Board B6
INVESTIGATING THE ROLE OF B6FACILITATING THE REGULATION OF PROTEIN-PROTEIN RECOGNITION MECHANISM. Dhananjay C. Joshi, Jung-Hsin Lin

2461-Pos Board B7
SAXS SIGNATURES OF CONFORMATIONAL HETEROGENEITY AND HOMOGENEITY OF DISORDERED PROTEIN ENSEMBLES. Jianhui Song, Jichen Li, Hue Sun Chan

2462-Pos Board B8
INTERACTIONS OF THE GDP DISSOCIATION STIMULATOR SMGGDS WITH KRAS: X-RAY SCATTERING AND ROSETTA DOCKING STUDIES AND DIFFERENCES IN INTERACTION OF TWO ISOFORMS WITH MEMBRANE-BOUND KRAS4B. Dennis J. Michalak, Ellen Lorimer, Bethany Unger, Carol L. Williams, Frank Heinrich, Mathias Lösche

2463-Pos Board B9 Travel Awardee
19F NMR STUDIES OF CYCLOPHILIN A AND ITS INTERACTION WITH HIV-1 CAPSID. Manman Lu, Tatyana E. Polenova, Angela M. Gronenborn

2464-Pos Board B10
PURIFICATION AND BIOPHYSICAL CHARACTERIZATION OF L. E MEMBRANE EXPORTER FROM MYCOBACTERIUM TUBERCULOSIS IN LIPOIDSCS MADE OF NATIVE E. COLI MEMBRANES AND DETERGENT. Elka R. Georgieva, Christina Fanouraki, Peter P. Borbat

2465-Pos Board B11
EF-X IN SILICO – MODELING PROTEIN DYNAMICS IN AN ELECTRIC FIELD. Eugene Klyshko, Lauren McGough, Justin S. Kim, Rama Ranganathan, Sarah Rauscher

2466-Pos Board B12
CANCER ACTIVATING MUTATIONS IN STAT5B: ELUCIDATING THE IMPACT ON PROTEIN STRUCTURE AND DYNAMICS USING ATOMIC MOLECULAR SIMULATIONS. Deniz Menekse ık Erol, Elvin D. de Araujo, Fettah Erdogan, Hyuk-Soo Seo, Sirano Dhe-Paganon, Patrick T. Gunning, Sarah Rauscher

2467-Pos Board B13
KINDLIN COOPERATES WITH TALIN FOR INTEGRIN ACTIVATION, A MOLECULAR DYNAMICS APPROACH. Zainab Haydari, Hengameh Shams, Zeinab Jahed, Mohammad Mofrad

2468-Pos Board B14

2469-Pos Board B15
IDENTIFYING CONFORMATIONS OF AMYLOID PRECURSOR PROTEIN DIMER STRUCTURES. Alexander Gonzalez, Jacob B. Usadi, Esmael J. Haddadian

2470-Pos Board B16
EXPLORING ARTIFICIALLY CONJUGATED UBIQUITIN DIMERS BY MEANS OF NMR SPECTROSCOPY AND MD SIMULATIONS. Tobias Schneider, Andrej Berg, Christine Peter, Michael Kovernmann

2471-Pos Board B17
STRUCTURAL AND DYNAMIC ELUCIDATION OF NATURAL POLYREACTIVITY IN ANTIBODIES. Marta T. Borowska, Christopher T. Boughter, Erin J. Adams

2472-Pos Board B18
IN-SILICO EXPLORATION OF ANTIVIRAL LECTIN GRIFFITHSIN. Clarence B. Le, Patricia LiWang, Michael E. Colvin

2473-Pos Board B19
MOLECULAR DYNAMICS SIMULATIONS OF A 2.8-Å RESOLUTION CRYO-EM STRUCTURE OF THE A1IB3-ABCI XIMAB COMPLEX. Aleksandar Spasic, Davide Provasi, Dragana Nestic, Yixiao Zhang, Jihong Li, Barry S. Collier, Thomas Walz, Marta Filizola

2474-Pos Board B20
COMPUTATIONAL STUDY OF THE MOLECULAR DETAILS OF EBOLA VIRUS MATRIX PROTEIN VP40 AND HUMAN SEC24C PROTEIN INTERACTION. Nisha Bhattarai, Bernard S. Gerstman, Prem P. Chapagain

2475-Pos Board B21 Travel Awardee
HOW L17A/F19A DOUBLE MUTATION DIMINISH Aβ40 AGGREGATION IN ALZHEIMER’S DISEASE: KEY INSIGHTS FROM MOLECULAR DYNAMICS SIMULATIONS. Rajneet Kaur Saini

2476-Pos Board B22
USING MOLECULAR SIMULATION TO UNDERSTAND THE ROLE OF CONSERVED RESIDUES IN AN EXTREMOPHILIC BETA-GALACTOSIDASE. Shahlo Solieva, Vincent A. Voelz

2477-Pos Board B23
CONFORMATIONAL TRANSITIONS OF HISTIDINE KINASES USING MOLECULAR DYNAMICS. Fathia Idiris

2478-Pos Board B24
MD SIMULATION OF HIGH TEMPERATURE ENZYME ACTIVITY. Samin Tajik

2479-Pos Board B25
DETERMINING FACTORS THAT INFLUENCE VCCI LOOP INTERACTIONS IN VCCI-CHEMOKINE BINDING THROUGH MD SIMULATION. Lauren E. Stark, Patricia LiWang, Michael E. Colvin

2480-Pos Board B26
DEVELOPMENT OF THE CHARM Force Field for Cyclosporine A and Application to Molecular Dynamics Simulations Using a Membrane-Water System. Tsutomu Yamane, Ryo Takahashi, Akani Ito, Toru Ekimoto, Mitsunori Ikekuchi
2481-Pos Board B27
Molecular Dynamics Simulations for Improving Crystal Quality and Illuminating the Function of Taspase1: A Therapeutic Target. Jacob Layton, Nirupa Nagaratnam, Rebecca J. Jernigan, Joel Schneider, Andrew Flint, Barbara Mroczkowski, Petra Fromme, Jose M. Garcia, Abhishek Singhary

2482-Pos Board B28
Studying Bba Protein Folding Using the Gradient Descent Method to Modify the Sigmoid Function as the Order Parameter of the Umbrella Sampling Method. Hamed Meshkin

2483-Pos Board B29
Dynamics and energetics of loss-of-function variant Willebrand factor mutants, determined through molecular dynamics simulations and free energy calculations. Valeria Mejia-Restrepo

2484-Pos Board B30
An atomic level interactions of phosphorylated Tau repeat with microtubule using molecular modeling approach. Vishwambhar V. Bhandare, Ambarish Kunwar

2485-Pos Board B31
Travel Awardee

2486-Pos Board B32
Development of New Methods for Enhanced Conformational Sampling of Gpcrs. Erin A. Serrano, Ravinder Abrol

Protein Stability, Folding, and Chaperones II (Boards B33 - B51)

2487-Pos Board B33
Mechanism of the disulfide-coupled folding of a de novo designed prouroguanylin protein. Mayu Fukutsuji, Aman L. Maharjan, Toi Osumi, Shigeru Shimamoto, Yuji Hidaka

2488-Pos Board B34
Single-molecule afm imaging of thermally denatured firefly luciferase. Dimitra Apostolidou, Piotr E. Marszalek

2489-Pos Board B35
Investigation of Mechanically Labile Type III secretion protein effectors. Katherine E. DaPrun, Morgan Fink, Marc-André LeBlanc, Devin T. Edwards, Thomas T. Perkins, Marcelo C. Sousa

2490-Pos Board B36
Denaturing effect of guanidine hydrochloride on amyloid fibrils. Anna I. Sulatskaya, Maksim I. Sulatsky, Olga V. Stepanenko, Olga I. Povarova, Irina M. Kuznetsova, Konstantin K. Turoverov

2491-Pos Board B37
Structural Dynamics of Mammalian Prion Protein Correlates with Degree of Susceptibility to Prion Diseases. Patricia Soto, Alyssa L. Bursott, Hannah O. Brockman, Garrett M. Gloeß

2492-Pos Board B38
Characterizing the Interplay Between Dynamics and Regulation in the Trypsinogen/trypsin Protease System. Sarah Duggan

2493-Pos Board B39
Evaluation of the Protein Stability by Molecular Dynamics Simulation. Tomoshi Kameda, Kaito Kobayashi, Shin Irumagawa, Ryoichi Arai, Yutaka Saito, Takeshi Miyata, Mitsuo Umetsu

2494-Pos Board B40
Using Circular Permutation to Probe the Role of Chain Connectivity in the Co-Translational Folding Process of Haloglu. Natalie R. Dall, Susan Marqusee

2495-Pos Board B41
Interpreting Transition Path Time Extrapolation by Single Molecule FRET with MD Simulations. Grace H. Taumoefolau, Robert B. Best

2496-Pos Board B42
Ph Dependence of Oligomerization and Functional Activity of Alpha B Crystallin. Kashmeera D. Baboolall, Yusrah B. Kaudeer, Anne Gershenson, Patricia B. O’Hara

2497-Pos Board B43
Theoretical Investigations of a Multi-Domain Protein Folding Under Confinements and Crowders. Xiakun Chu, Jin Wang

2498-Pos Board B44
Monitoring Protein Folding on and off the Ribosome Using X-Ray Footprinting/Mass Spectrometry (Xf/MS). Shawn M. Costello

2499-Pos Board B45
Intra-Molecular Chaperone Mediated Folding of a Peptide Hormone in Molecular Evolution. Toi Osumi, Aman L. Maharjan, Mayu Fukutsuji, Shigeru Shimamoto, Yuji Hidaka

2500-Pos Board B46
Identifying the Structural Features that Differentiate Client Proteins of Ab-Crystallin. Marc Sprauge-Piercy, Kyle Roskamp, Rachel W. Martin

2501-Pos Board B47
Fxo1 Transcription Factor Folding Landscape Elucidates the Role of Disease Mutations. Dylan Novack, Lei Qian, Richard H.G. Baxter, Vincent Voelz

2502-Pos Board B48
Travel Awardee
Improving Personalized Medicine Through Systematic Protein Engineering of LDH. Shamir A. Khan

2503-Pos Board B49
Comparing Stabilization Strategies Between Engineered and Naturally Thermostable Proteins. Catrina Nguyen, Lauren M. Yearwood, Michelle E. McCully

2504-Pos Board B50
Rational Mutagenesis to Engineer Heme Stability in Recombinant Human Hemoglobin to Design Potential Hemoglobin Based Oxygen Carrier. Mohd A. Khan, Nidhi Mittal, Kajal Yadav, Sanjeev K. Yadav, Gaurav Mittal, Amit Tyagi, Suman Kundu

2505-Pos Board B51
Microfluidic Diffusional Sizing for Studying Protein-Protein Interactions. Matthias M. Schneider, Tom Scheidt, Christopher M. Dobson, Tuomas P.J. Knowles

Protein-Small Molecule Interactions II (Boards B52 - B71)

2506-Pos Board B52

2507-Pos Board B53
Binding Mechanism of Anti-Cancer Target Hsp90 and Peptide Drug. Lisa Matsukura, Naoyuki Miyashita
148

Biophysical Society

Protein Assemblies II (Boards B72 - B83)

2523-Pos BOARD B69 DRUGGING PROTEIN-PROTEIN INTERFACES OF A SUPRAMOLECULAR ASSEMBLY AS A MEANS TO OVERCOME RESISTANCE TO ACTIVE SITE THYMIDYLATE SYNTHASE INHIBITORS. Tigran M. Abramyan, Alexander Troshpa, Andrew L. Lee, Paul J. Sapienza

2524-Pos BOARD B70 BIOPHYSICAL CHARACTERIZATION OF THE BINDING OF HRSV M2-1 PROTEIN TO RNA AND SOLASODINE. Vitor Brassolatti Machado, Giovana Cavenaghi Guimarães, Marcelo Andrés Fossey, Ícaro Putinhon Caruso, Fatima Pereira de Souza

2525-Pos BOARD B71 CONSTRUCTING GPR6 HOMOLOGY MODEL, DOCKING STUDIES AND DRUG DESIGN. Israa Isawi, Paula Morales, Dow P. Hurst, Diane L. Lynch, Patricia H. Reggio

2526-Pos BOARD B72 DIRECTED EVOLUTION OF STRUCTURAL PROTEINS USING A HIGH THROUGHPUT APPROACH. Melik C. Demirel

2527-Pos BOARD B73 COARSE-GRAINED MOLECULAR DYNAMICS SIMULATIONS OF TRIMSA- PHA SELF-ASSEMBLY AND RESTRICTION OF HIV. Alvin Yu, Katarzyna Skorupka, Alexander Pak, Barbie K. Ganser-Pornillos, Owen Pornillos, Gregory A. Voth

2528-Pos BOARD B74 PROTEIN DOCKING REFINEMENT WITH SYSTEMATIC CONFORMATIONAL SEARCH - APPLICATION TO MODELS INSIDE THE DOCKING FUNNEL. Taras Dauzhenka, Ivan Anishchenko, Petras Kundrotas, Ilya Yakser

2529-Pos BOARD B75 DYNAMIC INTERROGATION OF A VIRAL DNA PACKAGING MOTOR COMPLEX. Joshua Pajak, Erik Dill, Mark A. White, Paul Jardine, Marc C. Morais, Gaurav Arya

2530-Pos BOARD B76 INTERFACEA: OPEN-SOURCE LIBRARY FOR PROTEIN INTERFACE ANALYSIS. João Pedro Garcia Lopes Maia Rodrigues, Michael Levitt

2531-Pos BOARD B77 TRAVEL Awardee BREAKING THE SYMMETRY OF PROTEIN ASSEMBLIES: STRUCTURAL FLEXIBILITY AS A DE NOVO DESIGN PRINCIPLE. Alena Khmelinskaia, Andrew J. Borst, Yang Hsia, Quinton Dowling, David Veesler, Neil P. King

2532-Pos BOARD B78 UNDERSTANDING SEPARATION OF TIME SCALES IN BACTERIAL PROTEASESOME ASSEMBLY. Pushpa Itagi, Anupama Kante, Anjana Suppahia, Jeroen Roelfs, Eric J. Deeds

2533-Pos BOARD B79 EVALUATING SELF-ASSEMBLY PROPENSITY OF TETRA-PEPTIDE USING MD AND MACHINE LEARNING. Yoichi Kurumida, Keisuke Ikeda, Yusuke Nakamichi, Kaito Kobayashi, Yutaka Saito, Tomoshi Kameda

2534-Pos BOARD B80 ON NON-MONOTONIC DEPENDENCE OF PHASE SEPARATION PROPERTIES ON MOLECULAR INTERACTION PARAMETERS. George M. Thurston, Douglas L. Hayden, Giuseppe Foffi, David S. Ross, John F. Hamilton

2535-Pos BOARD B81 MODELING SYNTHESIZED PROTEIN MEGAMOLECULES: STRUCTURE, DYNAMICS, AND FUNCTIONS. Peng He, Josh Zuchniarz, Shengwang Zhou, Justin Modica, Sonali Dhindwal, Ying Li, Gregory A. Voth, Milan Mrksich, Vinayak P. Dravid, Benoit Roux
Protein Dynamics and Allostery III (Boards B84 - B106)

2538-Pos **Board B84**
ALLOSTERIC REGULATION OF GLUTAMATE DEHYDROGENASE DEAMINATION ACTIVITY. Soumen Bera

2540-Pos **Board B86**
SOLUTION NMR INVESTIGATION OF HIV-1 REPLICATION CYCLE. Bhargavi Ramaraju, Lalit Deshmukh

2545-Pos **Board B91**
UNVEILING THE PH-DEPENDENT TRANSITION OF A TC TOXIN. Svetlana Kucher, Daniel Roderer, Tufa E. Abizaid, Alejandro Giorgetti, Giulia Rossetti

2546-Pos **Board B92**
THE ROLE OF BACKBONE AND SIDECHAIN DYNAMICS ON FIMH ALLOSTERY. Jenny Liu, Kerim Dansuk, Sinan Keten, Luis Amaral

2547-Pos **Board B93**
TRAVEL AWARDEE AB-INIPTICION OF NMR SPIN-RELAXATION PARAMETERS FROM MD SIMULATIONS. Po-Chia Chen, Maggy Hologne, Olivier Walker, Janosch Hennig

2548-Pos **Board B94**
SILVER IONS CAUSED FASTER DIFFUSION OF H-NS PROTEINS IN LIVE E. COLI BY WEAKENING THE BINDING BETWEEN H-NS PROTEINS AND DNA. Asmaa A. Sadoon, Prabhut Khadka, Jack freeland, Ravi Gundampati, Rayan Mason, Mazon Ruiz, Suresh K. Thallapuranam, Jing Chen, Yong Wang

2549-Pos **Board B95**
STUDY OF SELF-ASSOCIATION OF HUMAN CSTF-64 RNA RECOGNITION MOTIF. Elahe Masoumzadeh, Michael Latham, Clinton MacDonald, Petar Grozdanov

2550-Pos **Board B96**
EPIDERMAL GROWTH FACTOR RECEPTOR KINASE EXON 19 DELETION MUTATIONS DISPLAY VARIABILITY IN ACTIVATION AND DRUG RESPONSIVENESS. Benjamin P. Brown

2551-Pos **Board B97**
The Staphylococcus Aureus Isdh receptor forms a dynamic complex with human hemoglobin and triggers Heme release via two distinct hot spots. Joseph A. Clayton, Jeffrey M. Wereszczynski

2552-Pos **Board B98**
WHAT TIME IS IT? RECONSTITUTING A CYANOBACTERIA CLOCK TO TIME THE GENE EXPRESSION IN VITRO. Archana G. Chavan, Joel Heisler, Yong-gang Chang, Andy LiWang

2553-Pos **Board B99**
IS THE PROTEIN DYNAMICAL TRANSITION USEFUL? Akansha Sharma, Deepu K. George, Kimberly Crossen, Jeffrey McKinney, Cheryl Kerfeld, Andrea Markelz

2554-Pos **Board B100**
PERIODIC TABLE OF F-TYPE ATPASES. John W. Vant, Abhishek Singharoy

2555-Pos **Board B101**
RECEPTORS’ MOSAICS AND ALLOSTERY FOR PHARMACOLOGY. Zeineb Si Chalb, Alessandro Marchetto, Klevia Dishnica, Paolo Carloni, Alejandro Giorgetti, Giulia Rossetti

2556-Pos **Board B102**
DYNAMIC DISEASE LANDSCAPE OF A CANCER DRIVING FUSION KINASE. Philipp C. Aoto, Susan S. Taylor

2557-Pos **Board B103**
TRAVEL AWARDEE MECHANISM OF ALLOSTERIC INHIBITION OF PLASMODIUM FALCIPARUM CGMP-DEPENDENT PROTEIN KINASE. Olivia Byun, Katherine Van, Philipp Henning, Friedrich W. Herberg, Giuseppe Melacini

2558-Pos **Board B104**
STRUCTURAL BASIS FOR THE ROBUST SUBSTRATE PHOSPHORYLATION BY MAPK P38A UNDER THE STRESS-ASSOCIATED ATP-DECREASED, WEAKLY ACIDIC PH CONDITION ELUCIDATED BY SOLUTION NMR. Yuji Tokunaga, Koh Takeuchi, Hideo Takahashi, Ichio Shimada

2559-Pos **Board B105**
ALLOSTERY AND CONFORMATIONAL DYNAMICS IN TYROSINE KINASE REGULATION. William Marsiglia, Joseph Katigbak, Sijin Zheng, Moosa Mohammadi, Yingkai Zhang, Nate Traseth

2560-Pos **Board B106**
SOLVENT MAPPING APPROACH FOR UNCOVERING CRYPTIC POCKETS IN MEMBRANE-BOUND PROTEINS. Lorena Zucic, Jan K. Marzinek, Jim Warwicker, Peter J. Bond

Membrane Protein Structures II (Boards B107 - B124)

2561-Pos **Board B107**
PROTEIN-LIPID INTERACTIONS IN FORMATION OF VIRAL ENVELOPES. Natalia V. Kuzmina, Anna S. Loshkareva, Liudmila A. Shilova, Eleonora V. Shtykova, Denis G. Knyazev, Joshua Zimmerman, Oleg V. Batitschev

2562-Pos **Board B108**
PHASE PLATE CRYO-EM STRUCTURE OF FORMYLPEPTIDE RECEPTOR 2 BOUND TO AN INHIBITOR G PROTEIN. Gongpu Zhao, Xing Meng

2563-Pos **Board B109**
INFLUENCE OF THE LIPID-PROTEIN INTERFACE ON MSCS MECHANOSENSITIVE CHANNEL GATING AT HIGH RESOLUTIONS. Bharat Reddy, Navid Bavi, Eduardo Perozo
Enzyme Function, Cofactors, and Post-translational Modifications (Boards B145 - B170)

2590-Pos Board B136 PREDICTING THE PK$_r$ SHIFT OF ACIDIC RESIDUES IN THE CALCIUM-BINDING SITES OF SERCA USING ALCHEMICAL FREE-ENERGY CALCULATIONS. Rodrigo Aguayo-Ortiz, Laura Dominguez, L. Michel Espinoza-Fonseca

2591-Pos Board B137 VISUALIZING SINGLE MOLECULE DYNAMICS OF SYNTAXIN SIMULTANEOUS WITH CLUSTERS USING DYE LABELED NANOBODIES. Alan Weisgerber

2592-Pos Board B138 IMMUNE CELL TRIGGERING BY SPATIAL SEGREGATION STUDIED USING STOCHASTIC RARE EVENT SIMULATION. Robert Taylor, Jun F. Allard, Elizabeth Read

2593-Pos Board B139 USING FLUORESCENCE MICROSCOPY TO CHARACTERIZE THE ROLE OF MECHANOSENSATION IN CELL DIVISION. Allen Lu, Seongjin Park, Bharat Reddy, Jingyi Fei, Eduardo Perozo

2594-Pos Board B140 3D DSTORM IMAGING REVEALS CAMKII-DEPENDENT DISPERSAL OF RYANODINE RECEPTOR CLUSTERS IN FAILING RAT CARDIOMYOCYTES. Xin Shen, Terje R. Kolstad, Jonas van den Brink, Michael Frisk, Yufeng Hou, Einar Norden, Andrew G. Edwards, Ivar Sjaastad, Christian Soeller, William L.ouch

2595-Pos Board B141 A COMPARISON OF IN VIVO AND IN VITRO BAMA BARREL SEAM DYNAMICS. Matthew A. Brown

2596-Pos Board B142 INFLUENCE OF PRESENILIN H1-H2 LINKER MUTATIONS ON THE APP PROCESSING BY GAMMA-SECRETASE. Michal M. Olewniczak, Lukasz Nierzwicki, Jacek Czub

2597-Pos Board B143 DYNAMIN PH DOMAIN INTERACTIONS WITH PHOSPHATIDYLINOSITOL LIPIDS IN MEMBRANE. Joseph A. Marte, Dalia M. Hassan, Frank X. Vázquez

2598-Pos Board B144 ALUMINUM INTERACTS DIFFERENTLY WITH LIPID BILAYERS AND MODULATES THE PLASMA MEMBRANE CALCIUM ATPASE (PMCA) ACTIVITY. Marilina de Sautu, Gustavo Scanavachi, Mariela Soledad Ferreira-Gomes, Juan Pablo F. Rossi, Rosangela Itri, Irene C. Mangialavori

2600-Pos Board B146 SOLUTION STRUCTURE STUDIES OF ESS1 INTERACTIONS WITH THE RNA-P II CTD SUGGEST A DUAL BINDING MECHANISM THAT DIFFERS FROM THAT OF HUMAN PIN1. Tongyin Zheng, Kevin Namitz, Ashley Canning, Nilda Alicea-Velazquez, Carlos A. Castaneda, Micheal S. Cosgrove, Steven D. Hanes

2602-Pos Board B148 TRAVEL Awardee LIGAND BINDING STUDIES OF A TRIMETHOPRIM-RESISTANT DIHYDROFOLATE REDUCTASE BY FLUORINE NMR. Gabriel J. Fuente Gomez, Michael Duff, Elizabeth Howell

2603-Pos Board B149 TRAVEL Awardee THE DISSOCIATION MECHANISM OF THE PROCESSIVE CELLULASE TREC-L7A. Josh V. Vermaas, Riin Kont, Gregg T. Beckham, Michael F. Crowley, Mikael Gudmundsson, Mats Sandgren, Jerry Stählberg, Priit Välimäe, Brandon C. Knott

2604-Pos Board B150 EFFECT OF BINDING SITE MUTATIONS IN FIBRINOGEN ΑC (233-425) ON FXIII SUBSTRATE SPECIFICITY. Francis Dean O. Ablan, Nicholas M. McCann, Mohammed M. Hindi, Muriel C. Maurer

2605-Pos Board B151 EFFECT OF CARGO IDENTITY ON ACYL CARRIER PROTEIN STRUCTURE. Terra Sztain-Pedone, Michael D. Burkart, James A. McCammon

2606-Pos Board B152 ENZYME ACTIVATION MECHANISM OF COCOONASE. Mai Takegawa, Tsubasa Tagawa, Ayumi Ogata, Shigeru Shimamoto, Yuji Hidaka

2607-Pos Board B153 STRUCTURAL AND FUNCTIONAL STUDIES OF HUMAN TYPE II TOPOISOMERASES AND THEIR POST-TRANSLATIONAL MODIFICATIONS. Christophe Lotz, Claire Bedez, Claire Batisse, Arnaud Vanden Broeck, Robert Drillien, Marc Ruff, Valérie Lamour

2608-Pos Board B154 USING HIGH ORDER COEVOLUTION CORRELATIONS TO IDENTIFY SITES FOR COMPENSATING MUTATIONS TO RESCUE FUNCTION. Kejue Jia, Nikita Chopra, Amy H. Andreotti, Robert L. Jernigan

2609-Pos Board B155 PURIFICATION AND KINETIC CHARACTERIZATION OF PROTEIN TYROSINE PHOSPHATASE 1B (1-393). Kyle M. Jones, Erik Zavala, J. Patrick Loria

2610-Pos Board B156 ALLOSTERIC REGULATION OF GLUTAMATE DEHYDROGENASE. Zoe A. Hoffpauir, Eleena Sherman, Hong Q. Smith, Thomas J. Smith

2611-Pos Board B157 RCAN1 AND ITS ROLE IN DOWN SYNDROME VIA ITS REGULATION OF CALCINEURIN. Yang Li

2612-Pos Board B158 THERMODYNAMIC PROFILES OF PHOSPHOPROTEINS SUGGEST A GENERAL FUNDAMENTAL ROLE FOR SERINE/THREONINE PHOSPHORYLATION SITES WITH +1 PROLINE (S/T-P) IN EUKARYOTES. Min Hyung Cho, Vincent J. Hilser, James Taylor

2613-Pos Board B159 ENZYME FUNCTION PREDICTION USING DEEP LEARNING. Safyan Aman Memon, Kinaa Aamir Khan, Hammad Naveed

2614-Pos Board B160 EFFECT OF TYR116 IN MYCOBACTERIAL 3-KETOSTEROID-Δ1'-DEHYDROGENASE ON ITS SUBSTRATE SPECIFICITY. Shikui Song, Xin Li, Tian Chen, Cheryl X. Y. Cheng, Zhengkun Kuang, Yongqi Huang, Zhengding Su

2615-Pos Board B161 SIROHEME SYNTHASE ORIENTS SUBSTRATES FOR DEHYDROGENASE AND CHELATASE ACTIVITIES IN A SINGLE ACTIVE SITE. Elizabeth Stroupe, Joseph M. Pennington

2616-Pos Board B162 A COMPUTATIONAL STUDY OF THE ROLE OF THE E3 LIGASE IN THE UBIQUITINATION REACTION. Jay-Anne K. Johnson
Intrinsically Disordered Proteins (IDP) and Aggregates IV (Boards B171 - B196)

2625-Pos BOARD B171
MEMBRANE ASSOCIATION OF THE INTRINSICALLY DISORDERED N-TERMINAL REGION OF CHIZ. Alan Hicks, Cristian A. Escobar, Timothy A. Cross, Huan-Xiang Zhou

2626-Pos BOARD B172
UNCOVERING THE STRUCTURAL BASIS FOR THE MECHANICAL PROPERTIES OF ELASTIN. Lamia Hossain, Ananya Srivastava, Quang Huynh, Régis Pomès

2627-Pos BOARD B173
INTRINSICALLY UNFOLDED ALPHA-C REGION OF FIBRINOGEN IS MAJOR CONTRIBUTOR TO MECHANICAL STRENGTH OF FIBRIN FIBERS. Ali Daraei, Taylor C. Dement, Nathan E. Hudson, Martin Guthold

2628-Pos BOARD B174
DYNAMICS IN NATURAL AND DESIGNED ELASTINS AND THEIR RELATION TO ELASTIC FIBER STRUCTURE AND RECOIL. Ma. Faye Charmagne Carvajal, Jonathan Preston, Nour Jamhawi, Christo Vairamon, Dernae Rowe, Joel Bresland, James Aramini, Thomas Michael Sabo, Richard Witteborn, Ronald Koder

2629-Pos BOARD B175
MAP OF GENETICALLY CONSTRAINED REGIONS IN HUMAN INTRINSICALLY DISORDERED PROTEINS. Zaara Rifat, Shehab Ahmed, Arthur J. Campbell, A. Keith Dunker, Sohel Rahman, Sumaiya Iqbal

2630-Pos BOARD B176
DESTABILIZING BETA SHEET PEPTIDES FROM THE HYDROPHOBIC CORE OF ALPHA SYNUCLEIN. Sarah A. Petty, Michael J. Calceterra, Matthew W. Fernandez, Christopher G. Fernandez, Sophia A. Von Fedak

2631-Pos BOARD B177
MICROSCOPIC MODEL OF A BIOLOGICAL CONDENSATE. Swan Htun, Kumar Sarthak, Han-Yi Chou

2632-Pos BOARD B178
STUDYING RNA MODULATED PROTEIN LIQUID-LIQUID PHASE SEPARATION USING COARSE-GRAINED MODELS. Roshan M Regy, Gregory L. Dignon, Youngchan Kim, Jeetain Mittal

2633-Pos BOARD B179
ALPHA-SYNUCLEIN MODULATES STIMULATED EXOCYTOSIS AND BINDS TO MITOCHONDRIA WITH FUNCTIONAL CONSEQUENCES. Meraj Ramezani, Tapojyoti Das, David A. Holowka, David Eliezer, Barbara A. Baird

2634-Pos BOARD B180
COMPUTATIONAL CHARACTERIZATION OF FUS DISASSEMBLY BY KAPB2. Genevieve Kunkel

2635-Pos BOARD B181
FORCE FIELD REFINEMENT BASED ON HIGH RESOLUTION PROTEIN STRUCTURES. Robert Best

2636-Pos BOARD B182
BASIN MAPPING METHOD FOR EXTRACTING COMPARATIVE ASSESSMENTS OF PROTEIN PHASE BEHAVIOR FROM IN VIVO MEASUREMENTS. Jared M. Lalmansingh, Ammon E. Posey, Tejbjir Kandola, Randal Halfmann, Rohit V. Pappu

2637-Pos BOARD B183
DESTABILIZATION AND RESISTING GROWTH OF ALPHA-SYNUCLEIN FIBRIL BY SYNUCLEIN-D. Soumyo Sen, Emad Tajkhorshid

2638-Pos BOARD B184
ROLE OF INTERACTION MODULARITY IN GOVERNING PHASE BEHAVIOR, STRUCTURE AND DYNAMICS OF TERNARY PROTEIN-RNA CONDENSATES. Taranpreet Kaur, Priya R. Banerjee

2639-Pos BOARD B185
STRUCTURAL STUDIES OF AMYLOIDOGENIC PEPTIDES WITH CATIONIC GEMINI IMIDAZOLIUM SURFACTANTS. Julia Ludwiczak, Maciej Kozak, Aneta Szymanska, Kosma Sztukowski, Michalina M. Wilkowska

2640-Pos BOARD B186
NPM1 EXHIBITS STRUCTURAL AND DYNAMIC HETEROGENEITY UPON PHASE SEPARATION WITH THE TUMOR SUPPRESSOR ARF. Eric B. Gibbs, Barbara Perrone, Aila Hassan, Rainer Kümerle, Richard Kriwacki

2641-Pos BOARD B187
TRAVEL Awardee
ALPHA-SYNUCLEIN DETECTS AND PREFERENTIALLY BINDS TO OSMOTICALLY TENSE SYNAPTIC VESICLE-LIKE MEMBRANES. Peter J. Chung

2642-Pos BOARD B188
ENERGETICS OF IT-IT INTERACTIONS IMPLICATED IN LIQUID-LIQUID PHASE SEPARATION. Andrea Guljas, Robert M. Vernon, Julie D. Forman-Kay, Martin J. Fossrat, Genevieve Kunkel

2643-Pos BOARD B189
HEURISTICS FOR THE EFFECTS OF SEQUENCE AND CONFORMATIONAL CONTEXTS ON PK, VALUES OF IONIZABLE RESIDUES INFERRED FROM Q-CANONICAL MONTE CARLO SIMULATIONS. Martin J. Fossat, Ammon E. Posey, Rohit V. Pappu
A TAIL OF NIGHT OWLS: THE MAMMALIAN CRY1 C-TERMINAL TAIL CONTROLS CIRCADIAN TIMING BY REGULATING ITS ASSOCIATION TO CLOCK:BMAL1. Gian Carlo G. Parico

AGGREGATION STATE OF HUNTINGTIN REGULATES ITS INTERACTION WITH LIPID MEMBRANES. Faezeh Sedighi, Adewale Adegbuyi, Justin A. Legleiter

THE STRUCTURAL BASIS OF OPPOSING FUNCTIONS OF ALPHA-SYNUCLEIN IN VESICLE EXOCYTOSIS. Tapojyoti Das, Meraj Ramezani, David A. Holowka, Barbara A. Baird, David Eliezer

QUANTIFYING THE EFFECTS OF CHARGE REGULATION ON DISORDER-ORDER TRANSITIONS OF HIGHLY CHARGED PROTEIN SEQUENCES. Ammon E. Posey, Martin J. Fossat, Rohit V. Pappu

INTERNAL DYNAMICS OF THE MEASLES VIRUS N PROTEIN BY PHOTO-INDUCED ELECTRON TRANSFER EXPERIMENTS AND MOLECULAR SIMULATIONS. John Kunkel, Gerdenis Kodis, Priscila Sutto-Ortiz, Christophe Bignon, Nina Jovic, Jeetain Mittal, Sonia Longhi, Sara M. Vaiana

MODELING LIQUID-LIQUID PHASE SEPARATIONS OF INTRINSICALLY DISORDERED PROTEINS ON THE MICROMETER-SCALE. Viren Pattni, Sara M. Vaiana, Giovanna Ghirlanda, Matthias Heyden

PROTEOLYTIC FRAGMENTS OF TAU PRODUCE SEEDING-COMPETENT FIBRILS. Michael Vigers, Songi Han

TRANSCRIPTION (Boards B197 - B217)

THE ROLE OF TRANSCRIPTION FACTOR - DNA RESIDENCE TIME IN TRANSCRIPTION. Achim P. Popp, Karen Clauss, Lena Schulze, Johannes Hettich, Matthias Reisser, Christof J. Gebhardt

DISCRIMINATOR EFFECTS ON OPEN COMPLEX FORMATION, STABILIZATION, AND TRANSCRIPTION INITIATION. Hao-Che Wang

LONG-DISTANCE COOPERATIVE AND ANTAGONISTIC RNA POLYMERASE DYNAMICS VIA DNA SUPERCOILING. Sangjin Kim

EFFECT OF ENGINEERED PHAGE PROTEINS ON THE TRANSCRIPTION BY SIGMA70-ASSOCIATED HOST RNA POLYMERASE. Vikas Jain

SINGLE-MOLECULE NAVIGATION OF THE NUCLEOSOMAL TRANSCRIPTION LANDSCAPE. Zhijie Chen, Ronen Gabizon, Tingting Yao, Carlos Bustamante

FORCE AND GREA MODULATE TRANSCRIPTIONAL PAUSES AT ELONGATIONAL OBSTACLES. Jin Qian, Wexuan Xu, Yan Yan, Irina Artsimovitch, David Dunlap, Laura Finzi

MONOVALENT SALT DEPENDENCE OF THE BACTERIAL RNA POLYMERASE OPEN COMPLEX DYNAMICS. Subhas C. Bera, Mona Seifert, Eugeni Ostrofet, Monika Spermann, Flavia Sap Papini, Anssi M. Malinen, David Dulin

DECIPHERING KINETICS OF RNA POLYMERASE I MULTI-NUCLEOTIDE TRANSCRIPTION. Zachariah Ingram, David A. Schneider, Aaron L. Lucius

A UNIFYING MECHANISTIC MODEL OF BACTERIAL TRANSCRIPTION WITH THREE INTERCONNECTED PAUSE STATES AND NON-DIFFUSIVE BACK-TRACK RECOVERY. Richard Janissen, Behrouz Esfami-Mossallam, Irina Artsimovitch, Martin Depken, Nynke H. Dekker

KINETIC REGULATION OF TRANSCRIPT FLUX RATIOS. Eric A. Galburt

RNA POLYMERASE DYNAMICS AND OTHER SINGLE-MOLECULE CONTINUOUS TIME PROBLEMS. Zelha Kilic, Ioannis Sgouralis, Steve Pressé

FREQUENCY SPECTRUM OF CHEMICAL FLUCTUATION: A PROBE OF REACTION MECHANISM AND DYNAMICS. Sanggeun Song, Gil-Suk Yang, Seong Jun Park, Sungguan Hong, Ji-Hyun Kim, Jaeyoung Sung

INTERACTION BETWEEN TRANSCRIPTION AND TRANSLATION MACHINERIES ON A NASCENT RNA WITH HIGHER ORDER STRUCTURE. Surajit Chatterjee, Adrien Chauvier, Nils G. Walter

ENHANCER RNA TRANSCRIPTION DYNAMICS IN SINGLE CELLS. Gable M. Wadsworth, Joseph Rodriguez

USING MULTI-FOCUS MICROSCOPY TO CAPTURE TRANSCRIPTIONAL DYNAMICS AT THE SECOND TIMESCALE. Robert I. Shelansky, Hinrich Boeger, Sara Abrahamson

SINGLE-MOLECULE NANOSCOPY OF RNA POLYMERASE II, POL II CO-FACTORS, CHROMATIN REGULATORS AND GENOME ORGANIZATION IN LIVE CELLS. Alexandros Pertsinidis

REAL-TIME IMAGING OF TRANSCRIPTION AND TRANSPORT OF SINGLE ARC MRNA IN LIVE NEURONS. Hyungseok C. Moon, Byeong-Kwon Sohn, Urmimala Basu, Hayoon Cho, Jiayu Shen, Aishwarya Deshpande, Smita S. Patel, Hajin Kim

THE MOLECULAR BIOPHYSICS OF ADAPTATION. Griffin Chure, Rob Phillips

SINGLE-MOLECULE TRACKING OF TRANSCRIPTIONAL AND TRANSLATIONAL MACHINERY IN STATIONARY PHASE E. COU. Yanyu Zhu, Mainak Mustafi, James C. Weisshaar
Ribosomes and Translation (Boards B218 - B231)

2672-Pos BOARD B218
KINETIC VARIABILITY AT THE 3' UTR OF BACTERIAL MRNA LEADS TO NARROW DYNAMIC RANGE AND HIGH SENSITIVITY IN 30S RIBOSOME BINDING. Shiba S. Dandpat, Sujay Ray, Surajit Chatterjee, Nils G. Walter

2673-Pos BOARD B219

2674-Pos BOARD B220
A MAXIMUM ENTROPY MODEL FOR TRNA ABUNDANCES INITIATING PROTEIN SYNTHESIS. Rebecca J. Rousseau, William Bialek

2675-Pos BOARD B221
MODULATION AND VISUAL DETECTION OF CROSSLINKED EF-G DURING TRANSLLOCATION. Yuhong Wang, Heng Yin, Shoujun Xu

2676-Pos BOARD B222
KINETICS AND THERMODYNAMICS OF -1 RIBOSOMAL FRAMESHIFTING. Lars V. Bock, Neva Caliskan, Bee-Zen Peng, Natalia Korniy, Riccardo Belardinelli, Frank Peske, Marina V. Rodnina, Helmut Grubmüller

2677-Pos BOARD B223
SINGLE-MOLECULE AND ENSEMBLE ANALYSIS OF PROTEIN-MEDIATED FRAMESHIFTING. Neva Caliskan

2678-Pos BOARD B224
SINGLE-MOLECULE APPROACHES TO STUDY FRAMESHIFTING MECHANISMS AND EFFICIENCY. Lukas Pekarek, Matthias Zimmer, Anuja Kibe, Neva Caliskan

2679-Pos BOARD B225
ERROR-SPEED CORRELATIONS IN BIOPOLYMER SYNTHESIS. Davide Chiuchiu, Yuhai Tu, Simone Pigolotti

2680-Pos BOARD B226
TRNA DISASSOCIATION FROM EF-TU AFTER GFP HYDROLYSIS - PRIMARY STEPS AND ANTIBIOTIC INHIBITION. Malte Warias, Helmut Grubmüller, Lars V. Bock

2681-Pos BOARD B227

2682-Pos BOARD B228
COMPUTATIONAL DESIGN AND INTERPRETATION OF SINGLE-RNA TRANSLATION EXPERIMENTS. Luis U. Aguilera, Kenneth Lyon, William Raymond, Tatsuya Morisaki, Timothy J. Stasevich, Brian Munsky

2683-Pos BOARD B229
USING SIMULATIONS TO IDENTIFY PRECISE SINGLE-MOLECULAR PROBES FOR RIBOSOME DYNAMICS. Asem H. Hassan, Paul C. Whitford

2684-Pos BOARD B230
OPTIMIZING RECOMBINANT PROTEIN EXPRESSION WITH SYNONYMOUS CODONS. Daniel Wong, Kam-Ho Wong, Gregory Boël, John F. Hunt, Daniel P. Aalberts

2685-Pos BOARD B231
EXPANDING MASS SPECTROMETRY TOOLBOX FOR RNA MODIFICATION PROFILING. Anna Popova, Luigi D’Ascenzo, James R. Williamson

Chromatin and the Nucleoid II (Boards B232 - B247)

2686-Pos BOARD B232
INFLUENCE OF MICROPILLAR INDUCED DEFORMATION ON CHROMATIN ARCHITECTURE IN REGULATING STEM CELL DIFFERENTIATION. Vasundhara Agrawal, Xinlong Wang, Guillermo Ameer, Vadim Backman

2687-Pos BOARD B233
CHROMATIN FOLDING COORDINATE AND LANDSCAPE UNRAVELED BY DEEP LEARNING ANALYSIS OF SINGLE-CELL IMAGING DATA. Wenjun Xie, Yifeng Qi, Bin Zhang

2688-Pos BOARD B234
MESOSCALE PHASE SEPARATION OF CHROMATIN IN THE NUCLEUS: Gaurav Bajpai, Daria A. Pavlov, Dana Lorber, Talila Volk, Samuel Safran

2689-Pos BOARD B235
INFERRING RADIAL ORGANIZATION OF CHROMOSOMAL TERRITORIES FROM HI-C DATA. Priyojit Das, Jacob T. Sanders, Tongye Shen, Rachel P. McCord

2690-Pos BOARD B236
LANDSCAPE OF MULTIVALENT CHROMATIN INTERACTIONS IN TRANSCRIPTIONALLY ACTIVE LOCI. Alan Perez-Rathke, Qiu Sun, Boshen Wang, Valentina Boeva, Zhifeng Shao, Jie Liang

2691-Pos BOARD B237
CREATING AN INTEGRATED LANDSCAPE OF HUMAN IPSC NUCLEAR STATES. Christopher L. Frick, Susanne M. Rafelski

2692-Pos BOARD B238
DISORDERED CHROMATIN PACKING REGULATES ENSEMBLE GENE EXPRESSION AND PHENOTYPIC PLASTICITY. Ranya Virk, Wenli Wu, Luay M. Almassalha, Greta M. Bauer, Yue Li, David VanDerway, Jane Frederick, Di Zhang, Adam Eshein, Igal Szleifer, Vadim Backman

2693-Pos BOARD B239
IMPROVING CHEMOTHERAPY TREATMENT EFFICACY WITH CHROMATIN PROTECTION THERAPIES. Jane Frederick, Greta Wodarcyk, Luay M. Almassalha, Wenli Wu, David VanDerway, Ranya Virk, Vadim Backman

2694-Pos BOARD B240
BRIDGING CHROMATIN NANOIMAGING AND MOLECULAR MODELING: CHROMATIN PACKING AS A REGULATOR OF TRANSCRIPTIONAL HETEROGENEITY IN CARCINOGENESIS. Vadim Backman

2695-Pos BOARD B241
EXPERIMENTALLY-DRIVEN MODELS OF BACTERIAL CHROMOSOMES. Michael Feig

2696-Pos BOARD B242
TRAVEL AWARDSEE POLYMER MODELING OF WHOLE-NUCLEUS DIPLOID GENOME ORGANIZATION. Yifeng Qi, Bin Zhang

2697-Pos BOARD B243
MODELING HIGH-ORDER CHROMATIN STRUCTURE IN SINGLE CELLS. Kai Huang, Vadim Backman, Igal Szleifer

2698-Pos BOARD B244
LARGE-SCALE HETEROPOLYMER MODEL OF CHROMATIN DYNAMICS AND MECHANICS. Anne Shim, Kai Huang, Vadim Backman, Igal Szleifer

2699-Pos BOARD B245
THE EFFECT OF NUCLEAR ENVELOPE ON CHROMATIN ARCHITECTURE IN DROSOPHILA MELANOGASTER: MODELING OF THREE-DIMENSIONAL INTERPHASE CHROMOSOME ORGANIZATION. Igor S. Tolokh, Nicholas A. Kinney, Igor V. Sharakhov, Alexey V. Onufriev
Membrane Fusion and Non-Bilayer Structures (Boards B248 - B261)

2702-Pos BOARD B248
COMPLEXIN 1 AND SYNTAPOTAGMIN 1 COMPETE FOR MEMBRANE BINDING IN A PIP2 DEPENDENT MANNER. Qian Liang, Volker Kiessling, Binyong Liang, Lukas K. Tamm, David S. Cafiso

2703-Pos BOARD B249
A MODEL FOR MYOMERGER FUNCTION IN MYOBLAST FUSION. Gonen Golani, Evgenia Leikina, Douglas P. Millay, Leonid V. Chernomordik, Michael M. Kozlov

2704-Pos BOARD B250
CALCium IONS ENHANCE ENTRY OF EBOLA VIRUS BY DIRECTLY TARGETING THE FUSION PEPTIDE. Liqi Lai, Lakshmi Nathan, Jean K. Miller, Jack H. Freed, Gary R. Whitaker, Susan Daniel

2705-Pos BOARD B251
DIFFERENTIATING ANTIBODY NEUTRALISATION MECHANISMS USING A SINGLE VIRUS-ASSAY. Anjali Sengar, Rebecca R. Pompano, Peter Kasson

2706-Pos BOARD B252
STRUCTURAL DETERMINANTS OF LIPID MEMBRANE THICKENING AT CLOSE DISTANCES. Leonard P. Heinz, Agata Witkowska, Helmut Grubmuller, Reinhard Jahn

2707-Pos BOARD B253
INVERTED CUBIC (Q) PHASE STABILIZING EFFECTS OF MEMBRANE ACTIVATING PEPTIDES AS AN INDEX OF ANTIMICROBIAL PEPTIDE (AMP) AND FUSION PEPTIDE ACTIVITY. David P. Siegel

2708-Pos BOARD B254
RESOLVING KINETIC INTERMEDIATES DURING THE REGULATED ASSEMBLY AND DISASSEMBLY OF FUSION PORES. Huan Bao

2709-Pos BOARD B255
DECONVOLUTION OF INFLUENZA A VIRAL BINDING AND FUSION WITH A CHEMICALLY-DEFINED GLYCOCALYX. Elizabeth R. Webster, Corleone S. Delaveris, Carolyn R. Bertozzi, Steven G. Boxer

2710-Pos BOARD B256
IMPACTS OF BIOCHEMICAL COMPLEXITY ON CLIMATE-RELEVANT PROPERTIES OF MODEL MARINE AEROSOLS. Abigail C. Dommer, Rommie E. Amaro

2711-Pos BOARD B257
KINETIC AND CELLULAR AUTOMATON MODELS OF WEST NILE VIRUS HEMIFUSION. Abraham Park, Robert J. Rawle

2712-Pos BOARD B258
SINGLE VIRUS INVESTIGATION OF SENDAI VIRUS BINDING AND FUSION TO SUPPORTED LIPID BLAYERS. Amy Lam, Nandini Seetharaman, Robert J. Rawle

2713-Pos BOARD B259
TWO FORMS OF OPA1 COOPERATE TO COMPLETE MITOCHONDRIA INNER MEMBRANE FUSION. Yifan Ge, Sivakumar Boopathy, Xiaojun Shi, Julie L. McDonald, Adam W. Smith, Luke Chao

Protein-Lipid Interactions: Channels (Boards B262 - B272)

2714-Pos BOARD B260
SYNTAPOTAGMIN-1/CA2+OVERCOMEs INEFFICIENCY OF SNARE COMPLEX IN DILATING THE FUSION PORE. Ryan Khounlo

2715-Pos BOARD B261
CHOLESTEROL ALTERS PHYSICAL PROPERTIES OF THE TARGET MEMBRANE TO FACILITATE INFLUENZA MEMBRANE FUSION AT THE SINGLE-PARTICLE LEVEL. Katherine N. Liu, Steven G. Boxer
General Protein-Lipid Interactions II (Boards B273 - B297)

2726-Pos Board B272
ROLE OF LIPID ENVIRONMENT IN THE PORE-FORMING ACTIVITY OF CECROPIN A. Anastaslia A. Zakharova, Svetlana S. Efimova, Olga S. Ostroumova

2727-Pos Board B273
VARYING THE PH AND LIPOSE CONTENT OF CYTOCHROME C - LIPOSE MIXTURES. Rajed Kurban

2728-Pos Board B274
CHARGE DRIVES INITIATION AND REGULATION OF BLOOD COAGULATION CASCADE: IONS AND PROTEINS. Ashley M. De Lio, Riya Jain, Divyani Paul, James H. Morrissey, Taras V. Pogorelov

2729-Pos Board B275
THE N-TERMINAL REGION OF A PH-RESPONSIVE PEPTIDE CONTROLS ITS INTERACTION WITH PHOSPHATIDYLSERINE-CONTAINING BILAYERS. Andrew C. Dixon, Vanessa P. Nguyen, Francisco N. Barrera

2730-Pos Board B276
LIPID COMPOSITION MODULATES MEMBRANE BINDING OF PHOSPHATIDYLSERINE-RECEPTOR TIM-3. Sofiya Maltseva, Daniel H. Kerr, Ka Yee C. Lee

2731-Pos Board B277
FISL-LIPID INTERACTIONS DURING SPORULATION IN BACILLUS SUBTILIS. Martha Braun, Ane Landajuela, Christopher Rodrigues, Thierry Doan, David Rudner, Erdem Karatekin

2732-Pos Board B278
EFFECT OF ACYL CHAIN SATURATION ON PERILINP 3 BINDING TO MODEL LIPID DROPLETS. Elyse N. Ridgway, Rebecca Douglas, Amber R. Titus, Elizabeth K. Mann, Edgar E. Kooijman

2733-Pos Board B279
DIRECT DETECTION AND CHARACTERIZATION OF A PHOSPHOinositide Dependent Kinase-1 (PDK1) HOMODIMER ON A TARGET MEMBRANE SURFACE VIA SINGLE MOLECULE FLUORESCENCE. Moshe T. Gordon, Joseph J. Falke

2734-Pos Board B280
BENEFITS OF THE ELECTRONIC CONTINUUM CORRECTION IN BIOFORCE FIELDS. Ricky Nencini, Vladimir Palivec, Carmelo Tempra, Pauline Delcroix, Samuli O. Ollila, Matti Javanainen, Pavel Jungwirth, Hector Martinez-Seara

2735-Pos Board B281

2736-Pos Board B282
A MONTE CARLO FRAMEWORK FOR MODELING PROTEIN ASSEMBLY ON LIPID MEMBRANES. Carlos A. Osorio Mereza, Ashutosh Agrawal

2737-Pos Board B283
INTERACTIONS OF VARIABLE DOMAIN (VD) OF DRP1 WITH LIPIDS REVEALED BY MD SIMULATIONS. Nidhin Thomas, Rajesh Ramachandran, Ashutosh Agrawal

2738-Pos Board B284
PHOSPHATIDYLETHANOLAMINE: BETWEEN OXIDATIVE STRESS AND UNCOUPLING. Olga Jovanovic, Mario Vazdar, Elena E. Pohl

2739-Pos Board B285
MEMBRANE BINDING OF ALPHA-SYNUCLEIN CONFERS STERIC STABILIZATION OF NANOPARTICLE-SUPPORTED LIPID BILAYERS. Hyeondo (Luke) Hwang, Peter J. Chung, Benjamin R. Slaw, Alessandra Leong, Ka Yee C. Lee

2740-Pos Board B286
THE INTERPLAY OF MEMBRANE TENSION AND OSMOTIC PRESSURE IN MODULATING ALPHA-SYNUCLEIN BINDING. Benjamin R. Slaw, Peter J. Chung, Hyeondo (Luke) Hwang, Ka Yee C. Lee

2741-Pos Board B287
ROLE OF CHOLESTEROL ON BINDING OF AMYLOID FIBRILS WITH LIPID BILAYERS. Cristiano L. Dias, Luis R. Cruz Cruz

2742-Pos Board B288
CONFORMATIONAL DYNAMICS AND ENERGETICS OF MELITTIN AND ITS DIAMEREOM INTERACTING WITH POPC AND POPG LIPID BILAYERS: A MOLECULAR DYNAMICS STUDY. Milica Utjesanovic, Ioan Kosztin

2743-Pos Board B289
OPTIMIZING A CELL-BASED ASSAY FOR FLUORESCENT PHOSPHOLIPID SCRAMBLING. John M. Gilchrist, Lilly Y. Jan

2744-Pos Board B290
BIOPHYSICAL ORIGINS OF CALCIUM-INHIBITED MEMBRANE BINDING BY THE C2A DOMAIN OF SYNAPTOTAGMIN-LIKE PROTEIN 2. Timothy Spotts, David Flores, Abena Watson-Siribo, David N. Jones, Markus Zweckstetter, Jefferson Knight

2745-Pos Board B291
TOWARDS A MOLECULAR MECHANISM OF DYNAMIN POLYMERIZATION WITH MASS PHOTOMETRY. Manish S. Kushwah

2746-Pos Board B292
DISSOCIATION KINETICS OF PLECKSTRIN HOMOLOGY DOMAINS FROM UNROOFED HEK293T CELLS. Madeline R. Sponholtz, Eric N. Senning

2747-Pos Board B293

2748-Pos Board B294
UNRAVELING THE MYSTERY OF THREE-STATE DIFFUSION MODEL OF KRAS4B ON PLASMA MEMBRANE. Rebika Shrestha, De Chen, Thomas Turbyville

2749-Pos Board B295
PHASE SEPARATION STUDIES OF COMPLEXES OF INTRINSICALLY DISORDERED PROTEIN TAU AND ANIONIC LIPOSOMES. Christine Thounouw, Bronett Fletcher, Rebecca Best, Leslie Wilson, Stuart C. Feinstein, Cyrus R. Safinya

2750-Pos Board B296
DETERMINING THE STRUCTURAL TOPOLOGY AND DYNAMICS OF CANONICAL HOLIN USING CONTINUOUS WAVE-EPR SPECTROSCOPY. Renhui S. Perera, Indra Dev Sahu, Gary A. Lorigan

2751-Pos Board B297
Calcium Signaling II
(Boards B298 - B313)

2752-Pos Board B298
TO FACE OR NOT TO FACE: RELATIONSHIP OF IP3 RECEPTORS AND MITOCHONDRIA IN PURKINJE FIBERS OF CEREBELLM. Clara Franza-Armstrong, V. Ramesh lyer

2753-Pos Board B299
COMPUTATIONAL MODELING OF LPS- AND ATP-MEDIATED CYTOKINE PRODUCTION IN MACROPHAGES. Byeongjae Chun, Peter M. Kekecs-Huskey, Chris Richards

2754-Pos Board B300
MULTIPLE FEEDBACK MECHANISMS UNDERLYING BETA CELL SECRETORY OSCILLATIONS. Benjamin M. Thompson, Isabella Marinelli, Richard Bertram, Arthur Sherman, Leslie S. Satin

2755-Pos Board B301
CARDIAC CAMKIIIA MEMORY: POST-TRANSLATIONAL MODIFICATION-MEDIATED PROLONGATION OF CAMKIIA IN AUTONOMOUSLY ACTIVE OPEN STATE. Christopher Y. Ko, Leann T. Le, Mitchell R. Simon, Razvan L. Cornea, Julie Bossuyt, Donald M. Bers

2756-Pos Board B302
MUSCARINIC RECEPTOR STIMULATION DIFFERENTIALLY REGULATES NUCLEOPLASMIC CALCIUM IN ATRIAL AND VENTRICULAR MYOCYTES. Andriy E. Belevych, Jiaojia Li, Andrei Stepanov, Ingrid M. Bonilla, Dmitry A. Terentyev, Sandor Gyorke

2757-Pos Board B303
CALCICUM STORE-OPERATED CURRENTS IN HUMAN SKIN CELLS. Declan Manning, Richard L. Evans, Caroline Dart

2758-Pos Board B304
MUSCARINIC RECEPTOR STIMULATION DIFFERENTIALLY REGULATES NUCLEOPLASMIC CALCIUM IN ATRIAL AND VENTRICULAR MYOCYTES. Andriy E. Belevych, Jiaojia Li, Andrei Stepanov, Ingrid M. Bonilla, Dmitry A. Terentyev, Sandor Gyorke

2759-Pos Board B305
ZINC PROTECTION OF FERTILIZED EGGS IS CONSERVED IN NON-MAMMALIAN SPECIES. Rachel E. Bainbridge, Katherine Wozniak, Welsey A. Phelps, Steven M. Sanders, Matthew L. Nicotra, Miler T. Lee, Anne E. Carlson

2760-Pos Board B306
LOW RYR2 SENSITIVITY TO FLECAINIDE COMBINED WITH SLOW SARCOLUMMENAL ENTRY AND RAPID MITOCHONDRIAL ACCUMULATION MAY EXPLAIN THE ABSENCE OF RYR2 EFFECTS INTACT WILDE TYPE MYOCYTES. Emma J. Steer, Zhaokang Yang, Declan Manning, Richard L. Evans, Caroline Dart

2761-Pos Board B307
ANO1, CA1_2 AND IP, R FORM A FUNCTIONAL UNIT OF EXCITATION-CONTRACTION COUPLING DURING AGONIST-MEDIATED CONTRACTION OF MOUSE PULMONARY ARTERIAL SMOOTH MUSCLE. Joydeep Aoun, Katie Mayne, Julius Baekk, Kenton M. Sanders, Sean M. Ward, Iain A. Greenwood, Simon A. Bulley, Jonathan H. Jaggar, Scott Earley, Normand Leblanc

2762-Pos Board B308
HETERO-OLIGOMERIZATION OF THE MICROPEPTIDE REGULINS THAT MODULATE CALCIUM TRANSPORT ACTIVITY. Garrett T. Hauck, Sean R. Cleary, Seth L. Robia

2763-Pos Board B309
DATA DRIVEN MODELING OF ALZHEIMER’S DISEASE ASSOCIATED BETA AMYLOID POLES HINTS TOWARDS PROGRESSIVE CA2+ INDUCED CELL TOXICITY. Syed Islamuddin Shah, Ian Parker, Angelo Demuro, Ghanim Ullah

2764-Pos Board B310
CYTOKINESIS TRIGGERS TWO SEPARATE SPIKES OF INTRACELLULAR CALCIUM. Qian Chen

2765-Pos Board B311
A POWERFUL TRANSFECTION REAGENT FOR BUILDING STABLE GPCR EXPRESSING CELL LINES. Shu Kan, Jinfang Liao, Zhenjun Diwu

2766-Pos Board B312
CATERPILLAR ORAL SECRETION ELICITS REACTIVE OXYGEN SPECIES IN ISOLATED PLANT PROTOPLASTS. Akanksha Gandhi, Cruz Chapa, Rupesh Kariya, Nirakar Sahoo

2767-Pos Board B313
CALCIUM BUFFERING BY FLUORESCENT INDICATORS - IMPLICATIONS AND EASY SOLUTIONS. Krysztof Hyrc, Ziemowit Rzeszotnik, Mark P. Goldberg, Colin G. Nicholas

Intracellular Calcium Channels and Calcium Sparks and Waves II
(Boards B314 - B330)

2768-Pos Board B314
DETECTIVE INTERACTION OF CAM WITH RYR2 CAM-BINDING POCKET MIGHT CONTRIBUTE TO ARRHYTHMOGENIC CARDIAC DISEASE. Michel Nomikos, Angelos Thanassoulas, Vironia Vassilakopoulou, Brian L. Calver, Evangelia Livaniou, Bared Safieh-Garabedian, Egon Toft, George Nounesis, F. Anthony Lai

2769-Pos Board B315
RYR2 HYPERACTIVITY GENERATES VENTRICULAR TACHYCARDIA SUSCEPTIBILITY IN STRUCTURAL HEART DISEASE. Kyungsoo Kim, Bjorn C. Knollmann

2770-Pos Board B316
RECRUITING RYRS TO OPEN IN A CA2+ RELEASE UNIT. Dirk Gillespie

2771-Pos Board B317
SLOW-RAPID-SLOW PACING IN THE HEART HAVING CASQ2 G112S X GENE MUTATION PRODUCES EADS AS THE MECHANISM OF CPVT DURING ADRENERGIC STIMULATION. Roshan Paudel, Aman Ullah, Mohsin S. Jafri

2772-Pos Board B318
INHIBITION OF TYROSINE KINASE PYK2 IN HYPERTROPHIC HEARTS: CELULAR MECHANISMS OF ANTI-ARRHYTHMIC EFFECTS. Radmila Terentieva, Shanna Hamilton, Tae Yun Kim, Iulia Polina, Peter Bronk, Karim Roder, Jin O-Uchi, Gideon Koren, Sandor Gyorke, Andriy E. Belevych, Bun-Rak Choi, Dmitry A. Terentyev

2773-Pos Board B319
PROTOCOL DEVELOPMENT FOR EXPRESSING FUNCTIONAL RYANODINE RECEPTORS IN HEK293-6E SUSPENSION CELLS. Michael Wold, Robyn T. Rebeck, Elisa Bovo, Aleksey V. Zima, David D. Thomas, Razvan L. Cornea

2774-Pos Board B320
LUMINAL CALCIUM CONTROL OF TYPE-1 INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR. Allison M. Tambeaux, LUMINAL CALCIUM CONTROL OF TYPE-1 INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR. Allison M. Tambeaux, Robyn T. Rebeck, Elisa Bovo, Aleksey V. Zima, Michael Wold, Robyn T. Rebeck, Elisa Bovo, Aleksey V. Zima

2775-Pos Board B321
CORRELATING CALCIUM SPARKS AND RYANODINE RECEPTOR LOCALIZATION IN LIVE CARDIOMYOCYTES. Yufeng Hou, Martin Laasmaa, Jia Li, Ornellia Manfra, Xin Shen, Peter P. Jones, Christian Soeller, William E. Louch

2776-Pos Board B322
REGULATION OF HUMAN RYR2 BY CALMODULIN. Roman Nikolaenko, Elisa Bovo, Christopher Hoover, Robyn Rebeck, David D. Thomas, Razvan L. Cornea, Aleksey V. Zima

Biophysical Society
64th Annual Meeting of the Biophysical Society
February 15–19, 2020 • San Diego, California
J. Gavaghan, Johannes Stiehler, Liudmila Polonchuk, Ken Wang, Gary R. CAPTURE HERG KINETICS AND TEMPERATURE DEPENDENCE USING AUTOMATED HIGH-THROUGHPUT PATCH CLAMP AND MODELLING TO 2788-

Nuñez, Ariel L. Escobar, Emiliano Medei THE ROLE OF IL-1Β ON ATRIAL FIBRILLATION PHYSIOPATHOLOGY . 2787-

SIONAL “SPARK-CELL” SPHEROIDS AND HUMAN CARDIAC TISSUE. CRISPRI ION CHANNEL GENE MODULATION IN HUMAN IPSC-CARDIOMYOCYTES. 2785-

ALTERNANS IN CARDIAC MYOCYTES. MECHANISMS OF SUBCELLULAR SPATIALLY DISCORDANT CALCIUM ALTERNANS IN CARDIAC MYOCYTES. 2783-

THE MOLECULAR BASIS FOR SOCE REGULATION BY SARAF. THE MOLECULAR BASIS FOR SOCE REGULATION BY SARAF. 2781-

Pos	BOARD B327
Cardiac, Smooth, and Skeletal Muscle Electrophysiology II (Boards B331 - B345)

Board B331

Crispr ION Channel Gene Modulation In Human IPSc-Cardiomyocytes. Julie L. Han, Emilia Entcheva

Board B332

Probing the Timeline of Integration Between Three-Dimensional “Spark-Cell” Spheroids and Human Cardiac Tissue. Christianne Chua, Weizhen Li, Julie Han, Emilia Entcheva

Board B333

The Role of Il-1B on Atrial Fibrillation Physiopathology. Oscar Moreno-Loaiza, Ainhoa Rodriguez de Yurre Guirao, Narender Vera-Nuñez, Arial L. Escobar, Emiliano Medei

Board B334

Automated High-Throughput Patch Clamp and Modelling to Capture Herg Kinetics and Temperature Dependence Using Optimised Voltage Protocols. Chon Lok Lei, Michael Clerx, David J. Gavaghan, Johannes Stiehler, Liudmila Polonchuk, Ken Wang, Gary R. Mirams

Board B335

Upregulation of the Maguk Sap97 Enhances Protein Expression in Stem Cell Derived Myocytes. Tamirat Ali, Jeffery Creech, Andre Monteiro Da Rocha, Todd J. Herron, Justus M. Anumonwo

Board B336

Unidirectional Block Demonstrated on Ventricular Monolayers Expressing Channelrhodopsin-2 Using Optogenetics. José Miguel Romero Sepúlveda, Alvin Shrier, Gil Bub

Board B337

Combining Physiological Relevance and Throughput for In Vitro Cardiac Contractility Measurement. Ronald Knox, Andrea Bruggemann, Matthias Gossman, Ulrich Thomas, András Horváth, Elena Dragicevic, Sonja Stoezlle-Feix, Niels Fertig, Alexander Jung, Alexander H. Raman, Manfred Staat, Peter Linder

Board B338

Automated Patch Clamp System Introducing Simulated Ik1 Into Stem Cell-Derived Cardiomyocytes Using Dynamic Clamp. George O. Okeyo, Andrárs Horváth, Nadine Becker, Alan Fabbri, Christian Grad, George George, Teun P. de Boer, Glenna Bett

Board B339

The Bistable Resting Potential of Skeletal Muscle in Hypokalemic Periodic Paralysis. Marino G. Di Franco, Steve C. Cannon

Board B340

Low-Noise Fluorescent Infrared Detection of Single-Cell Cardiac Action Potentials. Anthony Costantino, Brian K. Panama, Mark W. Nowak, Randall L. Rasmusson, Glenna Bett

Board B341

Natriuretic Peptide Receptor-C Mitigates Angiotensin II Induced Fibrosis in the Atria and Sinoatrial Node. Martin Mackasey, Hailey J. Jansen, Motahareh Moghtadei, Robert A. Rose

Board B342

Chronic Hemodynamic Overload of the Atria is an Important Factor for Shear Signaling Remodeling in Rat Hearts. Qui A. Le, Joon-Chul Kim, Berihun D. Mihiretu, Sun-Hee Woo

Board B343

Post-Prandial Inotropic Response in Python Cardiomyocytes is Supported by Distinct Metabolic Adaptation. Claudia Crocini, Kathleen C. Woulfe, Leslie A. Leinwand

Board B344

Cardioprotective Effects of Rotigaptide are Dependent on Per fusate Ionic Composition During Ischemia/Reperfusion. Gregory S. Hoeker, Steven Poelzing

Board B345

Quantifying Hypoxia in Human Ips-Cardiomyocytes Under Optogenetic Pacing. Wei Liu, Weizhen Li, Julie Han, Emilia Entcheva

Intracellular Transport (Boards B346 - B353)

Board B346

Board B347

Organelle Structural Features Can Accelerate Diffusive Transport and Reaction Rates. Aidan I. Brown, Elena F. Koslover
Angsutarux GROWTH FACTOR HOMOLOGOUS FACTOR (FHF).

2811-P

THE MECHANISM OF ION CONDUCTION AND SELECTIVITY IN THE EUKARYOTIC NA\(_1\) P Channel. Juan Nogueira, Ben Corry

2812-P

RELATIVE VOLTAGE SENSOR ACTIVATION KINETICS DETERMINES THE EFFECTS OF SENSOR NEUTRALIZATION IN VOLTAGE-GATED SODIUM CHANNELS. Niklas Brake, Adamo Mancino, Yuhao Yan, Takushi Shimomura, Yoshihiro Kubo, Derek Bowie, Anmar Khadra

2813-P

REVISITING NA\(_1\)_CHANNEL INACTIVATION: THE ROLE OF FIBROBLAST GROWTH FACTOR HOMOLOGOUS FACTOR (FHF). Paweorn Angsutarux, Taylor L. Voelker, Catherine Malcolm, Wandu Zhu, Jonathan R. Silva

2814-P

MYOTONIC MUTATIONS OF NAV1.4 LOCATED AT EF HAND-LIKE MOTIF IN C-TERMINUS IMPAIR FAST INACTIVATION. Riho Horie, Tomoya Kubota, Jinsoo Koh, Rieko Tanaka, Yuichiro Nakamura, Sasaki Ryogen, Hidefumi Ito, Masanori P. Takahashi

2815-P

CRYSTAL STRUCTURES OF CALCIUM-LOADED CALMODULIN IN COMPLEX WITH C-TERMINAL DOMAINS OF VOLTAGE-GATED SODIUM CHANNELS. Filip Van Petegem, Ching-Chieh Tung, Bernd Gardill, Ricardo E. Rivera-Acevedo

2816-P

A CALMODULIN MUTATION THAT DYSREGULATES NA\(_1\) P. Yusuf Olgar, Sandor Gyorke, Rengasayee Veeraraghavan, Jonathan P. Davis, Przemyslaw Radwanski

2817-P

RILUZOLE AS A PROTOTYPE OF A NEW CLASS OF SODIUM CHANNEL INHIBITORS. Mátyás Csaba Földi, Péter Lukács, Krisztina Pestl, András Malnasi-Csizmadia, Arpad Mike

2818-P

HOW FAST IS RILUZOLE. Krisztina Pestl, Péter Lukács, Arpad Mike

2819-P

WHAT MAKES A COMPOUND A SODIUM CHANNEL INHIBITOR. Adam Toth, Peter Lukacs, Arpad Mike

2820-P

ABERRANT CALMODULIN REGULATION OF NAV1.5 CHANNELS LINKED TO INHERITED CARDIAC ARRHYTHMIA. Nourdine Chakouri, Po wei Kang, Johanna Diaz, Gordon F. Tomaselli, Manu B. Johny

2821-P

IDENTIFICATION OF A NEW GAIN-OF-FUNCTION MUTATION OF NAV1.5 ASSOCIATED WITH ATRIAL FIBRILLATION IN AN AFRICAN-AMERICAN FAMILY. Liang Hong, Faisal A. Darbar, Meihong Zhang, Dawood Darbar

2822-P

REDUCED SODIUM CURRENTS AND INCREASED SENSITIVITY TO FLECAINIDE IN ATRIAL CARDIOMYOCYTES, COMPARED TO VENTRICULAR. Sian-Marie O'Brien, Andrew P Holmes, Daniel M. Johnson, Madalena Tessari, Giuseppe Faggian, Larissa Fabritz, Paulus Kirchhof, Elena F. Koslover, Andreas Schmidt, Péter Lukács, Krisztina Pestl, Adamo Mancino, Yuhao Yan, Takushi Shimomura, Mohammad-Reza Ghovanloo, Anh Tuan Ton, Andrea Ghetti, Guy Page, Paul E. Miller, Naja Abi Gerges

2823-P

AN SCN5A SPlice VARIANT ASSOCIATED WITH HEART FAILURE LEADS TO A REDUCTION IN SODIUM CURRENT THROUGH COUPLED GATING WITH THE WT CHANNEL. Yang Zheng, Haiyan Liu, Xiaoping Wan, Isabelle Deschenes

2824-P

LATE SUSTAINED SODIUM CURRENT (INA,L) IN ADULT HUMAN PRIMARY CARDIOMYOCYTES. Anh Tuan Ton, Andrea Ghetti, Guy Page, Paul E. Miller, Najah Abi Gerges

2825-P

PROTECTIVE EFFECT OF CANNABIDIOL AGAINST OXIDATIVE STRESS AND CYTOTOXICITY EVOKED BY HIGH GLUCOSE IN CARDIAC VOLTAGE-GATED SODIUM CHANNELS. Mohamed A. Fouda, Mohammad-Reza Ghovanloo, Peter C. Ruben

2826-P

ALTERED AXONAL TRAFFICKING OF NAV1.7 IN CULTURED PERIPHERAL NEURONS IN RESPONSE TO INFLAMMATORY MEDIATORS AND PACLITAXEL. Elizabeth J. Akin, Grant P. Higerd, Shujun Liu, Fadia B. Dib-Hajj, Stephen G. Waxman, Sulayman D. Dib-Hajj

2827-P

THE SUBCELLULAR LOCALIZATION OF SODIUM CHANNELS & POTASSIUM CHANNELS IN THE NODES OF RANVIER. Jiemin Lou
2828-Pos BOARD B374
IDENTIFICATION OF A NOVEL GAIN-OF-FUNCTION SODIUM CHANNEL B2 SUBUNIT MUTATION IN SMALL FIBER NEUROPATHY. Matthew Alsaloum, Peng Zhao, Monique M. Gerrits, Rowida Almomani, Jannieke Hoeijmakers, Maurice Sopacua, Giuseppe Lauria, Catharina G. Faber, Sulaayman Dib-Hajj, Stephen G. Waxman

2829-Pos BOARD B375
FUNCTIONAL UNCOUPLING OF PAIN-LINKED NAV1.7/A1632E DIMERS PARTLY RESCUES ITS PAIN-CAUSING PHENOTYPE. Annika Ruehlmann, Jannis Körner, Nikolay Bebrivenski, Silvia Detro-Dassen, Petra Hautvast, Carène Benasolo, Jannis Meents, Jan-Philipp Machtens, Günther Schmalzing, Angelika Lampert

2830-Pos BOARD B376
EFFICIENT AND HIGHLY SCALABLE MECHANISTIC CHARACTERIZATION OF ION CHANNEL FUNCTION IN DRUG DISCOVERY. Tianbo Li, Martin Ginkel, Ada Yee, Leigh Foster, Renee Emkey, Jun Chen, Stephan Heyse, Stephan Steigle

2831-Pos BOARD B377
PROBING ALTERED CALMODULIN INTERACTIONS IN SODIUM CHANNELOPATHIES USING FLOW-CYTOMETRIC FRET. Johanna Diaz, Khadija Hanif, Viviana Laines, Nourdine Chakouri, Manu B. Johny

Ligand-gated Channels (Boards B379 - B413)

2832-Pos BOARD B378
RAPIDLY ASSAYING VOLTAGE-GATED SODIUM CHANNELS USING LIGHT-INDUCED ACTION POTENTIALS AND FLUORESCENT RECORDINGS OF THE MEMBRANE POTENTIAL IN AN INSTRUMENT WITH A NOVEL DETECTOR ARRAY. Joerg Oestreich, Stephen S. Smith, Jay Trautman, Andrew L. Blatz

2833-Pos BOARD B379
TRANSITION PATHWAY FOR ACTIVATION OF LIGAND-GATED ION CHANNELS AND THE ROLE OF CHOLESTEROL. Sunny Hwang, Christophe J. Chipot, Emad Tajkhorshid

2834-Pos BOARD B380
POLYUNSATURATED FATTY ACID REGULATION OF THE ACID-SENSING ION CHANNELS. Robert C. Klipp, John R. Bankston

2835-Pos BOARD B381
THE BINDING SITE OF TETS IN THE PORE OF THE A2B3’2L GABA-A RECEPTOR. Brandon Pressly, Heike Wulff, Ruth Lee

2836-Pos BOARD B382
SCREENING OF EPILEPSY-LINKED GABAA RECEPTOR MUTANTS FOR ASSEMBLY DEFECTS. Sarah Ziemons, Günther Schmalzing

2837-Pos BOARD B383
A RE-EVALUATION OF GAIN-OF-FUNCTION DISEASE-ASSOCIATED MUTATIONS IN NMDA RECEPTORS. Gary J. Iacobucci

2838-Pos BOARD B384
DYNAMICAL MECHANISMS OF GLUTAMATE RECEPTOR GATING AND SUB-CONDUCTANCE. Maria G. Kurnikova, Serzhan Sakipov, Christopher Kotte, Chamali Narangoda, Jessica Scaranto

2839-Pos BOARD B385
MOLECULAR MECHANISM OF PH REGULATION ON TMEM16F LIPID SCRAMBLASE AND ION CHANNEL. Pengfei Liang, Trieu P. Le, Son C. Le, Huanghe Yang

2840-Pos BOARD B386
LIFE IN THE FAST LANE: BINDING TO GLUTAMATE RECEPTORS. Remy Yovanno, Tyler J. Wied, Alvin Yu, Hector P. Salazar, Andrew J. Plessted, Albert Y. Lau

2841-Pos BOARD B387
USING A NETWORK OF SINGLE SITE SPECIFIC MUTATIONS AND CROSS-LINKING MASS SPECTROMETRY (CXMS) TO REFINING THE STRUCTURE AND DYNAMICS OF THE HUMAN ALPHA 1 GLYCINE RECEPTOR (GLYR). Kayce A. Tomcho, Hannah E. Gering, Amanda Pellegrino, David J. Lapinsky, Michael Cascio

2842-Pos BOARD B388
CRYO-EM STRUCTURE DETERMINATION AND MODEL FITTING OF THE PROTON-GATED LIGAND-GATED ION CHANNEL GLIC AT MULTIPLE PH STATES. Urska Rovsnik, Victoria Lim, Christian Blau, Rebecca J. Howard, Erik Lindahl

2843-Pos BOARD B389
FUNCTIONAL RECONSTITUTION OF THE 5-HT, RECEPTOR. Uriel López Sánchez, Eleftherios Zarkadas, Guy Schoehn, Hugues Nury

2844-Pos BOARD B390

2845-Pos BOARD B391

2846-Pos BOARD B392
POINT MUTATIONS OF P2X7 RECEPTORS. Hannah Dentler, Manuela Klapperstür, Günther Schmalzing, Fritz Markwardt

2847-Pos BOARD B393

2848-Pos BOARD B394
MECHANISM OF CALCIUM GATING AND INACTIVATION IN A POTASSIUM CHANNEL. Chen Fan, Nattakan Sukomon, Jan Rheinberger, Crina M. Nimigean

2849-Pos BOARD B395

2850-Pos BOARD B396
TRAVEL Awardee
STOICHIOMETRY OF ACID-SENSING ION CHANNEL (ASIC) PHARMACOLOGY. Matthew L. Rook, David M. MacLean

2851-Pos BOARD B397

2852-Pos BOARD B398
MOLECULAR DYNAMICS SIMULATION OF LIGAND BINDING AND ION PERMEATION IN A GANGLIONIC NICOTINIC RECEPTOR. Yuxuan Zhuang, Anant Gharpure, Ryan E. Hibbs, Rebecca J. Howard, Erik R. Lindahl

2853-Pos BOARD B399
PROBABILITY OF OPENING DURING RECOVERY FROM ACHR DESENSITIZATION. Radhakrishnan Gnanasambandam, Anthony Auerbach
2854-Pos BCEP Board B400
PROTEIN-PROTEIN INTERACTIONS OF HUMAN P2X7 IN MICROGLIA AND HUMAN ASCIA IN KIDNEY CELLS. Mette H. Poulsen, Svetlana R. Maurya, Johann Sigurdsson, Alicja Lundyby, Stephan A. Pless

2855-Pos BCEP Board B401
DICATONIC, TRICATONIC AND TETRACATONIC SURFACTANTS AS TRANSGENE CARRIERS - COMPARISON OF THEIR ABILITY TO SRNA BINDING. Weronika J. Andrzejewska, Michalina M. Wilkowska, Andrzej Skrzypczak, Anna Woźniak, Barbara Peplińska, Maciej Kozak

2856-Pos BCEP Board B402
ALLOSTERIC GATING DETERMINANTS IN THE TRANSMEMBRANE DOMAIN OF PENTAMERIC LIGAND-GATED ION CHANNELS. Rebecca J. Howard, Yuxuan Zhuang, Stephanie A. Heusser, Cathrine C. Bergh, Urska Rosvnik, Laura Orellana, Erik Lindahl

2857-Pos BCEP Board B403
UNDERSTANDING THE MECHANISM OF AGONIST EFFICACY IN A FULL-LENGTH GLUK2/K5 USING SINGLE MOLECULE FRET. Nabina Paudyal, Douglas B. Litwin, Vladimir Berka, Elisa Carrillo, Vasanthi Jayaraman

2858-Pos BCEP Board B404
MOLECULAR RECOGNITION OF NEONICOTINOID INSECTICIDES BY HONEYBEE NICOTINIC RECEPTORS AND ACHBOM HOMOLOGUES. Chris Ulens, Quinty Bisseling, Marijke Brams, Aujan Mehregan, Genevieve L. Evans, Diletta Pasini, Hester Beard, Steven Verhelst, Alexander Fish, Sofie van Dorst, Kumiko Kamba, Daniel Bertrand

2859-Pos BCEP Board B405
LOWERING EXCITOTOXICITY AND STABILIZING SERIAL ACTIVATION OF NMDA RECEPTORS IN AUTOMATED PATCH CLAMP ASSAYS. Ali Yehia, Alexandra Stevens

2860-Pos BCEP Board B406
A MATHEMATICAL MODEL FOR LIGAND POTENCY IN THE HCN2 CHANNEL. Leo Ng, Meiyong Zhuang, Filip Van Petegem, Yue-Xian Li, Eric Accili

2861-Pos BCEP Board B407
IDENTIFICATION OF THE BINDING SITE OF BUPROPION ON SEROTONIN TYPE 3A RECEPTORS. Jessica Shepherd, Dubem Onyejegbu, Antonia Stuebler, Zackary Gallardo, Chris Hornback, Michaela Jansen

2862-Pos BCEP Board B408
HEARING LOSS MUTATIONS ALTER THE FUNCTIONAL PROPERTIES OF HUMAN P2X2 RECEPTOR CHANNELS THROUGH DISTINCT MECHANISMS. Benjamin I. George, Kenton Swartz, Mufeng Li

2863-Pos BCEP Board B409
FUNCTIONAL CHARACTERIZATION OF ION CHANNELS EXPRESSED IN EUKARYOTIC CELL-FREE SYSTEMS USING LIPID BILAYER ARRAYS. Ekaterina Zaitseva, Srujan Dondapati, Jeffrey SchloRhauer, Anne Zemmela, Priyavathi Dhandapani, Stefan Kubick, Gerhard Baaken

2864-Pos BCEP Board B410

2865-Pos BCEP Board B411
ROLE OF CONFORMATIONAL DYNAMICS IN NMDA RECEPTOR NEGATIVE COOPERATIVITY. Ryan J. Durham, Nabina Paudyal, Elisa Carrillo, David M. MacLean, Vladimir Berka, Drew M. Dolino, Nidhi Kaur Bhatia, Alemanyehu A. Gorfe, Vasanthi Jayaraman

2866-Pos BCEP Board B412
MOLECULAR EVOLUTION OF PLANT GLUTAMATE RECEPTORS. Alex A. Simon, Juan Barbosa-Caro, Jose Feijo, Erwan Michaël

2867-Pos BCEP Board B413
MEASURING INTERACTIONS BETWEEN THE INTRACELLULAR DOMAINS OF THE ACID-SENSING ION CHANNEL. Megan M. Cullinan, John R. Bankston

Ion Channels, Pharmacology, and Disease II (Boards B414 - B436)

2868-Pos BCEP Board B414
ION SELECTIVE PENTAMERIC PORE FORMATION BY EBOLA VIRUS DELTA PEPTIDE. Rudramani Pokhrel, Elumalai Pavadai, Bernard Gerstman, Prem P. Chapagain

2869-Pos BCEP Board B415
INTRACELLULAR RECORDING USING TRANSMEMBRANE CONDUCTIVE NANOPARTICLES. Mitsuyoshi L. Saito

2870-Pos BCEP Board B416
STRUCTURAL MODELING OF ION CHANNEL - SMALL MOLECULE INTERACTIONS USING ROSETTA’S GALIGANDDOCK. Brandon J. Harris, Phuong T. Nguyen, Vladimir Yarov-Yarovoy

2871-Pos BCEP Board B417
BINDING WITHOUT BLOCK. AN ANALYSIS OF AMANTADINE AND RIMANTADINE BLOCK OF THE INFLUENZA M2 531N CHANNEL. Kelly L. McGuire, David D. Busath

2872-Pos BCEP Board B418
SELECTIVE INHIBITION OF DIFFERENT ISOFORMS OF CONNEXIN HEMI-CHANNELS BY NEW AMINOGLYCOSIDES. Abbey Kjellgren, Marianna C. Fiori, Madher N. Alfindee, Yagya P. Subedi, Srinivasan Krishnan, Cheng-Wei T. Chang, Guillermo A. Altenberg

2873-Pos BCEP Board B419
TRAVEL AWARD: CYSL1 RECEPTOR ANTAGONISTS PRUNLAKUST AND ZAFIRLAKUST INHIBIT LRC8-MEDIATED VOLUME REGULATED ANION CHANNELS INDEPENDENTLY OF THE RECEPTOR. Eric E. Figueroa, Jerod S. Denton

2874-Pos BCEP Board B420
ALTERATION OF MEMBRANE CHOLESTEROL CONTENT PLAYS A KEY ROLE IN REGULATION OF CFTR CHANNEL ACTIVITY. Guiling Cui, Kirsten A. Cottrill, Kerry M. Strickland, Barry R. Imhoff, Nael A. McCarty

2875-Pos BCEP Board B421
CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR GENE VARIATIONS IN CODING AND NONCODING REGIONS IN CONGENITAL BILATERAL ABSENCE OF THE VAS DEFERENS DEPENDENT INFERTILITY. Semire Uzun Göçmen, Klaus Wagner, Sina Gökçe

2876-Pos BCEP Board B422
ANTIEPILEPTIC DRUG ETHOSUXIMIDE MAY REGULATE ABSENCE SEIZURES THROUGH DIFFERENT ION CHANNELS. Boris Shalomov, Shoham Dabbah, Nathan Dascal

2877-Pos BCEP Board B423
PHARMACOLOGICAL SENSITIVITY OF KCNQ & GIRK K+ CHANNELS AND CA2+, CA3+ CHANNELS TO COMMONLY-USED DRUGS. Victor de la Rosa, Mark S. Shapiro

2878-Pos BCEP Board B424
POTASSIUM CHANNEL ACTIVITY UNVEILS CANCER VULNERABILITY: FROM SIGNALING CONTROLLING TUMOR GROWTH AND METASTASIS TO PRECISION MEDICINE. Saverio Gentile

2879-Pos BCEP Board B425
KV11.1 CHANNEL ACTIVITY CONTROL REACTIVE OXYGEN SPECIES (ROS) HOMEOSTASIS IN BREAST CANCER CELLS. Vitaly Senyuk, Alexandra Hegel, Saverio Gentile
Cardiac Muscle Regulation
(Boards B437 - B458)

2891-Pos BOARD B437 TRAVEL Awardee
SELECTIVE PHOSPHORYLATION OF CMYBP-C INCREASES CROSS-BRIDGE CYCLING RATES IN PERMEABILIZED CARDIOMYOCYTES FROM SPY-C MICE. Nathaniel C. Napierksi, Kevin Granger, Samantha P. Harris

2892-Pos BOARD B438 A TROPOMYOSIN CABLE MODEL ON THIN-FILAMENTS DEDUCED BY PROTEIN-PROTEIN DOCKING. Elumalai Pavadai, Michael J. Rynkiewicz, William Lehman

2894-Pos BOARD B440 THE C-TERMINAL END PEPTIDE OF TROPONIN I AS A MYOFILAMENT CA2+-DESENSITIZER. Sienna Wong, Han-Zhong Feng, J.p. Jin

2895-Pos BOARD B441 AN INDEPENDENT POOL OF GSK-3B MODULATES CALCIUM SENSITIVITY AT THE CARDIAC MYOFILAMENT. Marisa J. Stachowski, Andrei Zlobin, Maria Papadaki, Edith Perez, Jody L. Martin, Nitha Aima Muntu, Christine S. Moravec, Jonathan A. Kirk

2897-Pos BOARD B443 BIOPHYSICS OF THE SERCA2A/DWORF COMPLEX, IMPLICATIONS FOR TREATMENT OF HEART FAILURE. Ang Li, Daniel Stroik, Torny Schaaf, Samantha Yuen, Evan Kleinboehl, Razvan L. Cornea, David D. Thomas

2898-Pos BOARD B444 DEAMIDATION OF ASPARAGINE14 PREVENTS SERINE15 PHOSPHORYLATION OF HUMAN CARDIAC MLC2V. Paul Goldspink, Jody L. Martin, Chad M. Warren, Walter Thompson, Elena Levi-D’Ancona, Pieter P. de Tombe

2899-Pos BOARD B445 MODULATION OF INOTROPIC INTERVENTIONS OF THE REGULATORY STATE OF THE CARDIAC THICK FILAMENT IN DIASTOLE. Marco Faremani, Serena Governani, Massimo Reconditi, Francesca Pinzauti, Theyencheri Narayanan, Ger J. Stienen, Marco Linari, Vincenzo Lombardi, Gabriella Piazzesi

2900-Pos BOARD B446 ACTIN-BINDING COMPOUNDS, DISCOVERED FROM FRET-BASED HIGH-THROUGHPUT SCREENING, DIFFERENTIALLY AFFECT SKELETAL AND CARDIAC MUSCLE. Piyali Guhathakurta, Lien Phung, Sarah Lichtenberger, Ewa Prochniewicz, David D. Thomas

2901-Pos BOARD B447 MAVACAMTEN DECREASES MAXIMAL FORCE AND CA2+-SENSITIVITY OF CONTRACTION IN MYOCARDIAL STRIPS FROM A MOUSE MODEL FOR HYPERTROPIC CARDIOMYOPATHY. Peter O. Awinda, Marissa Watanabe, Yemeserach Bishaw, Katarzyna Kazmierczak, Danuta Szczesna-Cordary, Bertrand C. Tanner

2902-Pos BOARD B448 IN SILICO ENGINEERING OF CALMODULIN TO BIND THE CARDIAC RY-ANODINE RECEPTOR WITH HIGH AFFINITY. Vladimir Bogdanov, Svetlana Tikunova, Yongjun Kou, Nick Fadell, Julia Evans, Anthony Tirone, Garrett Hauck, Christopher Johnson, Steffen Lindert, Sandor Gyorke, Jonathan P. Davis

2903-Pos BOARD B449 TWO MYOFILAMENT-BASED APPROACHES TO PREVENT GENETIC DILATATED CARDIOMYOPATHY. Claire E. Branley, Farid Moussavi-Harami, Kristina B. Kooiker, Michael Regnier, Jill C. Tardiff, Joelle Tudor, Jeremy Freeman
SEX DIFFERENCES IN REGULATING THE CARDIAC TRANSCRIPTOME WITHIN A MURINE MODEL FOR HYPERTROPHIC CARDIOMYOPATHY.
Karissa M. Dieseldorff Jones, Cynthia Vied, Isela C. Valera, Prescott B. Chase, Michelle S. Parvatiyar, J. Renato Pinto

A HIGH ALA MUTANT OF THE C-TERMINAL REGION OF HUMAN CARDIAC TNT HAS A LARGE IMPACT ON REGULATION. Dylan Johnson, Li Zhu, Maicon Landim Vieira, J. Renato D. Pinto, Joseph M. Chalovich

CONNECTING CARDIAC SARCOLEMMA PROTEIN CONTENT WITH SARCOMERIC FUNCTION. Isabella Leite Coscarella, Maicon Landim Vieira, Isela C. Valera, Amanda L. Wacker, Prescott B. Chase, J. Renato Pinto, Michelle S. Parvatiyar

THE ROLE OF CMVBP-C IN REGULATING THE FRANK-STARLING RELATIONSHIP. Laurin M. Hanft, Daniel P. Fitzsimons, Timothy A. Hacker, Richard L. Moss, Kerry S. McDonald

PHOSPHODIESTERASE 2 AND 3 REGULATE COMPARTMENTALIZED BETA2-ARADENERGIC RECEPTOR CAMP SIGNALING. Michael W. Rudokas, John P. Post, Chase M. Fiore, Shailesh R. Agarwal, Robert D. Harvey

OBSERVING THE MYOSIN SUPER-RELAXED STATE (SRX) IN CARDIAC THICK FILAMENTS. Sami Chu, Sriya Byrapuneni, David D. Thomas, Joseph M. Muretta

DESIGN OF AN OPTICAL TWEEZERS SYSTEM WITH FAST DIGITAL FEEDBACK FOR STUDYING THE MECHANOCHEMISTRY OF CARDIAC MYOSIN. William Stump, Thomas Blackwell, Sarah R. Clippinger, Michael J. Greenberg

TUBULIN TAILS AND THEIR MODIFICATIONS REGULATE PROTEIN DIFFUSION ON MICROTUBULES. Koby Levy

GMPCPP-TUBULIN ISLANDS REGULATE THE MECHANISM AND KINETICS OF MICROTUBULE DEPOLYMERIZATION. George D. Bachand, Jonathan A. Bollinger, Zachary Imam, Mark J. Stevens

STUDY OF TAU N-TERMINAL MUTATION, R5L, ON TAU INTERACTION WITH THE MICROTUBULE LATTICE. Alisa Cario, Morgan Dexter, Christopher L. Berger

WITH THE MICROTUBULE LATTICE.
STUDY OF TAU N-TERMINAL MUTATION, R5L, ON TAU INTERACTION
A. Bollinger, Zachary Imam, Mark J. Stevens

GMPCPP-TUBULIN ISLANDS REGULATE THE MECHANISM AND KINETICS OF MICROTUBULE DEPOLYMERIZATION. George D. Bachand, Jonathan A. Bollinger, Zachary Imam, Mark J. Stevens

MICROTUBULE POLARITY IN AXONS IS SORTED BY A MOLECULAR GRADIENT OF DYNACTIN. Maximilian A. Jakobs, Kristian Franze

ULTRAFAST FORCE-CLAMP STUDIES OF THE DIFFUSING MICROTUBULE-BINDING PROTEINS. Ekaterina L. Grishchuk, Vladimir Demidov, Shaowen Wu, Ivan V. Gonchar, Fazly I. Ataullakhanov

COMPUTATIONAL ANALYSIS OF NUCLEOTIDE-DEPENDENT MECHANICAL PROPERTIES OF MICROTUBULE PROTOFILAMENTS. James E. Gonzales, Wonmuk Hwang

A REAL-SPACE METHOD TO MEASURE THE PERSISTENCE LENGTH OF DYNAMIC MICROTUBULES. Jeffrey Specter, Gilman E.S. Toombes, Kenton Swartz, Antonina Roll-Mecak

MICROTUBULE IN VITRO BUNDLE STRUCTURES DEPENDS ON TAU PROJECTION DOMAIN AND IONIC STRENGTH. Hasaeam Cho, Hanjoon Nho, Juncheol Lee, Sang Yeop Lee, Kyeong Sik Jin, Herbert P. Miller, Leslie Wilson, Stuart C. Feinstein, Cyrus R. Safinya, Myung Chul Choi

CAN THRESHOLD CHOICES INFLUENCE OBSERVED MICROTUBULE AGING? Kristopher S. Murray, Ava J. Mauro, Holly V. Goodson

MATHEMATICAL MODELING AND SIMULATIONS OF CENTRIOLE POSITIONING DURING MITOSIS OF CELLS IN CONFINED ENVIRONMENTS. Nadia C. Beydoun, Parag Katira, Christian Mercado, Brianna Roseberry

BRAIN MICROTUBULE STRUCTURES BEHAVE AS MEMRISTIVE DEVICES. Maria del Rocío Cantero, Paula L. Perez, Noelia Scarinci, Brenda C. Gutierrez, Horacio F. Cantillo

THE DEPENDENCE OF TAU-MEDIATED MICROTUBULE ASSEMBLY AND BUNDLE FORMATION ON GTP AND MG2+. Breton Fletcher, Chaeyeon Song, Phillip A. Kohl, Herbert P. Miller, Youli Li, Myung Chul Choi, Leslie Wilson, Stuart C. Feinstein, Cyrus R. Safinya

STRUCTURAL EVOLUTION OF ENERGY-CONSUMING TAU MEDIATED MICROTUBULE BUNDLES. Phillip A. Kohl, Breton Fletcher, Chaeyeon Song, Peter J. Chung, Herbert P. Miller, Leslie Wilson, Stuart C. Feinstein, Cyrus R. Safinya

MICROTUBULE MECHANICAL PROPERTIES. Kathryn P. Wall, Harold Hart, Thomas Lee, Cynthia Page, Taviare L. Hawkins, Loren E. Hough

ALL TUBULINS ARE NOT ALIKE: HETERODIMER DISSOCIATION DIFFERS AMONG DIFFERENT BIOLOGICAL SOURCES: COMPARISON WITH DIMER ASSOCIATION. Felipe A. Montecinos-Franjola, Sumit K. Chaturvedi, Peter Schuck, Dan L. Sackett

SUBNANOMETER MECHANICS OF MICROTUBULE SELF-(DIS)ASSEMBLY. Maxim Igaev, Helmut Grubmueller

EFFECTS OF SEVERING ENZYMES ON THE LENGTH DISTRIBUTION AND TOTAL MASS OF MICROTUBULES. Yin-wei Kuo, Olivier Trottier, Mohammed Mahamdeh, Jonathan Howard

PHOSPHODIESTERASE 2 AND 3 REGULATE COMPARTMENTALIZED BETA2-ARADENERGIC RECEPTOR CAMP SIGNALING. Michael W. Rudokas, John P. Post, Chase M. Fiore, Shailesh R. Agarwal, Robert D. Harvey

A REAL-SPACE METHOD TO MEASURE THE PERSISTENCE LENGTH OF DYNAMIC MICROTUBULES. Jeffrey Specter, Gilman E.S. Toombes, Kenton Swartz, Antonina Roll-Mecak

MICROTUBULE POLARITY IN AXONS IS SORTED BY A MOLECULAR GRADIENT OF DYNACTIN. Maximilian A. Jakobs, Kristian Franze

MULTIMODALITY OF MICROTUBULAR BUNDLES. Maxim Igaev, Helmut Grubmueller

A REAL-SPACE METHOD TO MEASURE THE PERSISTENCE LENGTH OF DYNAMIC MICROTUBULES. Jeffrey Specter, Gilman E.S. Toombes, Kenton Swartz, Antonina Roll-Mecak

MATHEMATICAL MODELING AND SIMULATIONS OF CENTRIOLE POSITIONING DURING MITOSIS OF CELLS IN CONFINED ENVIRONMENTS. Nadia C. Beydoun, Parag Katira, Christian Mercado, Brianna Roseberry

BRAIN MICROTUBULE STRUCTURES BEHAVE AS MEMRISTIVE DEVICES. Maria del Rocío Cantero, Paula L. Perez, Noelia Scarinci, Brenda C. Gutierrez, Horacio F. Cantillo

THE DEPENDENCE OF TAU-MEDIATED MICROTUBULE ASSEMBLY AND BUNDLE FORMATION ON GTP AND MG2+. Breton Fletcher, Chaeyeon Song, Phillip A. Kohl, Herbert P. Miller, Youli Li, Myung Chul Choi, Leslie Wilson, Stuart C. Feinstein, Cyrus R. Safinya

STRUCTURAL EVOLUTION OF ENERGY-CONSUMING TAU MEDIATED MICROTUBULE BUNDLES. Phillip A. Kohl, Breton Fletcher, Chaeyeon Song, Peter J. Chung, Herbert P. Miller, Leslie Wilson, Stuart C. Feinstein, Cyrus R. Safinya

64th Annual Meeting of the Biophysical Society
February 15–19, 2020 • San Diego, California
Cell Mechanics, Mechanosensing, and Motility II (Boards B476 - B509)

2930-Pos BOARD B476
DYNAMICAL INITIATION OF THE SYNERGETIC MIGRATION IN EPITHELIAL WOUND. Hyuntae Jeong, Yeojin Wook, Seunghwa Ryu, Jennifer H. Shin

2931-Pos BOARD B477
MESENCHYMAL-LIKE MIGRATION STRATEGIES OF IMMUNE CELLS IN A 3D ENVIRONMENT. Tina Czerwinski, Christoph Mark, Susanne Rossner, Caroline Bosch-Voskens, Tapomoy Bhattacharjee, Thomas E. Angelini, Ben Fabry

2932-Pos BOARD B478
INFLUENCE OF CELL CONFLUENCY ON MECHANICAL PROPERTIES OF BREAST CELLS. Hyunsu Lee, Keith Bonin, Martin Guthold

2933-Pos BOARD B479
AGILITY IN MECHANOCHEMICAL CELLULAR RESPONSES: SPATIALLY-LOCALIZED COUPLING OF CELLULAR CONTROL MODULATES TRACTION STRESSES AND RETROGRADE FLOW WITHIN CELLS. Magdalena Stolarska, Aravind R. Rammoohan

2934-Pos BOARD B480
A CAPILLARY CONTROLLED HYDROGEL MICROCHANNEL FOR ISOTROPIC COMPRESSIVE STRESS QUANTIFICATION. Ernesto Criado-Hidalgo, Antoni Garcia-Herreros, Yi-Ting Yeh, Juan C. Lasheras, Juan C. del Alamo

2935-Pos BOARD B481
WHAT IS GENETIC ENTROPY. AN EQUILIBRIUM OR A NON EQUILIBRIUM ENTROPY. Bailey Smoot, Randal L. Halford, Salvatore Capotosto, Preet Sharma

2936-Pos BOARD B482
EFFECT OF VARYING MECHANICAL ENVIRONMENT IN 2D CULTURE ON SUBSEQUENT METASTASIS PROCESS OF OVARIAN CANCER. Jiwon Kim, Sangyoon Oh, Jennifer H. Shin

2937-Pos BOARD B483
TOWARDS NANOMECHANICAL PROPERTIES FROM PIPETTE ION CURRENTS. Nicola Lacleandola, Ankita Gangotra, Geoff R. Willmott

2938-Pos BOARD B484
RETARDATION CAN QUANTIFY TENSION IN SINGLE STRESS FIBERS? Shukei Sugita, Masatoshi Hozaki, Tsubasa S. Matusi, Yoshihiro Ujihara, Shinji Deguchi, Masanori Nakamura

2939-Pos BOARD B485
TRAVEL Awardee ELEVATED EXTRACELLULAR FLUID VISCOSITY STIMULATES MIGRATION OF METASTATIC CANCER CELLS. Matthew Pittman, Keva Li, Yun Chen

2940-Pos BOARD B486
NEUROMECHANICS OF MAMMALIAN CORTICAL NEURONS. Krishna Chaitanya Kasuba, Benjamin M. Gaub, Silvia Ronchi, Daniel J. Mueller, Andreas Hierlemann

2941-Pos BOARD B487
SELF-ORGANIZATION OF HUMAN SPERMATOZOA IN RECTANGULAR MICROCHANNELS. Anton Bukatin, Vasily Kantlsler

2942-Pos BOARD B488
A BALANCE BETWEEN TURNING AND PERSISTENT MOTION IS CRITICAL FOR FAST AND EFFICIENT 3-DIMENSIONAL NEUTROPHIL MIGRATION. Joshua Francois, Yi-Ting Yeh, Cindy Ayala, Richard Firtel, Juan Carlos del Alamo, Shu Chien, Juan C. Lasheras

2943-Pos BOARD B489
ENGINEERED PERICELLULAR MATRIX DEPOSITION CONTROLS MESENCHYMALstromal CELL VOLUME EXPANSION AND FATE. Sing-Wan Wong, Raymond Bargi, Celine Macaraniag, Zhangli Peng, Jae-Won Shin

2944-Pos BOARD B490
LABEL-FREE CYTOMETRY IN VIRTUAL FLUIDIC CHANNELS - HIGH-THROUGHPUT CELL RHEOLOGY AND TISSUE MECHANICS. Muzaffar H. Panhwar, Fabian Czerwinski, Bob Fregin, Venkata A. Dabbiru, Yesaswini Komaragiri, Doreen Biedenweg, Ricardo H. Pires, Oliver Otto

2945-Pos BOARD B491
PREDICTING COLLECTIVE MIGRATION OF HETEROGENEOUS CELL POPULATIONS. Jairaj Mathur, Amit Pathak

2946-Pos BOARD B492
SPATIAL CONFINEMENT MODULATES CELL VELOCITY IN COLLECTIVE CELL MIGRATION. Sylvain Gabriele

2947-Pos BOARD B493
LEADING EDGE MAINTENANCE IN MIGRATING NEUTROPHIL-LIKE HL-60 CELLS IS AN EMERGENT PROPERTY OF BRANCHED ACTIN GROWTH. Rikki M. Garner, Elena F. Koslover, Andrew J. Spakowitz, Julie Theriot

2948-Pos BOARD B494

2949-Pos BOARD B495
TRACTION FORCES CONTROL CELL-EDGE DYNAMICS AND MEDIATE DISTANCE-SENSITIVITY DURING CELL POLARIZATION. Zeno Messi

2950-Pos BOARD B496
TRAVEL Awardee UNVEILING THE TREND OF CHANGES IN MECHANICAL PHENOTYPES BETWEEN SUBPOPULATIONS OF ISOGENIC CANCER CELLS AT DISTINCT METASTATIC STAGES. Zhenhui Liu, Se Jong Lee, Seungman Park, Konstantinos Konstantopoulos, Kristine Glunde, Yun Chen, Ishan Barman

2951-Pos BOARD B497
CELL MORPHOLOGY AND SUBSTRATE LIGAND DENSITY DETERMINES ADHESION STRENGTH AND REMODELLING UNDER DYNAMIC SHEAR. Neha Paddilaya, Paturu Kondaiah, Pramod A. Pullarkat, Gautam I. Menon, Namrata Gundiah

2952-Pos BOARD B498
QUANTIFYING SUBRIDGE RIGIDITY EFFECTS ON CANCER CELL MECHANICS USING SINGLE CELL FORCE SPECTROSCOPY. Tsung-Cheng Lin, Jingqiang Li, Sihara S. Wijeratne, Xin He, Xuewen Feng, Nicolas Nikoloutsos, Raymond Fang, Kevin Jiang, Ian Y. Lian, Ching-Hwa Kiang

2953-Pos BOARD B499
SPHERICAL MICROWELL ARRAYS TO CULTURE CELLS IN 3D CONFINEMENT. Keng-hui Lin, Cheng-Kuang Huang, Giovanni Paylaga

2954-Pos BOARD B500
DYNAMIC REAL-TIME DEFORMABILITY CYTOMETRY - TIME-RESOLVED MECHANICAL SINGLE CELL ANALYSIS AT 100 CELLS/S. Bob Fregin, Fabian Czerwinski, Doreen Biedenweg, Salvatore Girardo, Stefan Groß, Konstanze Aurich, Oliver Otto

2955-Pos BOARD B501
EVOLUTION OF CELL/SUBSTRATE STRESSES DURING CONFINED INTERFACIAL MIGRATION. Abhishek Mukherjee, Ramesh Singh, Wenyi Yan, Shamik Sen
Cytoskeletal-based Intracellular Transport (Boards B510 - B514)

2964-Pos Board B510
STEPWISE MOVEMENT OF MYOSIN-10 WITHIN THE FILOPODIUM OF LIVE MAMMALIAN CELLS. Gregory I. Mashanov, Tatiana A. Nenaseva, Francine Parker, Laura Knipe, Michelle Peckham, Justin E. Molloy

2965-Pos Board B511
DYNAMICS AND MECHANICS OF DC-SIGN RECRUITMENT TO THE C. ALBICANS FUNGAL CONTACT SITE WITH MICROMANIPULATOR SYSTEM. Rohan Choraghe, Aaron Neumann

2966-Pos Board B512
IN SILICO MODEL OF MYOSIN VA-MEDIATED LIPOSOME TRANSPORT PREDICTS ACTIN FILAMENT DENSITY AND LIPOSOME DIAMETER DICTATE TRANSPORT MODES. Sam Walcott, David M. Warshaw

2967-Pos Board B513
THE ROLE OF ARP2/3 COMPLEX IN INFLAMMATORY ACTIVATION AND TLR4 ENDOCYTOSIS. Elsa Ronzier, Jeremy Rotty

2968-Pos Board B514
MOLECULAR MOTOR ORGANIZATION AND MOBILITY ON CARGOS CAN OVERCOME A TRADEOFF BETWEEN FAST BINDING AND RUN LENGTH. Matthew J. Bovyn, Steven Gross, Jun F. Allard

Electron and Proton Transfer (Boards B515 - B525)

2969-Pos Board B515
BIOPHYSICAL ELECTRON TRANSFER FROM THE PERSPECTIVE OF DIELECTRIC CONTINUUM THEORY. David Gnandt, Thorsten Koslowski

2970-Pos Board B516
UNIFIED MODEL FOR PHOTOPHYSICAL AND ELECTRO-OPTICAL PROPERTIES OF GREEN FLUORESCENT PROTEINS. Chi-Yun Lin, Matthew G. Romei, Luke M. Oltrogge, Irimpan I. Mathews, Steven G. Boxer

2971-Pos Board B517
THE EFFECT OF MULTIPLE PHOSPHORYLATIONS ON THE INTERACTION BETWEEN CYTOCHROME C AND CYTOCHROME C OXIDASE. Clayre Parson, Martha Scharlau, Francis Millett

2972-Pos Board B518
RADICAL FORMATION IN THE PHOTOACTIVATED ADENYLATE CYCLASE OAPAC REVEALED BY ULTRAFAST SPECTROSCOPY. Andras Lukacs, Jinnette Tolentino, James Iuliano, Katalin Pirisi, Peter J. Tonge, Greg Greetham, Mike Towrie, Stephen R. Meech

2973-Pos Board B519
REGULATION OF ELECTRON TRANSFER FROM CYTOCHROME C TO CYTOCHROME C OXIDASE BY PHOSPHORYLATION OF CC THR-28. Earl M. Neel, Martha Scharlau, Francis Millett

2974-Pos Board B520
ELECTROSTATIC CONTROL OF PHOTOISOMERIZATION PATHWAYS IN PROTEINS. Matthew G. Romei, Chi-Yun Lin, Irimpan I. Mathews, Steven G. Boxer

2975-Pos Board B521
ENGINEERING A CYTOCHROME WITH A TUNABLE BANDBAND POTENTIAL. Taylor L. Corridon, Coleman M. Swaim, Oleksandr Kokhan, Samuel D. Fontaine

2976-Pos Board B522
ENABLING PROTON TRANSPORT THROUGH ION CHANNELS WITH ADAPTIVE QM/MM. Adam W. Duster, Hai Lin

2977-Pos Board B523
STUDY OF WATER AND PROTON CHANNELS NEAR TO THE OXYGEN EVOLVING COMPLEX OF PHOTOSYSTEM II. Divya K. Matta, Krystle M. Reiss, Gary W. Brudvig, Victor S. Battista, Marilyn Gunner

2978-Pos Board B524
DETERMINATION OF THE BINDING INTERACTION BETWEEN MITOCHONDRIAL ELECTRON TRANSPORT CHAIN PROTEINS CYTOCHROME C AND CYTOCHROME C OXIDASE. Tyler Elmdorff, Martha Scharlau, Francis Millett

2979-Pos Board B525
THE MECHANISM OF SUBSTRATE DELIVERY AND ACTIVATION IN THE SOLAR WATER OXIDATION REACTION OF PHOTOSYSTEM II. K V. Lakshmi, Vidmantas Kalendra, Gourab Banerjee, Ipsita Ghosh, Ke Yang, Victor S. Battista, Gary W. Brudvig

Emerging Techniques and Synthetic Biology (Boards B526 - B535)

2980-Pos Board B526
DEBUGGING SYNTHETIC CIRCUITS WITH OPTOGENETIC CONTROL. Zachary Fox, Remy Chait, Gregory Batt, Jakob Rues
2981-Pos BOARD B527 TRAVEL AWARDEE
LIGHT-INDUCIBLE GENERATION OF MEMBRANE CURVATURE IN LIVE CELLS WITH ENGINEERED BAR DOMAIN PROTEINS. Taylor Jones, Binxiang Cui

2982-Pos BOARD B528
ENCODING SPATIAL MEMORY WITHIN A BACTERIAL BIOFILM COMMUNITY. Chih-Yu Yang, Maja Bialecka-Fornal, Colleen Weatherwax, Joseph Larkin, Arthur Prindle, Jintao Liu, Jordi Garcia-Ojalvo, Gurrol M. Suel

2983-Pos BOARD B529
CURRENT NOISE ANALYSIS OF A PROTEIN RECEPTOR. Jiaxin Sun, Avinash K. Thakur, Liviu Movieleanu

2984-Pos BOARD B530
TACKLE CIRCUIT-HOST INTERACTIONS TO ENGINEER ROBUST GENE CIRCUITS. Xiaojun Tian

2985-Pos BOARD B531
GENETIC BARCODES ENABLE QUANTITATIVE MAPPING OF OPERATOR MUTANTS TO GENE EXPRESSION. Nicholas S. McCarty, Manuel Razo-Mejia, Rob Phillips

2986-Pos BOARD B532
BIOELECTRICAL SIGNALING AND PATTERN FORMATION VIADOMAIN WALL MIGRATION. Harold M. McNamara, Rajath Salegame, Ziad Al Tanouy, Haitan Xu, Gloria Ortiz, Olivier Pourquie, Adam E. Cohen

2987-Pos BOARD B533 TRAVEL AWARDEE
DESIGNER MEMBRANELESS ORGANELLES ENABLE HIGHLY SPECIFIC PROTEIN ENGINEERING IN EUKARYOTES. Christopher D. Reinkemeier, Gemma Estrada Girona, Mikhail E. Sushkin, Edward A. Lemke

2988-Pos BOARD B534
HOW COMPLEX MOLECULES COULD POSSIBLY BE STABLE AT THE DAWN OF LIFE: OUT OF EQUILIBRIUM DISSIPATION SHAPES SELECTION. Daniel Maria Busiello, Shiling Liang, Paolo De Los Rios

2989-Pos BOARD B535
EFFECT OF FERMENTATION ON CHEMICAL AND NUTRITIONAL VALUE OF SOME SELECTED GRAINS. Olusola Ladokun, Sarah O. Oni, Olawale Akanbi

EPR and NMR: Spectroscopy and Imaging (Boards B536 - B545)

2990-Pos BOARD B536
SENSITIVITY GAIN IN NONUNIFORMLY SAMPLED NMR EXPERIMENTS. Yulia Pustovalova, Jeffrey C. Hoch

2991-Pos BOARD B537
WITHDRAWN.

2992-Pos BOARD B538
IMPROVED GROWTH PROTOCOL FOR THE PRODUCTION OF LOW-EXPRESSION EUKARYOTIC MEMBRANE PROTEINS FOR SOLID-STATE NMR. Rachel A. Munro, Jeffrey De Vlugt, Vladimir Ladizhansky, Leonid S. Brown

2993-Pos BOARD B539
NMR STRUCTURAL STUDIES OF MERCURY TRANSPORT MEMBRANE PROTEINS. Zheng Long, Jiaqian Wu, Sang Ho Park, Anna De Angelis, Stanley Opella

2994-Pos BOARD B540
BIOPHYSICAL CHARACTERIZATION OF THE ROLE OF GAG UBQIQUITINATION IN HIV-1 BUDDING. Bhargavi Ramaraju

2995-Pos BOARD B541
NMR STUDY OF POLYMER DIFFUSION IN THE PRESENCE OF A BIOLOGICAL INTRACELLULAR CROWDER. Yanitza Trosel, Valerie Booth, Anand Yethiraj

2996-Pos BOARD B542
WHOLE CELL 1H SOLID-STATE NMR OF ANTIMICROBIAL PEPTIDES INTERACTING WITH CELL ENVELOPES: ROLE OF LIPOPOLYSACCHARIDE. Sarika Kumari, Michael R. Morrow, Valerie Booth

2997-Pos BOARD B543
A MULTI-MODAL APPROACH FOR THE INVESTIGATION OF COMPLEX PROTEIN SYSTEMS VIA SITE-DIRECTED SPIN-LABELING. Samantha M. Betts, Jazmine M. Richardson, Eldon R. Hard, John M. Franck

2998-Pos BOARD B544 TRAVEL AWARDEE
CORRELATIVE IN VIVO FLUORESCENCE IMAGING AND 19F-MRI OF ZEBRAFISH EMBRYOS. Beibei Meng, Stephan L. Grage, Masanari Takamiya, Volker Middel, Neil Mackinnon, Omar Nassar, Tim Schober, Illia Hutsakalov, Oleg Babii, Uwe Straehele, Jan G. Korvink, Anne S. Ulrich

2999-Pos BOARD B545
HET MOUSE MODEL SUGGESTS VESTIBULAR SYSTEM MEDIATES MAGNETIC FIELD EFFECTS. Jason Cote

Single-Molecule Spectroscopy II (Boards B546 - B561)

3000-Pos BOARD B546
NEW MONOMERIC BRIGHT YELLOW GENETICALLY ENCODED FLUORESCENT PROTEIN. Jody A. Dantzig, Him Shweta, Yale E. Goldman

3001-Pos BOARD B547
COUNTING SINGLE MOLECULES USING INFINITE FACTORIAL HIDDEN MARKOV MODELS. Shep Bryan IV

3002-Pos BOARD B548
RAPID SINGLE MOLECULAR DYNAMICS FROM SINGLE PHOTON ARRIVALS. Sina Jazani, Steve Pressé

3003-Pos BOARD B549
DEMOCRATIZING SINGLE-MOLECULE FRET: AN OPEN-SOURCE MICROSCOPE FOR MEASURING PRECISE DISTANCES AND BIOMOLECULAR DYNAMICS. Benjamin Ambrose, James Baxter, John Cully, Matthew Willmott, Benji C. Bateman, Elliot Steele, Ashley J. Cadby, Jonathan Shewring, Marleen Aaldering, Timothy D. Craggs

3004-Pos BOARD B550
ACCURATE FRET MEASUREMENTS RESOLVING DISTANCES AND DYNAMICS IN BIOMOLECULES. Julian Folz, Milana Popara, Suren Felekyan, Paul Lauterjung, Noah Salama, Christian Herrmann, Claus A. Seidel

3005-Pos BOARD B551
BELOW THE FRET LIMIT: A NEW QUANTITATIVE SINGLE-MOLECULE TOOL FOR MEASURING SHORT-RANGE (0-3 NM) BIOMOLECULAR CONFORMATIONS. Benjamin Ambrose, Matthew Willmott, Tristan Johnston-Wood, Robert A. Shaw, J G. Hill, Timothy D. Craggs

3006-Pos BOARD B552
WHAT HAPPENS IF YOU FIRE LASERS AT DIAMOND THEN MICROWAVE IT? A NOVEL METHOD TOWARDS ION CHANNEL STUDY. Andrew R. Mason, William D. Jamieson, Oliver Williams, Daniel Slocombe, Oliver K. Castell
Carlos E. Castro
SENSITIVITIES.
MULTIPLEXED DNA ORIGAMI FORCE SENSORS WITH PROGRAMMABLE MEMBRANE DEFORMATION.
3018-
Egunsola, Bernard M. Hang`ormbe
MICROFLUIDIC DEVICE.
FLUORESCENT CORRELATION SPECTROSCOPY MEASUREMENT IN
3016-
Rouzina, Mark C. Williams, Thayaparan Paramanathan
THREADING BINUCLEAR RUTHENIUM COMPLEX.
EFFECT OF CHIRALITY ON THE ELASTIC PROPERTIES OF THE DNA-
Sergey Y. Tetin
Patrick J. Macdonald
ING ANTIBODY SANDWICHES ON MICROPARTICLES. Qiaoqiao Ruan,
SINGLE-MOLECULE IMAGING IN DIAGNOSTIC ASSAYS: DIRECTLY COUNTING LIFETIME IN THE PRESENCE OF AN OPTICAL TRAP BY WAVEFRONT ENGINEERING.
3010-
3011-
Board B555
SENSING THE PHOSPHORYLATION STATE OF INDIVIDUAL PEPTIDES IN SOLUTION. Quan Wang
3012-
Method of Synthetic Motion for Testing Single Particle Tracking Microscopes. Nicholas A. Vickers, Sean B. Andersson
3013-
Board B557
Quantitative Comparisons of Single Particle Tracking Algorithms Quantitative Comparison of Single Particle Tracking Algorithms Across Different Signal and Noise Levels. Ye Lin, Sean B. Andersson
3014-
Board B556
Method of Synthetic Motion for Testing Single Particle Tracking Microscopes. Nicholas A. Vickers, Sean B. Andersson
3015-
Board B558
Quantitative Comparisons of Single Particle Tracking Algorithms Quantitative Comparison of Single Particle Tracking Algorithms Across Different Signal and Noise Levels. Ye Lin, Sean B. Andersson
3016-
Board B562
Fluorescent Correlation Spectroscopy Measurement in Microfluidic Device. Dayo D. Adeyemo, Praise Farayola, Oluwaseun Egunsole, Bernard M. Hang`ormbe
3017-
Board B563
ESCR-TIII SPIRALS ARE LOADED SPRINGS THAT GOVERN SPONTANEOUS MEMBRANE DEFORMATION. Alma P. Perrino, Nebojsa Jukić, Simon Scheuring
3018-
Board B564
Multiplexed DNA Origami Force Sensors with Programmable Sensitivities. Ehsan Akbari, Melika Shahhosseini, Jonathan W. Song, Carlos E. Castro
3019-
Board B565
3020-
Board B566
Direct Equilibrium Protein Folding-Unfolding of Mechanically Labile Alpha Helical Protein by Atomic Force Microscopy. Adam Xiao, Hongbin Li
3021-
Board B567
THE EFFECT OF CHAIN CONNECTIVITY ON THE THERMODYNAMIC, KINETIC AND MECHANICAL PROPERTIES OF AZURIN. Priya Yadav, Mona Gupta, Debanjana Das, Sri Rama Koti Anavarapu
3022-
Board B568
Direct Characterization of Stress-Strain Relationship for Quantifying Single Cell Elasticity. Xian Wang, Changhong Cao, Jingcheng Shan, Yakun Zhao, Tobin Filliter, Yu Sun
3023-
Board B569
Two Distinct Ligand Binding Sites in Monoamine Transporters Monitored by Nanopharmacological Force Sensing. Rong Zhu, Julia Gobi, Marion Holy, Oliver Kudlacek, Walter Sandtner, Thomas Stockner, Hermann J. Gruber, Michael Freisssmuth, Amy Hauck Newman, Harald H. Sitte, Peter Hinterdorfer
3024-
Board B570
3025-
Board B571
Direct Observation of a Coil-to-Helix Contraction Triggered by Vinculin Binding to Talin. Rafael Tapia-Rojo, Alvaro Alonso-Caballero, Julio M. Fernandez
3026-
Board B572
The Extra-Domain B of Fibronectin Is Mechanically Labile. Chengzhi He, Yayan Xie
3027-
Board B573
Computing Atomic Force Microscopy Images of Chromosomes Using Polymer Simulation. Takashi Sumikama, Adam S. Foster, Takashi Fukuma
3028-
Board B574
The Low-Force Response of Von Willebrand Factor Revealed by Magnetic Tweezers. Sophia Gruber, Achim Löf, Tobias Obser, Maria A. Brehm, Martin Benoit, Jan Lipfert
3029-
Board B575
Influence of Carbonic Acid and Probe Contact Times on Root Hair - Soil Adhesion. Anne E. Murdaugh, Audrey Smith
3030-
Board B576
A Novel Phase-Shift-Based Amplitude Detector for a High-Speed Atomic Force Microscope. Atsushi Miyag, Simon Scheuring
3031-
Board B577
3032-
Board B578
Employing Atomic Force Microscopy to Investigate the Bio-Physical Chemistry of Bacterial Predator Bdellovibrio Bacteriovorus. Asriel D. Walker, Cindy Peraza, Catherine B. Volle, Megan A. Ferguson, Eileen M. Spain, Megan E. Nunez

Force Spectroscopy and Scanning Probe Microscopy (Boards B562 - B579)

Micro- and Nanotechnology II (Boards B580 - B600)

Uncovering Biophysical Properties and Interactions of Bacteria Membrane Using an Outer Membrane Supported Bilayer. Zeinab Mohamed, Jung-Ho Shin, Tobias Dörr, Susan Daniel

Mechanics and Water Permeation Drive Extracellular Vesicle Transport Under Confinement in Matrix. Stephen B. Lenzini, Raymond Bargi, Gina Chung, Jae-Won Shin

Intracellular Stress of Cell-Cell Junctions. Julia Eckert, Luca Giomi, Thomas Schmidt

Radio-Frequency Electrochemical Sensor Arrays for Biological Imaging. Kangping Hu, Eamonn Kennedy, Jacob K. Rosenstein

Improved Method Supporting MALDI-MS Analysis of Sialyloligosaccharides Including Their Structural Isomers. Takashi Terabayashi, Kenji Fukuda, Minoru Morita, Tadasu Urashima

Development of 99mTc-Labeling Protocol for Hydrogel-Based Microspheres. Nikolett Kiss-Hegedus, Domokos Mathe, Krisztian Szigeti

Nanofibrous Polymer-Dopamine Conjugates. Krisztina Tóth, David Juriga, Miiklos Zrínyi, Gábor Varga, Angéla Jedlovszky-Hajdú, Krisztina S. Nagy

Cytosolic Delivery of Bioconjugated QDs into T Cell Lymphocytes. Haoran Jing

Fine-Tuning Spherical Nucleic Acid Binding Through Heteromultivalence and Spatial Patterning. Brendan R. Deal
<table>
<thead>
<tr>
<th>Booth Number/Exhibitor</th>
<th>Booth Number/Exhibitor</th>
<th>Booth Number/Exhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>709 89 North</td>
<td>331 Fluidic Analytics</td>
<td>630 NeoBiosystems Inc</td>
</tr>
<tr>
<td>429 AAT Bioquest Inc</td>
<td>320 Fluxion Biosciences</td>
<td>115 Nicoya</td>
</tr>
<tr>
<td>730 Abbelight</td>
<td>215 Gene Tools LLC</td>
<td>614 Nikon Instruments Inc</td>
</tr>
<tr>
<td>633 Abberior Instruments America</td>
<td>816 GoldBio</td>
<td>133 NMRBox</td>
</tr>
<tr>
<td>505 Agilent</td>
<td>700 Hamamatsu Corporation</td>
<td>202 OLIS Inc, On-Line Instrument Systems</td>
</tr>
<tr>
<td>305 AIP Publishing</td>
<td>302 HEKA</td>
<td>604 Olympus America Inc</td>
</tr>
<tr>
<td>620 ALA Scientific Instruments Inc</td>
<td>332 Hellma USA</td>
<td>432 OriginLab Corporation</td>
</tr>
<tr>
<td>418 Allen Institute for Cell Science</td>
<td>830 Hinds Instruments Inc</td>
<td>414 Oxford Instruments of America Inc</td>
</tr>
<tr>
<td>628 Alvéole</td>
<td>409 HORIBA Scientific</td>
<td>621 PCO America</td>
</tr>
<tr>
<td>231 American Physical Society</td>
<td>828 ibidi USA Inc</td>
<td>615 Photometrics</td>
</tr>
<tr>
<td>211 AnaBios</td>
<td>800 ID Quantique SA</td>
<td>610 PI (Physik Instrumente)</td>
</tr>
<tr>
<td>421 Anatrace</td>
<td>Molecular Dimensions</td>
<td>609 PicoQuant Photonics North America Inc</td>
</tr>
<tr>
<td>416 Andor Technology, an Oxford Instruments Company</td>
<td>316 IOP Publishing</td>
<td>732 PIEZOCONCEPT</td>
</tr>
<tr>
<td>704 Anton Paar</td>
<td>715 JASCO</td>
<td>205 Quantum Design</td>
</tr>
<tr>
<td>714 Applied Photophysics</td>
<td>317 Journal of Biological Chemistry (ASBMB)</td>
<td>200 Quantum Northwest Inc</td>
</tr>
<tr>
<td>529 ASI/Applied Scientific Instrumentation</td>
<td>301 Journal of General Physiology</td>
<td>710 Rapp OptoElectronic GmbH</td>
</tr>
<tr>
<td>139 Aurora Scientific Inc</td>
<td>401 KinTek Corporation</td>
<td>109 Refeyn</td>
</tr>
<tr>
<td>601 Avanti Polar Lipids Inc</td>
<td>315 Laboratory for Fluorescence Dynamics</td>
<td>330 Royal Society Publishing</td>
</tr>
<tr>
<td>631 Axiom Optics</td>
<td>532 Larodan AB</td>
<td>111 RPMC Lasers Inc</td>
</tr>
<tr>
<td>208 BaySpec Inc</td>
<td>708 Leica Microsystems</td>
<td>117 RWD Life Science</td>
</tr>
<tr>
<td>308 Beckman Coulter Life Sciences</td>
<td>719 Linnowave</td>
<td>531 SB Drug Discovery</td>
</tr>
<tr>
<td>415 Bio-Logic USA</td>
<td>333 Live Cell Instrument</td>
<td>219 ScienCell Research Laboratories</td>
</tr>
<tr>
<td>430 BioCAT</td>
<td>101 LUMICKS</td>
<td>141 Siskiyou Corporation</td>
</tr>
<tr>
<td>216 BioTek Instruments Inc</td>
<td>500 Mad City Labs Inc</td>
<td>600 Sophion Bioscience A/S</td>
</tr>
<tr>
<td>217 Bon Opus Biosciences</td>
<td>431 Malvern Pananalytical</td>
<td>218 Springer Nature</td>
</tr>
<tr>
<td>721 Boston Electronics</td>
<td>405 Matreya LLC</td>
<td>329 St. Jude Children’s Research Hospital</td>
</tr>
<tr>
<td>515 Bruker Corporation</td>
<td>221 MDPI IJMS</td>
<td>129 Stanford-SLAC Cryo-EM Center</td>
</tr>
<tr>
<td>303 Cambridge University Press</td>
<td>210 MEIJI TECHNO AMERICA INCORPORATED</td>
<td>428 Strex</td>
</tr>
<tr>
<td>701 Carl Zeiss Microscopy LLC</td>
<td>214 METRION BIOSCIENCES</td>
<td>400 Sutter Instrument</td>
</tr>
<tr>
<td>204 Cedarlane</td>
<td>820 Mizar Imaging</td>
<td>530 T&T Scientific Corporation</td>
</tr>
<tr>
<td>201 Cell Press</td>
<td>501 Molecular Devices</td>
<td>314 TA Instruments</td>
</tr>
<tr>
<td>709 Chroma Technology</td>
<td>718 Molecular Vista Inc</td>
<td>419 TCI America</td>
</tr>
<tr>
<td>632 Crayon technologies Inc</td>
<td>121 Montana Molecular</td>
<td>814 The Company of Biologists</td>
</tr>
<tr>
<td>840 Cytocybernetics</td>
<td>300 Multi Channel Systems</td>
<td>328 The Journal of Physiology</td>
</tr>
<tr>
<td>119 Dynamic Biosensors GmbH</td>
<td>514 Nanion Technologies</td>
<td>309 Thorlabs</td>
</tr>
<tr>
<td>728 Ecocyte Bioscience US LLC</td>
<td>818 NanoAndMore USA Corp</td>
<td>228 Tissue Gnostics USA</td>
</tr>
<tr>
<td>618 Edinburgh Instruments</td>
<td>720 NanoSurface Biomedical</td>
<td>511 TMC</td>
</tr>
<tr>
<td>319 Electron Microscopy Sciences</td>
<td>533 Navitar</td>
<td>528 TOKAI HIT USA INC</td>
</tr>
<tr>
<td>629 ELEMENTS SRL</td>
<td>229 NCI National CryoEM Facility</td>
<td>403 Warner Instruments</td>
</tr>
<tr>
<td>209 Etaluma Inc</td>
<td></td>
<td>438 Wyatt Technology Corporation</td>
</tr>
<tr>
<td>729 Excellitas Technologies</td>
<td></td>
<td>238 Zaber Technologies Inc</td>
</tr>
<tr>
<td>417 Fluicell AB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Excited about patch clamp?

Port-a-Patch mini. The world’s smallest patch clamp rig.

Patchliner & Dynamite! Unlimited experimental freedom.

SyncroPatch 384i. Ion channel HTS - easy & even more flexible.

SURFE\(R\) N1. In-depth transporter research.

SURFE\(R\) 96SE. High throughput transporter screening.

FLEXcyte 96. True contraction force analysis.

Orbit 16 & Orbit mini. Instant bilayers - just add protein.

Vesicle Prep Pro. Liposomes made easy.

Visit us at booth #514

Join our Symposium
Monday Feb. 17, 12:30 – 2:00 PM, Room 33C

Jamie Vandenberg, Victor Chang Institute
High throughput screening of missense variants in KCNH2

Marc Rogers, Metrion
Validation of impedance-based phenotypic screening assay able to detect multiple mechanisms of chronic cardiotoxicity in human stem cell-derived cardiomyocytes

Matthias Gossmann, innoVitro
Mechanobiology of in vitro assays: tackling prevailing challenges in pre-clinical drug development

Nathan Thomas, Univ. of Wisconsin-Madison
Unlocking the (reversal) potential of SSM electrophysiology; transporter stoichiometry with the SURFE\(R\) N1

Stephen Hess, Evotec
Use of automated patch clamp platforms to support ion channel drug discovery

www.nanion.de
Exhibit Dates and Times

Sunday, February 16 .. 10:00 AM – 5:00 PM
Monday, February 17 .. 10:00 AM – 5:00 PM
Tuesday, February 18 .. 10:00 AM – 4:00 PM
Coffee Served Daily ... 10:15 AM – 11:00 AM
Afternoon Snack Served Sunday-Tuesday 1:45 PM – 3:00 PM

Exhibit Raffle

To win a Bose Portable Bluetooth Speaker, pick up a 2020 Passport Competition booklet inside the entrance of the Exhibit Hall. Visit participating exhibitors, talk to them to find out the answer to their question, get your passport stamped, and drop off your passport at the Society Booth before 2:30 PM on Tuesday, February 18. Raffle will be announced on Tuesday, February 18, at 3:00 PM in the Exhibit Hall. You must be present to win.

Exhibitor Presentations

Exhibitor Presentations will take place in Rooms 33A and 33C of the San Diego Convention Center. See pages 170-177 for detailed descriptions.

<table>
<thead>
<tr>
<th>Room 33A</th>
<th>Room 33C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, February 16</td>
<td>Sunday, February 16</td>
</tr>
<tr>
<td>9:30 AM – 11:00 AM</td>
<td>10:30 AM – 12:00 PM</td>
</tr>
<tr>
<td>11:30 AM – 1:00 PM</td>
<td>12:30 PM – 2:00 PM</td>
</tr>
<tr>
<td>1:30 PM – 3:00 PM</td>
<td>2:30 PM – 4:00 PM</td>
</tr>
<tr>
<td>3:30 PM – 5:00 PM</td>
<td>Monday, February 17</td>
</tr>
<tr>
<td>5:30 PM – 7:00 PM</td>
<td>8:30 AM – 10:00 AM</td>
</tr>
<tr>
<td>Monday, February 17</td>
<td>10:30 AM – 12:00 PM</td>
</tr>
<tr>
<td>9:30 AM – 11:00 AM</td>
<td>12:30 PM – 2:00 PM</td>
</tr>
<tr>
<td>11:30 AM – 1:00 PM</td>
<td>2:30 PM – 4:00 PM</td>
</tr>
<tr>
<td>1:30 PM – 3:00 PM</td>
<td>4:30 PM – 6:00 PM</td>
</tr>
<tr>
<td>Tuesday, February 18</td>
<td>Monday, February 17</td>
</tr>
<tr>
<td>9:30 AM – 11:00 AM</td>
<td>8:30 AM – 10:00 AM</td>
</tr>
<tr>
<td>1:30 PM – 3:00 PM</td>
<td>10:30 AM – 12:00 PM</td>
</tr>
<tr>
<td>Tuesday, February 18</td>
<td>12:30 PM – 2:00 PM</td>
</tr>
<tr>
<td>9:30 AM – 11:00 AM</td>
<td>2:30 PM – 4:00 PM</td>
</tr>
<tr>
<td>1:30 PM – 3:00 PM</td>
<td>Tuesday, February 18</td>
</tr>
<tr>
<td>11:30 AM – 1:00 PM</td>
<td>4:30 PM – 6:00 PM</td>
</tr>
<tr>
<td>1:30 PM – 3:00 PM</td>
<td>5:30 PM – 7:00 PM</td>
</tr>
<tr>
<td>3:30 PM – 5:00 PM</td>
<td>Tuesday, February 18</td>
</tr>
<tr>
<td>5:30 PM – 7:00 PM</td>
<td>5:30 PM – 7:00 PM</td>
</tr>
<tr>
<td>Tuesday, February 18</td>
<td>Tuesday, February 18</td>
</tr>
<tr>
<td>9:30 AM – 11:00 AM</td>
<td>9:30 AM – 11:00 AM</td>
</tr>
<tr>
<td>1:30 PM – 3:00 PM</td>
<td>1:30 PM – 3:00 PM</td>
</tr>
<tr>
<td>Tuesday, February 18</td>
<td>Tuesday, February 18</td>
</tr>
<tr>
<td>9:30 AM – 11:00 AM</td>
<td>9:30 AM – 11:00 AM</td>
</tr>
<tr>
<td>1:30 PM – 3:00 PM</td>
<td>1:30 PM – 3:00 PM</td>
</tr>
</tbody>
</table>

Annual Meeting Sponsors*

ACS Omega	Leica Microsystems	Sophion Bioscience A/S
Applied Photophysics	LUMICKS	Sutter Instrument
Beckman Coulter Life Sciences	Mad City Labs	The Company of Biologists
Bruker Corporation	Mizar Imaging	The Journal of Physical Chemistry B
Burroughs Wellcome Fund	Molecular Devices	The Journal of Physical Chemistry Letters
Carl Zeiss Microscopy LLC	NanoTec Physics	Wyatt Technology
Chroma Technology	Nanion Technologies	
Dynamic Biosensors GmbH	NanoSurface Biomedical	
ELEMENTS SRL	Olympus America Inc	
HORIBA Scientific	Photonics Media	

*As of January 10, 2020
Exhibitor Presentations
Rooms 33A 33C, San Diego Convention Center

Room 33A: Sunday, February 16

9:30 AM – 11:00 AM

Mizar Imaging

Tilt – A New Angle on Light Sheet Imaging

Mizar Imaging is proud to introduce the Tilt, the first light sheet imaging system that is a simple add-on to most inverted microscopes. The key benefit of light sheet imaging is significantly reducing the photobleaching and phototoxicity of your sample and the Tilt excels at this. When imaging with the Tilt, cells can be kept alive for hours and even days. This is aided by an optional incubation chamber for the Tilt, which allows for precise control of temperature (heating and cooling available), CO2 and humidity.

When installed on your microscope, the Tilt does not interfere with any existing modalities so you can easily add the Tilt to an existing TIRF or spinning disc confocal microscope system to add the ability to do long-term, live-cell imaging with the lowest possible photobleaching and phototoxicity.

The Tilt is well suited to image both larger organisms, such as C. elegans, Drosophila, zebra fish and other similar model organisms as well imaging high-resolution intracellular dynamics inside single cells. This remarkable diversity is realized because the Tilt can work with any objective on your microscope – from 20x through 150x. This makes the Tilt the only light sheet imaging system that can use high NA/high magnification objectives such as high resolution 60x and 100x objectives. There is no limit to what you can do with the Tilt.

The Tilt light sheet imaging system is the ideal solution for long-term live-cell imaging of a wide array of samples with the added benefit of being a simple, low cost add-on to an existing inverted microscope.

Speaker

Paul Maddox, Founder & President, Mizar Imaging

11:30 AM – 1:00 PM

NanoSurface Biomedical

Recreating the Extracellular Matrix in a Dish

Cells in the body use a variety of cues (e.g., structural, mechanical, electrical, and chemical) from the extracellular matrix (ECM) to develop and mature physiologically. These influential cues help regulate a broad spectrum of processes such as cell signaling, division, and differentiation. Many in vitro platforms seek to incorporate these cues into the cell’s microenvironment, but often fail, suffering from lack of reproducibility and incompatibility with other well-established end-point assays. Here, we demonstrate biomimetic in vitro platforms capable of reliably reproducing these essential ECM cues. These platforms markedly improve the structural and functional development of a variety of cell types, including stem cells, cardiomyocytes, muscle cells, and many more. Specifically, we show how NanoSurface Plates and Cytostretcher Cell-stretching Instruments can be utilized individually or collectively to study various model systems. The effects of cell-nanotopography interactions on adhesion, signaling, polarity, and migration across many applications such as human epithelia, cardiovascular function, and cancer biology are highlighted. Further, we describe how the differentiation of stem cells can be enhanced by providing a more biomimetic culture environment, with a particular focus on iPSC-derived cardiomyocytes and skeletal muscle cells.

Speaker

Hamed Ghazizadeh, Product Manager, NanoSurface Biomedical

1:30 PM – 3:00 PM

Carl Zeiss Microscopy LLC

Multiplex Mode for the LSM 9 Series with Airyscan 2: Fast and Gentle Confocal Superresolution in Large Volumes

The LSM 9 family with Airyscan 2 from ZEISS provides more options to enable the perfect balance of speed and resolution for today’s confocal-imaging needs. The new Multiplex mode extends sensitive Airyscan imaging to larger model systems with low expression levels by increasing acquisition speeds even further. It extracts more spatial information; hence, multiple lines can be imaged in a single line scan. This allows for larger acquisition steps to improve image acquisition speeds and reduce the illumination dosage to the sample. This novel concept allows rapid volumetric imaging with unprecedented resolution beyond what is available in traditional confocal systems today.

Airyscan 2 provides new data handling concepts, providing 6.6 times smaller data sizes and 5 times faster image reconstruction times. Further, optimized real time acquisition strategies employed with the LSM 9 family enable faster scan speeds for Airyscan 2, allowing higher data throughput.

Join this workshop and learn how the newest members of the ZEISS imaging portfolio, ZEISS LSM 9 series with Airyscan 2 can help you capture dynamic processes in volumes and improve your imaging experiments in completely new ways.

Speaker

Renée Dalrymple, Product Marketing Manager-Laser Scanning Microscopy, Carl Zeiss Microscopy LLC
Bruker Corporation

Multiplexed Imaging and Superresolution Microscopy Using the Vutara 352 Microscope with Integrated Fluidics System

The Vutara 352 super-resolution microscope has been designed for single molecule localization microscopy in multiple types of biological samples. However, most current methods for super-resolution microscopy are limited to three- to four-targets due to the limited number of dyes compatible with quality super-resolution techniques. This talk presents a method for multiplexing single molecule localization microscopy imaging within a biological sample through the use of an integrated automated microfluidics system. Probe multiplexing allows for the imaging of greater than four different targets within a cell. Using the Vutara 352 and integrated fluids unit we will show the three-dimensional oligoSTORM imaging of a multiplexed oligoPAINT labeled chromosome in individual human fibroblast cells along with 3D multi-probe DNA-PAINT based single molecule localization data for antibody labeled targets in cell culture and tissue slices. The Vutara 352 with integrated fluids and SRX software provides a powerful suite of tools for simultaneous imaging, localization, visualization and statistical analysis of multiplexed single molecule super-resolution data.

Speaker
Robert Hobson, Applications Scientist, Bruker Corporation

ELEMENTS SRL

Low-Noise, Handheld Amplifiers for Electrophysiology and Nanopore Applications

Ultra-portable and cost-effective amplifier technology is now a reality accessible to any electrophysiology research lab, thanks to Elements miniaturized products, based on our custom CMOS microchips. In this presentation, we will be featuring our latest products through the hands-on experience of current customers from the US, Europe, and Japan. You will hear first-hand accounts about their research and the results they got using:
- The world’s smallest integrated patch clamp amplifier, ePatch
- A handheld nanopore kit for nanoparticle detection using disposable glass nanopore chips, eNPR

Attend this presentation to learn about:
- The advantages of using a versatile and compact nano-current amplifier technology
- Portable nanopore solution for protein detection using disposable nanopore chips
- How the world’s smallest and cheapest patch clamp amplifier is radically changing patch-clamp measurements
- Different user experience ranging from patch-clamp on live cells, to exosome detection using solid state nanopores, as well as lipid bilayer experiments

Complimentary Italian hors d’oeuvres and drinks will be served. Seating is limited.

Speakers
Federico Thei, Chief Executive Officer, ELEMENTS SRL
Alessandro Porro, Application Scientist, ELEMENTS SRL
Guilherme Henrique Bomfim, Researcher, New York University
Nelly Mnatsakanyan, Assistant Professor, Yale University
David Niedzwiecki, Scientist, Goeppert LLC
Mark Platt, Senior Lecturer, University of Loughborough
Masato Nishio, Tokyo University
Room 33A: Monday, February 17

9:30 AM – 11:00 AM

Bruker Corporation

From Single Molecules to Tissues – A New AFM Toolkit for Nanoscopic Investigation of Mechanics, Structures, and Dynamic Processes in Life Science

The ability of atomic force microscopy (AFM) to obtain three-dimensional topography images of biological molecules and complexes with nanometer resolution and under near-physiological conditions remains unmatched by other imaging techniques. JPK BioAFM has developed a new NanoWizard® 4 XP AFM which not only enables the high-speed study of the time-resolved dynamics associated with cellular processes, it’s latest scanner technologies and compact design also allow full integration of AFM into advanced commercially available light microscopy techniques. This seminar will focus on how the advances in Bruker’s latest BioAFM can be applied to study a wide-range of biological samples, from individual biomolecules to mammalian cells and tissues in real-time, in-situ experiments. We will present examples of how we are able to resolve the nanoscale structure of individual biomolecules at high-speed scan rates (150 Hz), follow the dynamic reorganization of the membrane-associated cytoskeleton of living cells at high-temporal and high-spatial resolution, and automatically map the topography of cell cultures across the entire area of the microscope stage. We will also discuss the full suite of BioAFM modes and accessories for studying the nanomechanical properties of cells and tissues, including direct correlation of multiparametric, quantitative AFM and super-resolution (STED) datasets.

Speaker
Andrea Slade, BioAFM Product Manager, Bruker Corporation

11:30 AM – 1:00 PM

Leica Microsystems

Leica SP8 FALCON: Applications of FLIM for Functional Imaging and STED Nanoscopy

The rapidly growing field of functional imaging helps us understand the complex interactions of molecules, revealing the true nature of the underlying biology. In this context, fluorescence lifetime imaging (FLIM) is a powerful tool, providing valuable information beyond spectral imaging. FLIM is immune to concentration artifacts and highly sensitive to the molecular environment, providing a robust measure of a biological system’s health. However, previous FLIM solutions were slow and difficult to implement, particularly for complex imaging workflows. To address this weakness, we present the Leica SP8 FALCON (Fast Lifetime Contrast), a fast, intuitive and totally integrated, all-Leica FLIM solution. The SP8 FALCON delivers video-rate FLIM with pixel-by-pixel quantification, due to a unique combination of fast electronics, sensitive spectral hybrid detectors (Leica HyDs), and a novel concept for measuring time. The system has ultra-short dead time and powerful built-in algorithms to manage data acquisition and analysis, while maintaining accuracy and excellent data quality.

This talk explains the technical implementations enabling this new level of performance and provides some interesting application examples, including functional imaging (e.g. metabolic imaging or FRET imaging) and the use of lifetime information to achieve improved live-cell Nanoscopic Imaging (τ-STED). τ-STED is a revolutionary modality for STED imaging, making use of the FALCON FLIM phasor approach, delivering cutting-edge resolution and image quality at low light dose, especially beneficial for live-cell nanoscopy applications. τ-STED takes the fluorescence lifetime information from all detected photons combined with phasor analysis in a novel way to increase the resolution and eliminate uncorrelated background in an automated manner. The τ-STED implementation on Leica SP8 STED 3x systems works for 2D and 3D STED in live and in fixed specimens, and for multicolor applications.

The deep integration of SP8 FALCON into the Leica SP8 platform provides easy access to complex FLIM experiments, enabling fast FLIM-FRET, 3D- and 4D-imaging modes, high-content screening, and auto-fluorescence component separation.

Speaker
Haridas Pudavar, Product Performance Manager-Confocal Systems, Leica Microsystems
Speakers
Applications in enzymology and protein structures will be discussed. Conventional objective lens manufacturing technology forced a trade-off between numerical aperture, image flatness, and chromatic correction, making it difficult to improve all three in one objective. SX Stopped-Flow systems will be discussed. Stopped-Flow systems from Appli- cations in enzymology and protein structures will be discussed. Conventional objective lens manufacturing technology forced a trade-off between numerical aperture, image flatness, and chromatic correction, making it difficult to improve all three in one objective. SX Stopped-Flow systems will be discussed. Stopped-Flow systems from Applied Photophysics has remained at the forefront of the technologies in Circular Dichroism and Stopped-Flow Kinetics since its creation in 1971 by the Royal Institution of Great Britain under the leadership of Nobel Prize-winning Lord Port.

In the first part of the presentation, the latest developments regarding the Chirascan CD spectrometers will be introduced. Case studies will be discussed to illustrate that CD spectroscopy with Chirascan is far more powerful than the traditional use of revealing the protein secondary structures such as α-helix and β-sheet. With Chirascan CD spectrometers, information regarding secondary structures, as well as tertiary structures, thermal and chemical stability can be clearly demonstrated. Moreover, the introduction of automatic CD spectrometers provides unparalleled sensitivity, reproducibility and productivity. It provides a novel approach for objective, quantifiable higher order structure (HOS) comparisons. The introduction of the Circularly Polarized Luminescence (CPL) accessory makes the Chirascan more economical and versatile.

In the second part of the presentation, the latest developments in the SX Stopped-Flow systems will be discussed. Stopped-Flow systems from Applied Photophysics are known for its high performance, ease-of-use and durability and we have made them better. We introduce LED light sources and various accessories, such as dual fluorescence detection, fluorescence polarization/anisotropy, and photodiode array detector. Applications in enzymology and protein structures will be discussed.

Speakers
James Lopez, Manager-Life Science Applications Group, Olympus America Inc

3:30 PM – 5:00 PM
Applied Photophysics
Discover When Change is Significant: Latest Developments in Circular Dichroism and Stopped-Flow Kinetics
Applied Photophysics has remained at the forefront of the technologies of circular dichroism and stopped-flow kinetics since its creation in 1971 by the Royal Institution of Great Britain under the leadership of Nobel Prize-winning Lord Port.

In the first part of the presentation, the latest developments regarding the Chirascan CD spectrometers will be introduced. Case studies will be discussed to illustrate that CD spectroscopy with Chirascan is far more powerful than the traditional use of revealing the protein secondary structures such as α-helix and β-sheet. With Chirascan CD spectrometers, information regarding secondary structures, as well as tertiary structures, thermal and chemical stability can be clearly demonstrated. Moreover, the introduction of automatic CD spectrometers provides unparalleled sensitivity, reproducibility and productivity. It provides a novel approach for objective, quantifiable higher order structure (HOS) comparisons. The introduction of the Circularly Polarized Luminescence (CPL) accessory makes the Chirascan more economical and versatile.

In the second part of the presentation, the latest developments in the SX Stopped-Flow systems will be discussed. Stopped-Flow systems from Applied Photophysics are known for its high performance, ease-of-use and durability and we have made them better. We introduce LED light sources and various accessories, such as dual fluorescence detection, fluorescence polarization/anisotropy, and photodiode array detector. Applications in enzymology and protein structures will be discussed.
Room 33A: Tuesday, February 18

9:30 AM – 11:00 AM
Sophion Bioscience A/S

Characterization of the Rapidly Desensitizing α7 Nicotinic Acetylcholine Receptor on the Qube, NaV1.1 Assays on Automated Electrophysiology Platforms and Developing NMDA Assays on the Qube System

Successful ion channel drug discovery requires the integration of multiple technologies and workflows. Sophion Bioscience is a leader in automated patch clamp technology, providing medium to high throughput, automated patch clamp to the pharmaceutical industry and universities. The QPatch and Qube are fully automated patch clamp systems, executing simultaneous 8, 16, 48 or 384 parallel patch clamp recordings in conjunction with computer controlled liquid handling and on-board cell handling. Sophion partners with other biotech companies to create robust, ion channel and electrophysiological workflows for drug development for ion channel targets. During this workshop, three industry speakers will provide insight into the use of these systems in the drug discovery process. Dr Sung Hoon Park will present Qube data to show the characterization of rapidly desensitizing α7 nicotinic acetylcholine receptor on the Qube. Next, Dr Shanti Amagasu from Amgen will present data from Amgen’s Nav1.1 work on automated electrophysiological platforms. Finally, Dr Abigail Marklew will present on the development of NMDA Assays on the Qube system.

Speakers
Sung Hoon Park, Field Application Scientist, Sophion Bioscience A/S
Shanti Amagasu, Senior Scientist, Amgen
Abigail Marklew, Scientist, Charles River Laboratories

1:30 PM – 3:00 PM
HORIBA Scientific

A New Imaging Camera Technology Featuring TDC In-Pixel Architecture for Simple Dynamic FLIM Imaging at Video Rates

A new wide-field video rate TCSPC imaging camera from HORIBA Instruments will be introduced. This camera is a CMOS manufactured array of single photon avalanche diode (SPAD) detectors, each having its own time-to-digital converter (TDC). Thus each pixel is capable of measuring precise fluorescence decays in time-domain, and the entire camera is providing a complete fluorescence lifetime image map (FLIM) with each frame of the camera. This new technology is much faster than traditional scanning FLIM modalities thus making it ideal for live cell FLIM dynamics.

Speaker
Cary Davies, Global Product Manager-Fluorescence Division, HORIBA Scientific

Room 33C: Sunday, February 16

10:30 AM – 12:00 PM
Wyatt Technology

Recent Advances in Light Scattering and Related Techniques

Historically light scattering detection has been seen as a tool to assess molecular weight and aggregation. Throughout its existence the utility of this method to assess additional properties of proteins has expanded significantly. Today it’s uniquely positioned to give information about how aggregates form, properties of conjugates such as determination of the mass of pegylation or many other conjugates relative to the mass of the protein, protein conformation and many others. One of the properties of light scattering that differentiate it from other techniques that give similar data is the ability for the experiments to be done in solution. With no labeling, fixing of detection agents to solid surfaces or drying of the material to be analyzed you get a real picture of the properties in a given solution.

In this presentation we will discuss the recent advances in HPLC, field flow fractionation (FFF) and composition gradient (CG) coupled with multi-angle light scattering (MALS). The use of HPLC has expanded beyond size exclusion chromatography to include ion-exchange, reversed phase and hydrophobic interaction chromatography that enables the assessment of other properties and various types of molecules such as antibody drug conjugates. FFF-MALS is a gentle separation technique that allows for the separation of a wide range of particle sizes in a single channel with low shear. It is done entirely in a liquid stream and is well suited to utilizing the same separation buffer in which the molecules have been formulated, eliminating the worry that the elution buffer may be affecting the molecule in some way. With CG-MALS the user is able to study protein interaction with other molecules of interest again all in solution and label-free.

We invite you to join us in this discussion of the newest uses to discover how they might apply to the next breakthrough in your research.

Speaker
Kevin McCowen, Regional Manager, Wyatt Technology

12:30 PM – 2:00 PM
Sutter Instrument

Scientists Empowering Scientists

For over 45 years, Sutter Instrument has been collaborating with researchers. During this period, there have been many technological evolutions in patch clamp electrophysiology, and Sutter has introduced many new product families, including pipette pullers, manipulators, light sources, wavelength switchers, specialized microscopes and, most recently, fully integrated patch clamp amplifier systems. At this presentation, we will teach techniques, tips and tricks, and showcase new features, such as dynamic clamp capability.

The IPA®, Double IPA® and new dPatch® Ultra-fast, Low-noise Integrated Patch Clamp Amplifiers and SutterPatch® Software are being used for a variety of common experiments, including characterization of ionic current and recording synaptic events in tissue slices. We will demonstrate how the SutterPatch Software’s online measurements and sophisticated control of experimental workflow can be used to aid real-time decision-making and eventually simplify analysis.
2:30 PM – 4:00 PM

Dynamic Biosensors GmbH

switchSENSE® Biophysical Analysis with Electro-Switchable Biosurfaces

The presentation will highlight the broad range of applications of the switchSENSE® technology that is supported by the recently launched heliX® biosensor:

• Size and Conformational Change – Screening and ranking of small molecule induced conformational changes by de novo real-time conformation referencing
• Bispecific Antibodies – Bifunctional sensor functionalization, advanced ligand density control and two-color fluorescence detection for the in-depth analysis of bispecific binders
• Resolving the fastest kinetics with confidence using advanced microfluidics and 10 ms data collection
• DNA/RNA Binding Proteins – Flexible exchange of DNA/RNA targets for binding and enzymatic activity studies in real-time
• From Small Molecules to Cells – Chip functionalization solutions for the biophysical characterization of very small or very large structures

Speakers
Ulrich Rant, CEO, Dynamic Biosensors GmbH
Aishwarya Mahadevan, Application Specialist, Dynamic Biosensors Inc

Room 33C: Monday, February 17

8:30 AM – 10:00 AM

Beckman Coulter Life Sciences

Get the High-Resolution Separation That You Have Been Searching for with Preparative and Analytical Ultracentrifugation

Introduction: Purification of biological products, including biotherapeutics, involves the separation of cells from the culture media, followed by extensive processing to isolate the target of interest. Relatively simple separations are often achieved via differential centrifugation (pelleting), though high-resolution separations often utilize density gradient ultracentrifugation to yield high purity. In this presentation, we will discuss the full gamut of preparative (ultra)centrifugation, which permits the isolation and purification of biological components ranging from small peptides and nanoparticles to large nucleic acids, viruses, and organelles. We will then discuss the analytical/characterization aspects of ultracentrifugation, which allow quantitation of size, mass, shape, and density of the biological components that have been purified, along with exploration of their thermodynamic properties and binding interactions. Modern examples will be discussed for both preparative and analytical ultracentrifugation.

Purification: Modern centrifuges reach incredibly high speeds (with centrifugal acceleration sometimes exceeding 1,000,000 x g) to aid the high-resolution separation of particles, typically in the micro- or nanometer range, by size and/or density. Today’s gene therapy products, such as viral vectors, require high-quality purification to ensure the consistent production of safe, efficacious therapeutics of the highest quality to further advance this rapidly growing field and deliver solutions to patients in need. Density gradient ultracentrifugation (DGUC) is a centrifuge-based technique for providing superior purification of viral vectors (e.g., isolating full AAV particles from partial and empty capsids), along with other materials (such as plasmid DNA) in gene therapy production workflows. Though a well-established and mature method, DGUC is sometimes viewed as dated, challenging to design and conduct, or only suited for small-scale research applications. In this workshop, we’ll address these perceptions and discuss the premise of DGUC as a modern, high-resolution purification technique for AAVs and plasmid DNA. We’ll also provide guidance on how to get started with DGUC and optimize this technique for gene therapy workflows.

Characterization: Analytical ultracentrifugation (AUC) is one of the most versatile biophysical tools used today for the characterization of biological samples ranging from small drug molecules to intact viruses, vesicles and microparticles. AUC works with biological samples in the native state and does not depend on a reporter species or custom-coated substrates. AUC separates biomolecules based upon both molecular mass and anisotropy and can also be used to quantify interactions between different species. In this talk, we will start with the principles of AUC and take a tour through the technology behind modern AUC, including detection methods. We then look at advancements of the latest gen Optima AUC. Next, we go through experiment design – including the use of simulation tools. Following, we will address the different types of AUC experiments (equilibrium and velocity), compare and contrast their merits with sample data, and touch upon the principles of data processing. Finally, we will explore a variety of applications with a focus on the unique advantages that AUC brings to the study of various biotherapeutics, polymers, nanoparticles, and others – and how AUC compares to and complements other analytical techniques.

Speakers
Ross VerHeul, Senior Applications Scientist, Beckman Coulter Life Sciences
Akash Bhattacharya, Senior Applications Engineer, Beckman Coulter Life Sciences
Corporation

10:30 AM – 12:00 PM

Bruker Corporation

Using NMR (Nuclear Magnetic Resonance) and EPR (Electron Paramagnetic Resonance) in Biophysics

Magnet Resonance offers many insights into how biological systems function. The two techniques shed light on the identity of species, dynamics, and structures of proteins, peptides, nucleotides, and lipids. The speakers will present an overview of these techniques and applications for people who may be new to the field and wish to incorporate them in their studies.

NMR has long been a valuable tool for the determination of structures, the study of dynamic processes and the investigation of interactions in biological molecules. To conduct these studies on larger molecules higher magnetic fields are required. Bruker BioSpin has successfully installed a 1.1 GHz NMR system in a customer laboratory and the delivery of the first 1.2 GHz system is imminent. To complement the higher magnetic fields Bruker BioSpin has also introduced several new probes for liquid and solid state NMR.

NMR has recently been used successfully for the characterization of large proteins such as monoclonal antibodies. The statistical analysis of NMR spectra allows the detection of changes in the high order structure of these molecules.

Another growing area is the use of 19F in bio-molecular NMR. Both the introduction of new accessories and method permit more widespread use of this nucleus in NMR studies.

EPR detects unpaired electrons in free radicals and transition metal ions. One electron transfer reactions result in unpaired electrons. Examples of paramagnetic species encountered in biology are; ROS (Reactive Oxygen Species), RNS (Reactive Nitrogen Species), amino acid radicals such as tyrosine and tryptophan radicals, paramagnetic intermediates in photosynthesis, and metalloenzymes.

In addition to these naturally occurring paramagnetic species, spin labels can be incorporated into a number of biomolecules via SDSL (Site Directied Spin Labeling). Applications and techniques are; motional dynamics of proteins, peptides, and nucleotides via linsehape analysis, accessibility studies in membrane proteins or peptides via saturation measurements, and distance measurements (2-8 nm) via DEER (Double Electron-Electron Resonance) to complement other structural methods such as X-ray, NMR, CryoEM and FRET.

Speakers

clemens Anklin, Vice President, NMR Applications & Training, Bruker Corporation

Ralph Weber, EPR Applications Manager, Bruker Corporation

12:30 PM – 2:00 PM

Nanion Technologies

Beyond Ion Channels and Transporters: Snapshots of the State-of-the-Art Solutions

For almost two decades Nanion Technologies provides diverse solutions for electrophysiologists worldwide. We aim to successfully implement innovative technologies in the fields of ion channel automated electrophysiology, monitoring of cell viability and contraction, as well as electrogenic transporters, with our chip- and plate-based devices. Covering the needs for low, medium and high throughput assays our portfolio is well suited to advance research and screening projects. During this year’s symposium, five snapshots of successful wide-ranging applications, assays and emerging technologies from our product portfolio will be presented. Our symposium will start with an introduction by Dr. Niels Fertig (CEO, Nanion) as a guide through the overall capabilities of Nanion’s technology portfolio. In continuation, we will welcome our speakers.

Our first snapshot, presented by Prof. Dr. Jamie Vandenberg (Victor Chang Cardiac Research Institute) will be focusing on the high throughput automated patch clamp (APC) screening of missense variants in KCNH2 mutations, a well-established cause of sudden cardiac death, using the SyncroPatch 384PE. Prof. Vandenberg will present a high throughput functional assay his group developed in order to differentiate between benign and pathogenic variants in KCNH2 gene. Dr. Marc Rogers (Metrion Biosciences) will continue with a snapshot focusing on validation of a CardioExcyte 96 impedance-based phenotypic assay, that is able to reproduce the chronic effects of a range of clinical drugs that affect human iPSC cardiomyocyte contractility and viability by multiple and diverse mechanisms, including ion channel and ionic pump inhibition, DNA intercalation, proteasome and tyrosine kinase inhibition, and myosin disruption. One of the newest Nanion’s releases, the FLEXcyte 96, will be highlighted in the snapshot presented by Dr. Matthias Gossmann (Innovitro). Dr. Gossmann will introduce the important impact this technology has on cardiac research, as it offers the potential to scale-up mechanical testing of cardiac contractile behavior, maturation and drug screening towards medium-throughput analysed under true physiological conditions.

Moving from cardiac physiology, Nathan Thomas (University of Wisconsin-Madison) will introduce a new application of SSM-based electrophysiology, in the field of ion coupled transporters. With a novel approach the transporter stoichiometry is investigated via reversal potential determination. During his snapshot, SURFE2R N1 data obtained on transporters from the small multidrug resistance (SMR) family, with the goal of providing a better understanding of underlying transport mechanisms, will be presented.

Finally, Dr. Stephen Hess (Evotec) will introduce the use of APC platforms to support ion channel drug discovery, focusing on the Nav1.1 channels, which positive modulators could be useful in treating cognitive disorders, epilepsy, and neurodegenerative diseases. To find novel positive modulators of NaV1.1 channels. Dr. Hess screened over 150K small molecules using the SyncroPatch 384PE and found confirmed hits which could serve as excellent starting points for further MedChem optimizations for scale-up mechanical testing of cardiac contractile behavior, maturation and drug screening towards medium-throughput analysed under true physiological conditions.

The Nanion team is delighted to welcome you to our lunch symposium!

Speakers

Jamie Vandenberg, Co-Deputy Director, Head of Cardiac Electrophysiology, The Victor Chang Cardiac Research Institute

Marc Rogers, Director, CSO, Metrion Biosciences

Matthias Gossmann, Innovitro (FLX), Co-Founder & CEO, Innovitro

Nathan Thomas, University of Wisconsin-Madison

Stephen Hess, Research Leader-Ion Channels, Evotec
2:30 PM – 4:00 PM
HORIBA Scientific

A New Modular Research Fluorometer Pushes Detection, Stray-Light, and Wavelength Limits of Fluorescence Spectroscopy

HORIBA Instruments Inc is proud to introduce the new FluorologQM modular research spectrofluorometer. This is the fourth generation of the world famous, all reflective, Fluorolog modular research spectrofluorometer and it pushes the sensitivity, performance and flexibility of fluorescence spectroscopy to new heights. Featuring the world’s highest guaranteed sensitivity specification, the longest focal length monochromators in the industry, and a wavelength coverage range from 180 to 5,500 nm, the FluorologQM pushes the detection, stray light, and wavelength limits of fluorescence to new levels. With new software, a new design and complete automation, this advanced research fluorometer, is also equally well suited for the simplest of tasks. The biophysical applications of the FluorologQM will be presented.

Speaker
Cary Davies, Global Product Manager-Fluorescence Division, HORIBA Scientific

4:30 PM – 6:00 PM
Molecular Devices

Empower Your Electrophysiology Studies Using New Axon pCLAMP 11 Software and HumSilencer Adaptive Noise Cancellation Technology

The patch-clamp technique remains the best method for examining ion channel physiology and membrane biophysics. Axon Instruments and pCLAMP software continue to push the envelope with new innovations with best-in-class systems and software. In this user meeting we learn how to design protocols easier, analyze data faster, and achieve better data quality.

Speaker
Jeffrey Tang, Senior Global Axon Electrophysiological Application Scientist, Molecular Devices
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>89 North</td>
<td>709</td>
</tr>
<tr>
<td>1 Mill Street, Unit 285, Burlington, VT 05401, www.89north.com</td>
<td></td>
</tr>
<tr>
<td>89 North provides products to improve research and clinical fluorescence imaging for the life sciences. Our products surround the research microscope including light sources, image splitters, laser combiners and filter wheels. We also offer engineering and manufacturing expertise to customize existing products or to create new solutions for systems integration.</td>
<td></td>
</tr>
<tr>
<td>Abberior Instruments America</td>
<td>633</td>
</tr>
<tr>
<td>1 Max Planck Way, Jupiter, FL 33458, www.abberior-instruments.com</td>
<td></td>
</tr>
<tr>
<td>Abberior Instruments develops and markets STED super resolution microscopes. Founded by Stefan Hell our imaging systems are highly innovative. Further, we provide STED microscopes from low to high budget.</td>
<td></td>
</tr>
<tr>
<td>ALA Scientific Instruments Inc</td>
<td>620</td>
</tr>
<tr>
<td>60 Marine Street, Farmingdale, NY 11735, www.alascience.com</td>
<td></td>
</tr>
<tr>
<td>As manufacturers (fluidics, chambers, etc) and distributors (npi, Sutter, Narishige, TMC) of instruments for patch/ cellular electrophysiology, our scientists/ engineers have decades of experience assembling systems and building custom setups. We focus on your equipment needs so you can focus on your research.</td>
<td></td>
</tr>
<tr>
<td>AAT Bioquest Inc</td>
<td>429</td>
</tr>
<tr>
<td>520 Mercury Drive, Sunnyvale, CA 94085, www.aatbio.com</td>
<td></td>
</tr>
<tr>
<td>AAT Bioquest develops, manufactures, and markets bioanalytical reagents and assay kits for life science research and drug discovery. We specialize in absorption, fluorescence and luminescence-based biological detection technologies. Our products include the outstanding Fluo-8®, Cal-520™, Cal-590™, Cal-630™, Calbryte™-520 and FLIPR calcium assay kits, fluorescent ion indicators, fluorescent labeling reagents, cell and in vivo imaging probes. We also offer a full spectrum of apoptosis probes and assay kits.</td>
<td></td>
</tr>
<tr>
<td>Agilent</td>
<td>505</td>
</tr>
<tr>
<td>121 Hartwell Avenue, Lexington, MA 02421, www.agilent.com</td>
<td></td>
</tr>
<tr>
<td>Agilent Technologies Inc. is a global leader in life sciences, diagnostics and applied chemical markets. With more than 50 years of insight and innovation, Agilent instruments, software, services, solutions, and people provide trusted answers to its customers’ most challenging questions. Agilent employs about 13,500 people worldwide.</td>
<td></td>
</tr>
<tr>
<td>Alembic Instruments Inc</td>
<td>802</td>
</tr>
<tr>
<td>3285 Cavendish Boulevard, Suite 570, Montreal, QC H4B 2L9, Canada, www.alembicinst.com</td>
<td></td>
</tr>
<tr>
<td>Alembic Instruments makes patch clamps amplifiers with 100% Rs Compensation! Our patented Rs Compensator™ can voltage clamp the largest, fastest ionic currents, under physiologic conditions - currents that are simply out of reach without it. Come see the NEW Alembic VE-3 computer controlled Patch clamp amplifier: 4 channels with integrated data acquisition, can run 4 separate patch clamp rigs simultaneously, true current-clamp, embedded computer with dedicated FPGA for real-time AP Clamp / Dynamic Clamp experiments, and more.</td>
<td></td>
</tr>
<tr>
<td>Abbelight</td>
<td>730</td>
</tr>
<tr>
<td>6 rue Jean Calvin, Paris, 75005, France, www.abbelight.com</td>
<td></td>
</tr>
<tr>
<td>Single Molecule Localization Microscopy (SMLM) combines quantitative information with the highest resolution achievable in light microscopy and is therefore a game changer in many biological studies. Abbelight is the result of 10 years of academic research on cutting-edge detection methods in fluorescence microscopy. Our unique offers are designed to provide the best instruments, software, and scientific expertise to speed-up the entire imaging workflow - from sample preparation, to image acquisition and analysis - within a wide range of research applications in biology and pharmacology.</td>
<td></td>
</tr>
<tr>
<td>AIP Publishing</td>
<td>305</td>
</tr>
<tr>
<td>1305 Walt Whitman Road, Suite 300, Melville, NY 11747, scitation.aip.org</td>
<td></td>
</tr>
<tr>
<td>AIP Publishing is a wholly owned not-for-profit subsidiary of the American Institute of Physics (AIP). Our portfolio offers scientists, engineers, researchers and students a foundation of interdisciplinary and emerging basic and applied research. Spanning the physical sciences, publications cover physics, plasmas, fluids, mathematical physics, instrumentation, and education. For more information visit publishing.aip.org.</td>
<td></td>
</tr>
<tr>
<td>Allen Institute for Cell Science</td>
<td>418</td>
</tr>
<tr>
<td>615 Westlake Avenue North, Seattle, WA 98109, www.allencell.org</td>
<td></td>
</tr>
<tr>
<td>Launched by Paul G. Allen in 2014, the Allen Institute for Cell Science studies the cell as an integrated system. The Institute is producing novel visual, dynamic, predictive models of the cell to accelerate biological research. The Institute provides public tools, including gene edited cell lines, methods, images, and models, on allencell.org.</td>
<td></td>
</tr>
</tbody>
</table>
Alvéole specializes in bioengineering technologies and tools for better cell sample preparation. Its main product PRIMO is a contactless and maskless photopatterning system allowing to perform: protein micropatterning on all cell culture substrates (stiff, soft, flat, microstructured), microfabrication and hydrogel structuration. Via the custom control it provides over cell microenvironment it can be a game changer for many applications such as: studying cell mechanisms (via polarity, adhesion, migration), controlling cell position and intra-cellular organization for cryo-ET, disease modeling.

American Physical Society 231
1 Physics Ellipse
College Park, MD 20740
journals.aps.org

The American Physical Society (APS) is a non-profit membership organization that publishes the Physical Review collection, the world’s most widely read physics research and review journals. Please stop by booth 231 in the Exhibit Hall to meet the editors and discuss the Physical Review family of journals.

AnaBios 211
3030 Bunker Hill Street, Suite 312
San Diego, CA 92109
www.anabios.com

Located in San Diego, California, AnaBios aims to establish the safety and efficacy of novel compounds through its advanced, human-focused translational technologies. AnaBios primarily focuses on areas of high, unmet medical need, including cardiac disease, pain and itch. In addition to working with Fortune 500 biotech companies, contract research organizations and academic institutions, AnaBios drives an internal drug discovery platform via in-licensed programs from partners in the pharmaceutical industry. For more information, visit http://www.anabios.com.

Anatrace
Anatrace Molecular Dimensions
434 West Dussel Drive
Maumee, OH 43537
www.anatrace.com/MD

Anatrace and Molecular Dimensions are seriously committed to helping you set higher standards this year with our detergents, lipids, crystallization screens, and tools for structural biology. Whether you’re involved with soluble proteins, membrane proteins, NMR, Crystallography, or even Cryo-EM, we can help you achieve more in your research. Stop by our booth to learn about our new and innovative products we have been busy developing this past year.

Andor Technology, an Oxford Instruments Company
300 Baker Avenue, Suite 150
Concord, MA 01742
www.andor.com

Andor manufactures scientific imaging cameras and microscopy systems. Our EMCCDs are the ideal for low light applications; single molecule detection, ion (calcium) imaging, superresolution and TIRF.

Anton Paar 704
10215 Timber Ridge Drive
Ashland, VA 23005
www.anton-paar.com

Anton Paar is a leading supplier of analytical instrumentation focused on the biophysical characterization of proteins, liposomes and other nanoscale analytes. Specific technologies include: Small-angle X-ray Scattering (SAXS) for the nano and sub-nano scale characterization of sample size, shape, inner structure and orientation of proteins, nanoparticles, liposomes and core/shell particles as well as Dynamic Light Scattering (DLS) for the measurement of particle size, zeta potential, molecular mass and transmittance of proteins, liposomes, nanoparticles, emulsions and protein complexes.

Pick up a Passport Competition booklet inside the entrance of the Exhibit Hall, visit participating companies, answer their questions, get your passport stamped, and enter for a chance to win a Bose Portable Bluetooth Speaker!
Applied Scientific Instrumentation, Inc. (ASI) is a company with decades of experience meeting researchers’ technical needs for microscope automation and imaging. Precision motion control is the foundation of our products, including extremely precise DC servo stages, piezo stages, and low vibration filter wheels. ASI’s Modular Infinity Microscope (MIM) system makes it easy to build a complete microscope customized to the user’s needs. We offer a range of related products including autofocus devices, LED illumination and light sheet microscope components. Our RAMM frame microscope is stable and open platform perfect for innovative techniques. Systems have been built for multi-photon and 2nd harmonic microscopy, rapid tracking of freely moving organisms, TIRF, and wide field fluorescence. ASI has worked with a number of partners over the years to help develop and supply innovative technology to the scientific community. One example of this is our recent collaboration with Special Optics to develop an immersion objective lens specifically designed for cleared tissue imaging with light sheet microscopy. We offer light sheet microscope systems for imaging a wide variety of samples. Several light sheet geometries can all be built from our modular optical and control systems.

Axiom Optics offers sales, support, and expertise in advanced light microscopy. We are known for the following applications: rescan confocal microscopy, fluorescence lifetime imaging microscopy (FLIM), single molecule localization microscopy and 3D super resolution, high-speed fluorescence imaging, microscopy quality assessment slides (Argolight).
BioCAT
Argonne National Laboratory,
9700 South Cass Avenue,
Building 435B
Argonne, IL 60439
bio.aps.anl.gov

Our mission is to develop and operate state-of-the-art x-ray facilities for the study of the structure and dynamics of biological systems under non-crystalline conditions similar to their functional states in living tissues. Our primary research tool is a very high brightness X-ray beam-line at the Advanced Photon Source (APS) at Argonne National Laboratory. BioCAT is a member of Illinois Institute of Technology’s (IIT) Center for Synchrotron Radiation Research and Instrumentation (CSSRI) and is funded by the National Institutes of Health.

Bio-Logic USA
9050 Executive Park Drive, Suite 110C
Knoxville, TN 37923
www.bio-logic.net

Bio-Logic USA is the leading manufacturer of stopped flow, quench flow, and freeze quench mixers for examining reaction kinetics in biochemistry, molecular biology, and biophysics. The SFM-4000 series of mixers deliver dead times of 200 microseconds or faster, with asymmetrical mixing, modular design, and unsurpassed performance. They can be connected to spectrometers, x-ray and neutron lines, and EPR systems. The MOS-500 spectropolarimeter delivers auto-optimized performance from near IR to UV in CD, LD, absorbance, fluorescence, and anisotropy modes. Sample handling options include cuvette, dry powder, magnetic CD, peltier temperature control, and more. The MOS-500 can be used standalone or with the SFM-4000 series stopped flow mixers.

BioTek Instruments Inc
Highland Park, Box 998
Winooski, VT 05404
www.biotek.com

BioTek, now a part of Agilent, is a worldwide leader in the design, manufacture, and distribution of innovative life science instrumentation including cell imaging systems, microplate readers, washers, dispensers, automated incubators and stackers. Our products enable life science research by providing high performance, cost-effective analysis and quantification of biomolecules, biomolecular interactions and cellular structure and function across diverse applications.

Bon Opus Biosciences
150 Essex Street, Suite 301
Millburn, NJ 07041
www.bonopusbio.com

Bon Opus Biosciences is an NJ-based contract research organization. Our areas of expertise include gene synthesis, custom protein expression, and custom antibody production. All proteins have activity and purity data testing performed and reported. In addition to our vast recombinant protein catalog, we also carry a comprehensive catalog of over 3,000 primary antibodies. Bon Opus has built several service programs that are specifically designed to support the development of targeted therapeutics - in particular, antigen production and monoclonal antibodies.

Boston Electronics
91 Boylston Street
Brookline, MA 02445
www.boselec.com

About Boston Electronics - Boston Electronics are specialists in providing electro-optical solutions including photodetectors, LEDs, tunable lasers imaging arrays and photon counting detection, spanning the spectrum from ultraviolet to visible and infrared. Boston Electronics distributes advanced electro-optical products from premier manufacturers worldwide. We specialize in products related to photodetection including especially detectors, sources, and signal processing electronics.

Bruker Corporation
40 Manning Road
Billerica, MA 01821
www.bruker.com/

Bruker enables scientists to make breakthrough discoveries and develop new applications that improve the quality of human life. Our high-performance scientific instruments and high-value analytical and diagnostic solutions enable scientists to explore life and materials at molecular, cellular and microscopic levels. Visit our booth to learn about Bruker’s comprehensive selection of biology atomic force microscopes (BioAFMs), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy systems, and super-resolution single molecule localization (SML) microscopes.

Cambridge University Press
University Printing House, Shaftesbury Road
Cambridge, CB2 8BS
United Kingdom
www.cambridge.org

Cambridge University Press is a not-for-profit organization that advances learning and research via the global publication of academic books, journals, and digital content.

Carl Zeiss Microscopy LLC
1 Zeiss Drive
Thornwood, NY 10594
www.zeiss.com/microscopy

Carl Zeiss Microscopy is part of the ZEISS Group, a leading organization of companies operating worldwide in the optical and optoelectronic industry. As the world’s only manufacturer of light, X-ray and electron/ion microscopes, we offer tailor-made systems for 3D imaging in biomedical research, life sciences and healthcare. A dedicated and well-trained sales force, an extensive support infrastructure and a responsive service team enable customers to use their ZEISS microscope systems to their full potential.
Cedarlane offers a myriad of biologicals and biochemicals to researchers and clinicians, providing products from virtually all of the World’s most renowned international manufacturers. Cedarlane works closely with both customers and suppliers offering a personalized and comprehensive experience to reflect the core value that customers are of the utmost importance. By providing a gateway to over six million global kits and reagents, customers have the advantage of freight consolidation and the convenience and cost savings inherent within. Cedarlane is the one-stop-shop for your research needs.

Cell Press is proud to publish Biophysical Journal for the Biophysical Society. Cell Press is a leading publisher of cutting-edge life, physical, and earth science research and reviews. We continue leading in the innovative presentation of exciting scientific discoveries, consistently focusing on delivering research that drives scientific discovery, spanning a wide range of scientific disciplines. Pick up the latest free journal copies of your favorite Cell Press journals, including Cell and Biophysical Journal.

Chroma Technology designs and manufactures optical interference filters using advanced sputtering technologies. Our high performance filters are intended for imaging applications ranging from widefield and confocal fluorescence microscopy, TIRF and super-resolution techniques to flow cytometry, high content screening multi-photon and Raman spectroscopy. Chroma also provides comprehensive technical and applications support.

Crayon Technologies Inc develops and provides innovative technologies that allow researchers to study detailed molecular and structural information of biological samples in three dimensions. Our products achieve unprecedented ultra-rapid and complete processing and immunostaining of 3-dimensional biological samples while preserving structural integrity. Through continuous technology development, we aim to develop an integrated platform for analyzing 3D molecular signatures of deep tissues and phenotyping various organ systems for clinical diagnostic purposes.

Dynamic Biosensors is a provider of instruments, consumables, and services in the field of analytical systems for the characterization of biomolecules and molecular interactions. Dynamic Biosensors commercializes switchSENSE® technology, a groundbreaking platform technology for the analysis of biomolecules with applications in R&D and drug development. The switchSENSE® technology is protected worldwide and only available through Dynamic Biosensors. The company is headquartered in the south of Munich, Germany and runs offices in the United States, the United Kingdom, Japan and Singapore.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecocyte Bioscience US LLC</td>
<td>728</td>
</tr>
<tr>
<td>111 Ramble Lane, Suite 109</td>
<td></td>
</tr>
<tr>
<td>Austin, TX 78745</td>
<td></td>
</tr>
<tr>
<td>ecocyte-us.com/</td>
<td></td>
</tr>
</tbody>
</table>

Ecocyte Bioscience supports research labs in Europe and USA with freshly prepared or mRNA/cDNA preinjected Xenopus Oocytes, lab chemicals and standard or customized cell and tissue media. Our mother company Lohmann Research Equipment (LRE) develops and distributes high quality products for biomedical research. Our multiple electrophysiological platform Synchroslice/Autoslice became a standard in brain and heart slice high throughput screening. Furthermore, as a renowned CRO, LRE offers electrophysiological contract research in Xenopus Oocytes (Preinjection, TEVC) and brain/heart slices.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEMENTS SRL</td>
<td>629</td>
</tr>
<tr>
<td>Viale G. Marconi 438</td>
<td></td>
</tr>
<tr>
<td>Cesena, IT 47521</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>elements-ic.com</td>
<td></td>
</tr>
</tbody>
</table>

Elements srl produces electronic instrumentation for the pico- and nano-scale measurements in the electrochemistry field, ranging from electrophysiology on live cells to bio- and solid-state nanopore sensing. Elements technology is based on custom microchip, designed by the company microelectronic engineers, that allows ultra-low noise current measurement starting from very low ranges (few hundreds of fA). Elements microchips allow to produce miniaturized devices that enable nanotechnologies to be used in the new generation of portable diagnostic instruments and nanoparticle analysis.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>2 Bain Square, Kirkton Campus</td>
<td></td>
</tr>
<tr>
<td>Livingston, EHS47DQ</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>www.edinst.com</td>
<td></td>
</tr>
</tbody>
</table>

Edinburgh Instruments are global providers of Molecular Spectroscopy solutions covering techniques such as Photoluminescence, Raman, UV-Vis, Transient Absorption, and pulsed lasers and LEDs. We are world leaders in cutting-edge fluorescence spectroscopic instrumentation. Over the years we have developed new and innovative products, winning many international designs, technology and export achievement awards. We excel in providing one-to-one comprehensive customer service and continue to meet the needs of our customers worldwide.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etaluma Inc</td>
<td>209</td>
</tr>
<tr>
<td>4360 Viewridge Avenue, Suite B</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92123</td>
<td></td>
</tr>
<tr>
<td>www.etaluma.com</td>
<td></td>
</tr>
</tbody>
</table>

Etaluma provides fluorescence microscopes for live cell imaging as well as an instrument development ecosystem of OEM microscopy components with compact multi-channel solid-state optics, maximum resolution and high sensitivity, and zero pixel shift. This system allows partners to easily configure their clinical or research instruments using a unifying gRPC layer running on Linux. Multiple options for cameras/sensors, LED wavelength control, automated XY, motorized Z for autofocus, and dimensions offer flexibility and customization.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLuicell AB</td>
<td>417</td>
</tr>
<tr>
<td>Arvid Wallgrens Backe 20</td>
<td></td>
</tr>
<tr>
<td>Gothenburg, 41346</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>www.fluicell.com</td>
<td></td>
</tr>
</tbody>
</table>

Fluicell is a public company that has commercialized single-cell discovery platforms for life science to study single cells, primarily in the field of drug development. Fluicell’s existing products are the research tools Biopen® and Dynaflow® Resolve, which allow researchers to investigate the effects of drugs on individual cells at a unique level of detail. Fluicell is developing a unique high-resolution bioprinting technology in both 2D and 3D under the name Biopixlar™. With this system, complex tissue-like structures can be created where positioning of individual cells can be controlled.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidic Analytics</td>
<td>331</td>
</tr>
<tr>
<td>Unit A, The Paddocks, Cherry Hinton Road</td>
<td></td>
</tr>
<tr>
<td>Cambridge, CB1 8DH</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>www.fluidic.com</td>
<td></td>
</tr>
</tbody>
</table>

We envision a world where information about proteins and their behavior transforms our understanding of how the biological world operates, and helps all of us make better decisions about how we diagnose diseases, develop treatment, and maintain our personal well-being.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluxion Biosciences</td>
<td>320</td>
</tr>
<tr>
<td>1600 Harbor Bay Parkway, Suite 150</td>
<td></td>
</tr>
<tr>
<td>Alameda, CA 94502</td>
<td></td>
</tr>
<tr>
<td>www.fluxionbio.com</td>
<td></td>
</tr>
</tbody>
</table>

Using proprietary microfluidic approaches, Fluxion manufactures the IonFlux Mercury automated patch clamp system. IonFlux is used all over the world in industry and academic laboratories. It is well established in ligand and voltage gated ion channel screening. Its unique in-plate perfusion, providing continuous flow, allows for the simplification and speed of otherwise complicated assays. Fluxion’s other developments include liquid biopsy workflows (IsoFlux CTC Liquid Biopsy System and Spotlight NGS Oncology Panels) as well as BioFlux systems for cell-cell interaction analysis.

Electron microscopy sciences will have on display their complete line of accessories, chemicals, supplies and equipment for all fields of microscopy, biological research and general laboratory requirements. As well as our full line of tools, tweezers and dissecting equipment.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene Tools LLC</td>
<td>215</td>
</tr>
<tr>
<td>1001 Summerton Way Philomath, OR 97370 www.gene-tools.com</td>
<td></td>
</tr>
<tr>
<td>Gene Tools manufactures Morpholino oligos for blocking translation, modifying splicing or inhibiting miRNA activity. Morpholinos are used in cell cultures, embryos or, as Vivo-Morpholinos, in adult animals. Morpholinos are effective, specific, stable and non-toxic. Backed by Ph.D.-level customer support, Gene Tools designs and synthesizes Morpholinos and offers cytosolic delivery options.</td>
<td></td>
</tr>
<tr>
<td>GoldBio</td>
<td>816</td>
</tr>
<tr>
<td>1328 Ashby Road St. Louis, MO 63132 www.goldbio.com</td>
<td></td>
</tr>
<tr>
<td>GoldBio has been committed to researchers around the world by providing our customers with the best research reagents. GoldBio's line of high-quality reagents include products for DNA and protein research, cloning, cell culture, bioluminescence and so much more.</td>
<td></td>
</tr>
<tr>
<td>Hamamatsu Corporation</td>
<td>700</td>
</tr>
<tr>
<td>360 Foothill Road Bridgewater, NJ 08807 www.hamamatsu.com</td>
<td></td>
</tr>
<tr>
<td>Hamamatsu Corporation is the North American subsidiary of Hamamatsu Photonics K.K. (Japan), a leading manufacturer of devices for the generation and measurement of infrared, visible, and ultraviolet light. We offer photomultiplier tubes and other low-light detectors, image sensors, light sources, and cameras (sCMOS, CCD, and EM-CCD) for biological applications.</td>
<td></td>
</tr>
<tr>
<td>HEKA</td>
<td>302</td>
</tr>
<tr>
<td>84 October Hill Road Holliston, MA 01746 www.heka.com</td>
<td></td>
</tr>
<tr>
<td>HEKA provides complete solutions for electrophysiology and electrochemistry applications. We deliver complete set-ups with optional installation. HEKA provides hardware such as Patch-Clamp Amplifiers, Potentiostat and Galvanostat Amplifiers, entire E-chem scanning probes and much more! Our new PATCHMASTER NEXT software features a brand-new user-interface that is specifically designed for modern computer operating systems, making it easy to use for beginners and HEKA-veterans alike. Visit us to learn how HEKA can be a trusted partner in your laboratory.</td>
<td></td>
</tr>
<tr>
<td>Hellma USA</td>
<td>332</td>
</tr>
<tr>
<td>80 Skyline Drive Plainview, NY 11803</td>
<td></td>
</tr>
<tr>
<td>Hellma is the world's leading manufacturer of cells and optical components for optical analysis. For 97 years, since Hellma GmbH was founded in 1922 in Müllheim, southern Germany, our commitment has been to provide the best possible quality in order to guarantee the most precise analytical results. Welcome to the fine art of precision!</td>
<td></td>
</tr>
<tr>
<td>Hinds Instruments Inc</td>
<td>830</td>
</tr>
<tr>
<td>7245 NE Evergreen Parkway Hillsboro, OR 97124 www.hindsinstruments.com</td>
<td></td>
</tr>
<tr>
<td>Hinds Instruments is the manufacturer of the Photoelastic Modulator, the PEM100 and soon to be released PEM200. The PEM is used in commercial CD and VCD systems and bench-top laboratory research in CD, VCD, fluorescence, and other spectroscopic applications. Benefits for using the PEM are the wide spectral range (DUV to FIR), high sensitivity (10^-6), and large useful apertures. Stop by our booth for more information on the new, fully digital, PEM200.</td>
<td></td>
</tr>
<tr>
<td>ibidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>2920 Marketplace Drive, Suite 102 Fitchburg, WI 53719 ibidi.com</td>
<td></td>
</tr>
<tr>
<td>ibidi's position as a leader for functional cell-based assay technologies is based on more than 18 years of experience and a passion for quality and service. The ibidi product portfolio provides the largest and most sophisticated selection of microscopy slides worldwide. Applications range from standard microscopy techniques for high quality and super resolution imaging to more advanced cell-based assays including migration and chemotaxis, cell culture under flow conditions, and angiogenesis. Moreover, ibidi has an extended expertise in solutions for stage top incubation and perfusion.</td>
<td></td>
</tr>
<tr>
<td>HORIBA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>20 Knightsbridge Road Piscataway, NJ 08854 www.horiba.com/scientific</td>
<td></td>
</tr>
<tr>
<td>HORIBA Scientific offers the most sensitive, flexible, simple, affordable steady state & lifetime fluorometers, modular, expandable open architecture, tabletop systems & ion ratio imaging microscopy solutions, software & accessories. Duetta offers simultaneous Fluorescence/Absorbance from UV to NIR, uses CCD detection for fluorescence spectral acquisitions, & offers enhanced dynamic range & precise multivariate analysis capabilities for molecular fingerprinting. New FLUMera camera enables fluorescence lifetime imaging at real-time video rates for up to 24,576 simultaneous lifetime measurements.</td>
<td></td>
</tr>
<tr>
<td>Company Name</td>
<td>Booth Number</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ID Quantique SA</td>
<td>800</td>
</tr>
<tr>
<td>Carouge/Geneva, 1227</td>
<td>34</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>www.idquantique.com</td>
<td></td>
</tr>
<tr>
<td>IDQ's visible & NIR (near infrared) SPAD detectors, superconducting nanowire SNOPD systems, and picosecond timing electronics are used in membrane biophysics and single cell dynamics with TCSPC. TCSPC is at the heart of many methods in photoluminescence, phosphorescence and fluorescence lifetime (e.g. FLIM, FRET) and fluorescence correlation spectroscopy (FCS, etc.) and is applied to e.g. protein-protein, receptor-ligand, RNA-protein, and biopolymer interactions, in studies of conformational changes in membrane channels & other heterostructures, and with quantum dots and other nanomaterials.</td>
<td></td>
</tr>
<tr>
<td>IonOptix</td>
<td>703</td>
</tr>
<tr>
<td>396 University Avenue</td>
<td></td>
</tr>
<tr>
<td>Westwood, MA 02090</td>
<td></td>
</tr>
<tr>
<td>www.ionoptix.com</td>
<td></td>
</tr>
<tr>
<td>IonOptix manufactures high-performance fluorescence and muscle function data acquisition and analysis systems. Well known for our popular Cardiomyocyte Calcium and Contractility System, we’re proud to offer our new MultiCell high-throughput system for fast calcium and contractility data acquisition and analysis in isolated myocytes. Always innovating, IonOptix now offers calcium and force measurements in whole muscle as well as isolated cardiomyocytes, and our C-Stretch enables combined stretch and electrical stimulation in cultured cells – easy-to-use with the new C-Pace Navigator software.</td>
<td></td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>1602 Newton Drive</td>
<td></td>
</tr>
<tr>
<td>Champaign, IL 61822</td>
<td></td>
</tr>
<tr>
<td>www.issem.com</td>
<td></td>
</tr>
<tr>
<td>For over 30 years, ISS has been a pioneer in producing scientific instrumentation. Applications include FRET, FLIM, FCS, FCCS, PCH, STED and all FFS techniques. Experts in absolute measurements of oxygen saturation in brain and muscle tissue. We host a variety of modular components that complement the instrumentation: laser diodes, LEDs, high pressure cell and fiber optic sensors among an extensive line of accessories; data acquisition cards for FCS and FLIM, laser launchers, galvo-scanning mirrors and detector units. Stop by our booth to learn more.</td>
<td></td>
</tr>
<tr>
<td>JASCO</td>
<td>617</td>
</tr>
<tr>
<td>JASCO will be exhibiting a range of biophysical characterization tools including Circular Dichroism, Fluorescence and FTIR instrumentation. The JASCO J-1000 Series Spectrophotometers provide an optical bench specifically designed for high sensitivity measurements in the far- and near-UV regions. Temperature control systems can be coupled with multi-position cells to run thermal melts. Automated high-throughput CD can obtain measurements on up to 192 samples without user intervention, saving both time and money. Microsampling cells provide measurements on sample volumes as low as 2 microliters.</td>
<td></td>
</tr>
<tr>
<td>JASCO</td>
<td></td>
</tr>
<tr>
<td>28600 Mary’s Court</td>
<td></td>
</tr>
<tr>
<td>Easton, MD 21601</td>
<td></td>
</tr>
<tr>
<td>www.jascoinc.com</td>
<td></td>
</tr>
<tr>
<td>The Journal of General Physiology (JGP) publishes mechanistic and quantitative cellular and molecular physiology of the highest quality. All editorial decisions are made by research-active scientists. Established in 1918, JGP recently celebrated 100 years. JGP publishes 12 issues per year.</td>
<td></td>
</tr>
<tr>
<td>Company Name</td>
<td>Booth Number</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>KinTek Corporation</td>
<td>401</td>
</tr>
<tr>
<td>7604 Sandia Loop</td>
<td></td>
</tr>
<tr>
<td>Austin, TX 78735</td>
<td></td>
</tr>
<tr>
<td>www.kintekcorp.com</td>
<td></td>
</tr>
</tbody>
</table>

KinTek is the world leader for the highest quality state-of-the-art comprehensive kinetic analysis. We offer premier research instruments supported by first-class service. We will show our new Auto-Stopped-Flow, offering the highest signal using the smallest sample volumes, and our Rapid Chemical/Freeze-Quench-Flow instruments. We also will introduce the new book by our founder, Kenneth A. Johnson, “Kinetic analysis for the New Enzymology.” Advances in KinTek Explorer software for dynamic simulation and fitting of kinetic data will be revealed – available for PC and Mac.

<table>
<thead>
<tr>
<th>Laboratory for Fluorescence Dynamics</th>
<th>315</th>
</tr>
</thead>
<tbody>
<tr>
<td>3120 National Sciences II, University of California, Irvine</td>
<td></td>
</tr>
<tr>
<td>Irvine, CA 92697</td>
<td></td>
</tr>
<tr>
<td>www.lfd.uci.edu</td>
<td></td>
</tr>
</tbody>
</table>

The Laboratory for Fluorescence Dynamics (LFD) is a national research resource center for biomedical fluorescence spectroscopy, supported by the National Institute of Health (NIGMS) and the University of California, Irvine (UCI). Main activities: Services and Resources: state-of-the-art lab for fluorescence measurements, microscopy, spectroscopy. Research and Development: design, test, and implement advances in the technology of hardware, software, biomedical applications. Training and Dissemination: disseminates knowledge of fluorescence spectroscopic principles, instrumentation, applications.

<table>
<thead>
<tr>
<th>Larodan AB</th>
<th>532</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nobels väg 16</td>
<td></td>
</tr>
<tr>
<td>Solna, 17165</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>www.larodan.com</td>
<td></td>
</tr>
</tbody>
</table>

Larodan makes a comprehensive range of research grade lipids for use as analytical standards and reagents with customers all over the world. Our products include all classes of neutral and polar lipids, from simple fatty acids and methyl esters to complex oxylipins, glycerides and phospholipids. We also provide specialty products to the Nordic market, in collaboration with other international research chemicals companies. Our facilities are located at the Karolinska Institute in Stockholm, Sweden with a US office in Michigan.

<table>
<thead>
<tr>
<th>Leica Microsystems</th>
<th>708</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700 Leider</td>
<td></td>
</tr>
<tr>
<td>Buffalo Grove, IL 60089</td>
<td></td>
</tr>
<tr>
<td>www.leica-microsystems.com</td>
<td></td>
</tr>
</tbody>
</table>

Leica Microsystems develops and manufactures microscopes and scientific instruments for the analysis of microstructures and nanostructures. The company is one of the market leaders in compound and stereo microscopy, digital microscopy, confocal laser scanning microscopy, electron microscopy sample preparation, optical coherence tomography, and surgical microscopes.

<table>
<thead>
<tr>
<th>Linnowave</th>
<th>719</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henkestrasse 91</td>
<td></td>
</tr>
<tr>
<td>Erlangen, 91052</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>www.linnowave.com</td>
<td></td>
</tr>
</tbody>
</table>

Linnowave is a startup company from Erlangen (Germany) caring about precise and dynamic temperature control in optical high-resolution microscopy. Our newly developed micro heating system VAHEAT is designed to measure and actively control the temperature in your field of view even when working with immersion medium. Its compact and versatile design ensures compatibility with almost all commercially available upright and inverted microscopes while providing unprecedented temperature precision. Exploit the capabilities of VAHEAT to design your own temperature sensitive experiments.

<table>
<thead>
<tr>
<th>Live Cell Instrument</th>
<th>333</th>
</tr>
</thead>
<tbody>
<tr>
<td>4038 Hagye-technotown, 10, NoWon Ro 15gil, Nowon Gu Seoul, 01988</td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td></td>
</tr>
<tr>
<td>www.lcibio.com</td>
<td></td>
</tr>
</tbody>
</table>

Live Cell Instrument (LCI), found in 2008, is highly experienced company specialized in developing and manufacturing scientific instruments and laboratory consumables to bio industry. Our products are dedicated to the technology of live cell microscopy including ‘Bio Instruments’ such as Automated All-in-one Imaging System, Microscope Incubator System, Anti-vibration Platform, IVF (In Vitro Fertilization), Gas controller, Heating Glass, Heating Plate and Adapters; ‘Bio Consumables’ such as Magnetic Imaging Chamber, Customized Well Plates, Dishes and so on.

<table>
<thead>
<tr>
<th>LUMICKS</th>
<th>101</th>
</tr>
</thead>
<tbody>
<tr>
<td>552 Massachusetts Ave, Suite 204</td>
<td></td>
</tr>
<tr>
<td>Cambridge, MA 02139</td>
<td></td>
</tr>
<tr>
<td>www.lumicks.com</td>
<td></td>
</tr>
</tbody>
</table>

LUMICKS is the leading supplier of Dynamic Single-Molecule instruments for the study of molecular motor activity, protein folding and conformational changes, DNA/RNA-protein interactions, and the properties of protein droplets. To decipher complex molecular interactions, you need to be able to observe the same biological process from multiple points of view. Our groundbreaking instrument, the C-Trap™ Optical Tweezers – Fluorescence & Label-free Microscopy, enables for the first time the analysis of complex dynamic details related to the behavior and interaction of single molecules.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>2524 Todd Drive</td>
<td></td>
</tr>
<tr>
<td>Madison, WI 53713</td>
<td></td>
</tr>
<tr>
<td>www.madcitylabs.com</td>
<td></td>
</tr>
</tbody>
</table>

For over 20 years, Mad City Labs has been the trusted name in designing and manufacturing nanoscopy systems and precision microscopy instruments for biophysicists. Our products include Piezo Nanopositioners, Microscope stages, Modular motion control, Atomic Force Microscopes (AFM), Near Field Scanning Optical Microscopes (NSOM), and RM21® Single Molecule Microscopes.

Our nanopositioners feature proprietary PicoQ® sensors with ultra-low noise & high stability performance. PicoQ® sensors combined with our innovative flexure guided stage designs leads to outstanding stability & sub-nanometer precision for super resolution microscopy, atomic force microscopy, optical/magnetic tweezers, and high resolution imaging. When paired with our high precision micropositioning systems they are the ideal building blocks for nanoscopy applications. Mad City Labs AFMs achieve atomic step resolution by leveraging the performance of our closed loop nanopositioners. Affordable and available in a variety of configurations with automated software and calibration.

The RM21® MicroMirror TIRF microscope is a unique multi-spectral TIRF microscope. The MicroMirror TIRF spatially segregates the excitation wavelengths leading to improved signal-to-noise ratios and efficient data collection. Ideal for Colocalization single molecule spectroscopy, smFRET, and dark-field TIRF.

RM21® single molecule microscopes are designed for advanced fluorescence microscopy and are nanopositioner-ready to facilitate nanoscopy methods. Advantages: direct optical pathway access, high stability & precision alignment, flexible configurations, and TIRF module options.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malvern Panalytical</td>
<td>431</td>
</tr>
<tr>
<td>117 Flanders Road</td>
<td></td>
</tr>
<tr>
<td>Westbourough, MA 01581</td>
<td></td>
</tr>
<tr>
<td>www.malverpanalytical.com</td>
<td></td>
</tr>
</tbody>
</table>

Malvern Panalytical is a leader in analytical characterization, creating expert solutions for the challenges associated with maximizing productivity, developing better quality products and getting them to market faster. We provide superior, customer-focused solutions and services which deliver tangible economic impact through chemical, biophysical and structural analysis.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matreya LLC</td>
<td>405</td>
</tr>
<tr>
<td>2178 High Tech Road</td>
<td></td>
</tr>
<tr>
<td>State College, PA 16803</td>
<td></td>
</tr>
<tr>
<td>www.matreya.com/</td>
<td></td>
</tr>
</tbody>
</table>

Matreya is a manufacturer of high purity lipids for Life Science Research. We offer gangliosides, sphingolipids, glycolipids, ceramides, phospholipids, enzyme inhibitors, fluorescent/isotope/biotin labeled glycolipids, tocopherols, tocotrienols, fatty acids, hydroxy fatty acids, reference mixtures, and custom synthesis. When you require quality and consistency, along with rapid delivery, you may rely on us. Matreya is now a part of Cayman Chemical to better serve the lipid community.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDPI IJMS</td>
<td>221</td>
</tr>
<tr>
<td>St. Alban-Anlage 66</td>
<td></td>
</tr>
<tr>
<td>Basel, 4052</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>www.mdpi.com/journal/ijms</td>
<td></td>
</tr>
</tbody>
</table>

International Journal of Molecular Sciences is an international peer-reviewed open access journal providing an advanced forum for biochemistry, molecular and cell biology, molecular biophysics, molecular medicine, and all aspects of molecular research in chemistry, and is published semi-monthly online by MDPI.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mizar Imaging</td>
<td>820</td>
</tr>
<tr>
<td>7 MBL Street, Lillie 220</td>
<td></td>
</tr>
<tr>
<td>Woods Hole, MA 02543</td>
<td></td>
</tr>
<tr>
<td>www.mizarimaging.com</td>
<td></td>
</tr>
</tbody>
</table>

Mizar Imaging is proud to introduce the Tilt, the first light sheet imaging system that is a simple add-on to most inverted microscopes. The key benefit of light-sheet imaging is significantly reducing the photobleaching and phototoxicity of your sample and the Tilt excels at this. When imaging with the Tilt, cells can be kept alive for hours and even days. This is aided by an optional incubation chamber for the Tilt, which allows for precise control of temperature (heating and cooling available), CO2 and humidity.
Molecular Devices is one of the world's leading providers of high-performance bioanalytical measurement systems, software and consumables for life science research, pharmaceutical and biotherapeutic development. Included within a broad product portfolio are platforms for high-throughput screening, genomic and cellular analysis, colony selection and microplate detection. These leading-edge products enable scientists to improve productivity and effectiveness, ultimately accelerating research and the discovery of new therapeutics.

Molecular Vista provides tools that probe and understand matter at the molecular level through quantitative visualization. Its flagship product, VistaScope, is a flexible hybrid atomic force microscope (AFM) and optical spectroscopy platform for studying material & biological systems with chemical specificity and nanometer spatial resolution. VistaScope is equipped with patented photo-induced force microscopy (PiFM) which can resolve the nanometer-scale distribution of chemical species in multi-component systems, revealing an unprecedented and spectacular molecular vista to the researcher.

Montana Molecular develops genetically-encoded fluorescent biosensors for drug discovery and to observe and measure cell signaling with high spatiotemporal resolution. Detection is compatible with fluorescence imaging systems, microscopes, and automated plate readers. Each biosensor is packaged in a viral vector for detection in any cell type and can be used to make direct measurements of arrestin CAMP, DAG, Ca²⁺, cGMP, PIP2, PIP3 and ER stress. Custom BacMam vector production services are available to enable efficient expression of any gene including ion channels and other large constructs.

Multi Channel Systems provides scientific equipment for in vitro and in vivo electrophysiological research including MEA-Systems for extracellular recordings using microelectrode arrays, automated patch clamp systems, and robots for TEVC in Xenopus oocytes. Our automated devices, Robocyte2 and PatchServer are ideal for time saving allowing you to focus on what really matters, research. Visit our booth to see why our over 20 years of experience and international distribution network have made us a global market leader in the field of non-clinical electrophysiology with microelectrode arrays.

Nanon is a leading provider of automated patch clamp systems with throughput capabilities ranging from 50 to 20,000 high quality dp/day, in formats from 1 to 384 recording channels. Since 2002, Nanion expanded its product range to in vitro systems for membrane pump/transporter, and bilayer recordings, and confluency and contractility measurements from cells monolayers (impedance/EFP). Join us at Booth 514 to discover Nanion’s newest automated patch clamp family additions (SyncroPatch 384i, Dynamite8 and Port-a-Patch mini), and the newest add-on for measuring true contractility (FLEXcyte 96).

Don’t forget to pick up a Passport Competition booklet inside the entrance of the Exhibit Hall and enter to win a Bose Portable Bluetooth Speaker!
NeoBiosystems Inc designs and manufactures automated patch clamp and two electrode voltage clamp (TEVC) products. These products include automated manipulators, pressure controllers, and integrated patch clamp and TEVC systems. These computer-controlled systems improve the success rate of making seals in patch clamp and increase the throughput for two-electrode voltage clamps. The systems are also less expensive than the traditional method, and can reach high success rates in making gig ohm seals even for beginners. They can be used on any kind of cells and tissues.

Nicoya is a Canadian biotechnology company whose mission is to extend human life by helping scientists succeed. Using nanotechnology and digital microfluidics, Nicoya created Alto™ - the world’s first fully automated, high-throughput, benchtop SPR instrument. Nicoya supports hundreds of leading institutions and organizations to accelerate their next big discovery.

Nikon Instruments Inc is a world leader in the development and manufacture of optical and digital imaging technology. Nikon provides complete optical imaging systems, offering cutting-edge microscopes with optimal performance and expandability, from basic documentation to confocal, and superresolution, powered by NIS-Elements imaging software.

The National Center for NMR Data Processing and Analysis (NMRbox) disseminates and supports NMR software and a cloud-based platform featuring substantial computational resources.

The Center on Macromolecular Dynamics by NMR (CoMD/NMR) provides advanced NMR spectroscopic and computational methods for characterizing protein and nucleic acid conformational dynamics.

The National Resource for Advanced NMR Technology advances the sensitivity and spectral resolution of NMR at high magnetic fields through development of state-of-the-art probes and techniques.

OLIS Inc, On-Line Instrument Systems, reduce sample preparation & clarification when you have an OLIS CLARiTY UV/Vis for absorbance and fluorescence spectroscopy. True in situ spectroscopy -- keeping sample & environment intact -- is successful on nanoparticles to living cells. The small & affordable OLIS CPL Solo supports study of chiral molecules in their excited state. Stopped-flow kinetics, Phosphorescence Lifetime, Spectroelectrochemistry, Circular Dichroism (CD), & upcycling Cary 14 & 17, HP 8452 & 8453, and PE 983 IR specs complete a product line rich with brilliant breakthroughs, ours & those you can make with them.
Olympus America Inc 604
48 Woerd Avenue
Waltham, MA 02453
www.olympus-lifescience.com

Olympus is a global technology leader, crafting innovative optical and digital solutions in medical technologies; life sciences; industrial solutions; and cameras and audio products. Throughout our nearly 100-year history, Olympus has focused on being true to society and making people’s lives healthier, safer and more fulfilling. Our life sciences business is dedicated to meeting and exceeding the evolving needs and expectations of life science professionals through a comprehensive range of clinical, educational and research microscopes and microscope systems.

OriginLab Corporation 432
1 Roundhouse Plaza, Suite 303
Northampton, MA 01060
www.originlab.com

Origin is an industry-leading graphing and data analysis software for science and engineering. Features include 100+ customizable 2D, 3D, statistical and specialized graphs, batch plotting, curve fitting, peak analysis, signal processing, advanced statistics, result recalculation on data or parameter change, batch analysis, and programming support for C, R, and Python.

Oxford Instruments America Inc 414
300 Baker Avenue, Suite 150
Concord, MA 01742
www.afm.oxinist.com

Oxford Instruments offers a range of microanalytical techniques, such as EDS and EBSD, which provide critical information to complement conventional imaging-based techniques. Our analytical systems are optimized for applications in the bio and life sciences, improving sensitivity, throughput and broadening the range of biological applications.

PCO America 621
6930 Metroplex Drive
Romulus, MI 48174
www.pco-tech.com

PCO is a leading specialist and pioneer in cameras and optoelectronics with more than 30 years of expert knowledge and experience of developing and manufacturing high-end imaging systems. The company’s cutting edge sCMOS and high-speed cameras are used in scientific and industrial research, automotive testing, quality control, metrology and a large variety of other applications all over the world.

Photometrics 615
3440 E Britannia Drive, Suite 100
Tucson, AZ 85706
www.photometrics.com

Founded in 1978, Teledyne Photometrics is now part of the Teledyne Imaging Group. Teledyne Photometrics is the world’s premier designer and manufacturer of high-performance sCMOS, EMCCD and CCD cameras for life science research. The original architect of the world’s first scientific-grade microscopy EMCCD camera, Teledyne Photometrics maintains its leadership role with the release of the Prime 95B, the first sCMOS camera with 95% quantum efficiency. Teledyne Photometrics also offers comprehensive OEM support, including fully characterized, cost-efficient imaging systems and components.

PI (Physik Instrumente) 610
16 Albert Street
Auburn, MA 01501
www.pi-usa.us

PicoQuant Photonics 609
9 Trinity Drive
West Springfield, MA 01089
www.picquant.com

Product lines include Pulsed Diode Lasers, Time-Correlated Single Photon Counting (TCSPC) electronics and detectors, fluorescence lifetime spectrometers, time-resolved fluorescence microscopes and upgrade kits for Laser Scanning Microscopes. Applications include Single Molecule Spectroscopy, Fluorescence Lifetime Imaging (FLIM), Fluorescence Resonance Energy Transfer (FRET), Fluorescence Correlation Spectroscopy (FCS), superresolution microscopy.

PIEZOCONCEPT 732
15 Rue du Bocage
Lyon, 69008
France
www.piezoconcept.com

PIEZOCONCEPT is the leading provider of nanopositioners dedicated to applications such as superresolution microscopy, optical trapping and atomic force microscopy. Our customers include many leading scientists engaged in leading edge research at world class universities and institutes. We developed a range of ultra-stable nanopositioner able to meet a wide range of microscopy applications with significant advantages over the currently available nanopositioners. As one of our biggest advantages, the sensor we use has exceptionally high signal, leading to picometric stability.

Quantum Design 205
10307 Pacific Center Court
San Diego, CA 92121
www.qdusa.com

Since its inception in 1982, Quantum Design International (a privately held corporation) has developed and manufactured automated temperature and magnetic field testing platforms for materials characterization. These systems offer a variety of measurement capabilities and are in widespread use in the fields of physics, chemistry, biotechnology, materials science, nanotechnology, and quantum information research.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Northwest Inc</td>
<td>200</td>
</tr>
<tr>
<td>22910 E Appleway Avenue, Suite 4</td>
<td></td>
</tr>
<tr>
<td>Liberty Lake, WA 99019</td>
<td></td>
</tr>
<tr>
<td>www.qnw.com</td>
<td></td>
</tr>
<tr>
<td>Rapp OptoElectronic GmbH</td>
<td>710</td>
</tr>
<tr>
<td>Gehlenkamp 9a</td>
<td></td>
</tr>
<tr>
<td>Hamburg, 22559</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>www.rapp-opto.com</td>
<td></td>
</tr>
<tr>
<td>Quantum Northwest builds Peltier-based, temperature-controlled cuvette holders for spectroscopy. Our 18 models of cuvette holder are optimized for UV-Vis absorption, fluorescence, circular dichroism, Raman and FTIR. We make single cell holders as well as multi-cell cuvette changers. We are particularly adept at configuring these models of cuvette holder for many different spectrometer designs. We make stand-alone cuvette holders for laser spectroscopy and for use with fiber optic spectroscopy systems. New products are now available for neutron scattering.</td>
<td></td>
</tr>
<tr>
<td>Refeyn</td>
<td>109</td>
</tr>
<tr>
<td>1 Electric Avenue, Ferry Hinksey Road</td>
<td></td>
</tr>
<tr>
<td>Oxford, OX2 0BY</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>www.refeyn.com</td>
<td></td>
</tr>
<tr>
<td>Refeyn – Weighing molecules with light The pioneer in mass photometry, Refeyn produces a disruptive new generation of analytical instruments that measure the mass of individual molecules directly in solution. Mass photometry transforms our ability to characterize the composition, structure and dynamics of biomolecules, revealing the true behavior of molecules in their native environment. Simply, Refeyn instruments can show sample purity and homogeneity, analyze biomolecular complex assembly or disassembly, quantify strength and kinetics of complex molecular interactions, and much more.</td>
<td></td>
</tr>
<tr>
<td>Royal Society Publishing</td>
<td>330</td>
</tr>
<tr>
<td>6-9 Carlton House Terrace</td>
<td></td>
</tr>
<tr>
<td>London, SW1Y 5AG</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>www.royalsocietypublishing.org</td>
<td></td>
</tr>
<tr>
<td>The Royal Society journal Interface, edited by Prof Richard Cogdell, Univ of Glasgow, publishes research and reviews. Its sister journal Interface Focus, edited by Prof Russell Foster FRS, Univ of Oxford, publishes themed issues. Our authors benefit from constructive and timely peer review, where both the physical and life sciences are considered equally; open access options; high production standards; high levels of article usage rates; and promotion by a dedicated press office. To find out more, visit booth 330, where our representative Tim Holt will be happy to answer your questions.</td>
<td></td>
</tr>
<tr>
<td>SB Drug Discovery</td>
<td>531</td>
</tr>
<tr>
<td>West of Scotland Science Park</td>
<td></td>
</tr>
<tr>
<td>Glasgow, G20 OXA</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>www.sbdrugdiscovery.com</td>
<td></td>
</tr>
<tr>
<td>SB Drug Discovery is a contract research organization specializing in cell line generation and biochemical & cell-based screening assays against targets such as ion channels, GPCRs, phosphodiesterases and nuclear receptors. SB has an extensive portfolio of ion channel and GPCR cell lines and assays available for HTS and medicinal chemistry campaigns.</td>
<td></td>
</tr>
<tr>
<td>Company Name</td>
<td>Booth Number</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ScienCell Research Laboratories</td>
<td>219</td>
</tr>
<tr>
<td>1610 Faraday Avenue</td>
<td></td>
</tr>
<tr>
<td>Carlsbad, CA 92008</td>
<td></td>
</tr>
<tr>
<td>sciencellonline.com</td>
<td></td>
</tr>
<tr>
<td>ScienCell Research Laboratories is an expanding biotechnology company established in 1999. Our mission is to research and develop cell products for experimental use. ScienCell provides a variety of high quality normal human and animal cells, cell culture media and reagents, gene analysis tools, cell-derived molecular biology products, cell-based assay kits, and stem cell products for the research community. We offer specialty medium designed to selectively promote unique cell growth, including STEMium™.</td>
<td></td>
</tr>
<tr>
<td>Siskiyou Corporation</td>
<td>141</td>
</tr>
<tr>
<td>110 SW Booth Street</td>
<td></td>
</tr>
<tr>
<td>Grants Pass, OR 97526</td>
<td></td>
</tr>
<tr>
<td>www.siskiyou.com</td>
<td></td>
</tr>
<tr>
<td>Siskiyou Corporation manufacures micromanipulators, motion control devices, tissue slicers, translation stages, probe clamps, construction hardware, adjustable platforms, tilt tables, and other laboratory equipment for microbiological research and general experimenting. Siskiyou Corporation carries a full line of micromanipulators: coarse manual, Huxley style, hydraulic, and motorized.</td>
<td></td>
</tr>
<tr>
<td>Sophion Bioscience A/S</td>
<td>600</td>
</tr>
<tr>
<td>Balturpvej 154</td>
<td></td>
</tr>
<tr>
<td>Ballerup, 2750</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td>Sophion was founded almost 20 years ago by a group of passionate electrophysiologists, with the purpose of making patch clamping objective and independent of user skills to provide faster, more accurate and objective patch clamping results. With our products QPatch and Qube we cover most throughput needs and provide the user with real whole-cell patch-clamp data based on true gigaseals. With our technical, biological and application support we help our partners achieving their targets and ensuring uncompromised data quality in a user-friendly environment from assay setup to data analysis.</td>
<td></td>
</tr>
<tr>
<td>St. Jude Children's Research Hospital</td>
<td>329</td>
</tr>
<tr>
<td>262 Danny Thomas Place</td>
<td></td>
</tr>
<tr>
<td>Memphis, TN 38105</td>
<td></td>
</tr>
<tr>
<td>Sophion Bioscience A/S</td>
<td>600</td>
</tr>
<tr>
<td>Balturpvej 154</td>
<td></td>
</tr>
<tr>
<td>Ballerup, 2750</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td>Sophion was founded almost 20 years ago by a group of passionate electrophysiologists, with the purpose of making patch clamping objective and independent of user skills to provide faster, more accurate and objective patch clamping results. With our products QPatch and Qube we cover most throughput needs and provide the user with real whole-cell patch-clamp data based on true gigaseals. With our technical, biological and application support we help our partners achieving their targets and ensuring uncompromised data quality in a user-friendly environment from assay setup to data analysis.</td>
<td></td>
</tr>
<tr>
<td>Strax 428</td>
<td></td>
</tr>
<tr>
<td>10060 Carroll Canyon Road, Suite 100</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92131</td>
<td></td>
</tr>
<tr>
<td>strexcell.com</td>
<td></td>
</tr>
<tr>
<td>Strax manufactures cyclic cell stretching instruments, used in mechanotransduction experimentation on cardiomyocytes and lung cells. Our most popular products are our Cell Stretching Systems for uniaxial and biaxial stretch used for various mechanostimuli and stretch experiments. These devices mimic cell strain and create an environment similar to that of in-vivo physiology. Microscope-mountable options are available for enhanced live cell-strain imaging. Strax also features a device that applies pressurizing stimulation to cardiac cells, kidney cells, etc. Contact us for more information.</td>
<td></td>
</tr>
</tbody>
</table>

Biophysical Society
Quality. Precision. Reliability. For over 45 years, Sutter Instrument has been a global leader in equipment for neuroscience research, setting the highest standards for product performance and innovation. Stop by and let us show you the dPatch®, our fully integrated digital patch clamp amplifier and SutterPatch data analysis software suite for single channel or whole cell recording. The BOB open platform upright microscope ideal for slice electrophysiology, the TRIO MPC-100 a highly-stable 3-axis manipulator system with synthetic 4th axis that can be set in software as any angle between 0 and 90 degrees for diagonal movement. A stainless steel manipulator can be coupled with the controller for increased stability. The Lambda 421 and Lambda OBC Optical Beam Combiners are ideal for combining separate light sources into a single output beam.

T&T Scientific Corporation 530
201 E Moody Avenue
Knoxville, TN 37920
www.ttscientific.com

T&T Scientific offers variety of pharmaceutical leading edge patent-protected technology products for lipid nanoparticles (LNPs) and liposomes small to large scale manufacturing. T&T has developed its contract service capabilities in 15,000 square foot state of the art facility with a team of highly knowledgable scientists and engineers to support clients with liposomes and LNPs formulation and methods developments, research, analytical and manufacturing services. T&T offers these services in both pre-clinical developments and commercial products to pharmaceutical companies and research labs.

TA Instruments 314
159 Lukens Drive
New Castle, DE 19720
www.tainstruments.com

At TA Instruments we believe in offering solutions through quantitative understanding and multi-parameter analysis. By measuring native systems via their heat production, we enable scientists to address both questions of “how stable” and “how fast”, two tenets of a chemical system. Our Affinity ITC and Nano DSC, both with automated options, are high precision calorimeters for label-free measurements of binding interactions, biomolecular structure and stability.

TCI America 419
9211 N Harborgeate Street
Portland, OR 97203
www.TClchemicals.com

TCI is a leading supplier of high quality organic reagents, offering more than 28,000 chemicals. Consistency and quality of all of TCI’s products are maintained through our extensive QC process. We are committed to assisting your research by providing reliable reagents for synthetic chemistry, life science, materials science, and analytical chemistry. With 95% of our catalog stocked at our warehouses in the USA and Japan, you can count on TCI to have product ready to ship when you need it. Through custom synthesis and bulk services, we can help you scale up as needed.

The Company of Biologists 814
Bidder Building, Station Road,
Histon Cambridge, Cambridge CB24 9LF
www.biologists.com

The Company of Biologists is a not for profit publishing organisation dedicated to supporting and inspiring the biological community. The Company publishes five specialist peer-reviewed journals: Development, Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open. It offers further support to the biological community by facilitating scientific meetings and communities, providing travel grants for researchers and supporting research societies.

The Journal of Physiology 328
Hodgkin Huxley House, 30 Farringdon Lane
London, EC1R 3AW
United Kingdom
www.physoc.org

The Journal of Physiology publishes groundbreaking research that elucidates new physiological principles or mechanisms. It publishes papers in all areas of physiology, with an emphasis on human and mammalian physiology, including work at the molecular level, the level of the cell membrane, single cells, tissues or organs and systems physiology. The Journal is FREE to publish in for all authors, has no page or figure limits, and is compliant with all major public access mandates including NIH. An Open Access option is available. The 2018 Two-Year Impact Factor is 4.950.

Thorlabs 309
56 Sparta Avenue
Newton, NJ 07860
www.thorlabs.com

Thorlabs has been proud to serve the photonics industry for 30 years. With increasing use of photonics technologies in the life sciences, we have grown our capabilities to serve the life science and biomedical markets with purpose-built components and systems. Thorlabs offers multiphoton, OCT, and widefield imaging systems, as well as cameras, lasers, optics, fiber, electronics, and mechanical components. Our offices, located in 11 countries, are focused on providing same-day shipping of stocked components, a fast response to customer inquiries, and fast turnaround on custom needs.

Tissue Gnostics USA 228
18460 Clark Street
Tarzana, CA 91356
www.tissuegnostics.com

TissueGnostics (TG) is a globally active Austrian company focusing on integrated solutions for high content and/or high throughput scanning and analysis of biomedical, veterinary, natural sciences and technical microscopy samples. TG has been founded by scientists from the Vienna University Hospital (AKH) in 2003. It is now has subsidiaries in the EU, the USA and China and customers in 30 countries on all continents.
TMC designs and manufactures a complete line of floor vibration isolation systems and laboratory tables for biophysics research. Products include the world-renowned CleanBench vibration isolated lab table, and the Everstill active vibration isolation benchtop platform, as well as the brand new CleanBench Aktiv lab table that combines pneumatic and active vibration isolation for unprecedented performance. For large precision instruments like electron microscopes TMC offers the STACIS family of active piezoelectric solutions that help keep these instruments inside their vibration specifications.

TOKAI HIT USA INC
Two Bala Plaza, Suite 300
Bala Cynwyd, PA 19004
www.tokaihit.com

Happiness for Cells, Success for Researchers!
Leave cell culturing to Tokai Hit, with our wide variety of Stage Top Incubators and enclosures (ThermoBox). With our systems, you can maintain optimal temperature, gas, and humidity for cell culture on the microscope. We have a system for any type of microscope and stage, offering flexible customizations even for those with home-made equipment. Please visit our booth #528 and take a look at part of our latest line-up!

Wyatt Technology Corporation
6300 Hollister Avenue
Santa Barbara, CA 93117
www.wyatt.com

Wyatt Technology is the recognized leader in light scattering instrumentation and software for determining absolute molar mass, size, charge and interactions of macromolecules and nanoparticles in solution. Wyatt provides in-line multi-angle static light scattering SEC-MALS; field flow fractionation (separation with no stationary phase)-FFF-MALS; composition gradients for interaction analysis - CG-MALS; high-throughput dynamic light scattering-DLS; high-sensitivity electrophoretic mobility-MP-PALS; differential refractometry, and differential viscosity.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D Visualization</td>
<td></td>
</tr>
<tr>
<td>Abbelight</td>
<td>730</td>
</tr>
<tr>
<td>Crayon technologies Inc</td>
<td>632</td>
</tr>
<tr>
<td>Mizar Imaging</td>
<td>820</td>
</tr>
<tr>
<td>Acoustic Force Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Lumicks</td>
<td>101</td>
</tr>
<tr>
<td>AFM/NSOM/Confocal Microscopes</td>
<td></td>
</tr>
<tr>
<td>Abberior Instruments America</td>
<td>633</td>
</tr>
<tr>
<td>Bruker Corporation</td>
<td>515</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Molecular Vista Inc</td>
<td>718</td>
</tr>
<tr>
<td>NanoAndMore USA Corp</td>
<td>818</td>
</tr>
<tr>
<td>Amperometry/Voltammetry Instrumentation</td>
<td></td>
</tr>
<tr>
<td>ELEMENTS SRL</td>
<td>629</td>
</tr>
<tr>
<td>Amphipols</td>
<td></td>
</tr>
<tr>
<td>Anatrace</td>
<td>Molecular Dimensions</td>
</tr>
<tr>
<td>Amplifiers</td>
<td></td>
</tr>
<tr>
<td>AIA Scientific Instruments Inc</td>
<td>620</td>
</tr>
<tr>
<td>Alembic Instruments Inc</td>
<td>802</td>
</tr>
<tr>
<td>ELEMENTS SRL</td>
<td>629</td>
</tr>
<tr>
<td>HEKA</td>
<td>302</td>
</tr>
<tr>
<td>Multi Channel Systems</td>
<td>300</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Analytical/Testing Services</td>
<td></td>
</tr>
<tr>
<td>Anton Paar</td>
<td>704</td>
</tr>
<tr>
<td>Avanti Polar Lipids Inc</td>
<td>601</td>
</tr>
<tr>
<td>PicoQuant Photonics North America Inc</td>
<td>609</td>
</tr>
<tr>
<td>Refeyn</td>
<td>109</td>
</tr>
<tr>
<td>T&T Scientific Corporation</td>
<td>530</td>
</tr>
<tr>
<td>Antibodies</td>
<td></td>
</tr>
<tr>
<td>Bon Opus Biosciences</td>
<td>217</td>
</tr>
<tr>
<td>Cedarlane</td>
<td>204</td>
</tr>
<tr>
<td>Dynamic Biosensors GmbH</td>
<td>119</td>
</tr>
<tr>
<td>Electron Microscopy Sciences</td>
<td>319</td>
</tr>
<tr>
<td>GoldBio</td>
<td>816</td>
</tr>
<tr>
<td>Matreya LLC</td>
<td>405</td>
</tr>
<tr>
<td>T&T Scientific Corporation</td>
<td>530</td>
</tr>
<tr>
<td>TCI America</td>
<td>419</td>
</tr>
<tr>
<td>Assay Kits</td>
<td></td>
</tr>
<tr>
<td>Agilent</td>
<td>505</td>
</tr>
<tr>
<td>Cedarlane</td>
<td>204</td>
</tr>
<tr>
<td>LUMICKS</td>
<td>101</td>
</tr>
<tr>
<td>Montana Molecular</td>
<td>121</td>
</tr>
<tr>
<td>ScienCell Research Laboratories</td>
<td>219</td>
</tr>
<tr>
<td>Atomic Force Microscopes</td>
<td></td>
</tr>
<tr>
<td>Bruker Corporation</td>
<td>515</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Molecular Vista Inc</td>
<td>718</td>
</tr>
<tr>
<td>NanoAndMore USA Corp</td>
<td>818</td>
</tr>
<tr>
<td>Biochemical Reagents</td>
<td></td>
</tr>
<tr>
<td>Abbelight</td>
<td>730</td>
</tr>
<tr>
<td>Avanti Polar Lipids Inc</td>
<td>601</td>
</tr>
<tr>
<td>Ecocyte Bioscience US LLC</td>
<td>728</td>
</tr>
<tr>
<td>GoldBio</td>
<td>816</td>
</tr>
<tr>
<td>ScienCell Research Laboratories</td>
<td>219</td>
</tr>
<tr>
<td>TCI America</td>
<td>419</td>
</tr>
<tr>
<td>Biochemicals</td>
<td></td>
</tr>
<tr>
<td>Lodoxan AB</td>
<td>532</td>
</tr>
<tr>
<td>Matreya LLC</td>
<td>405</td>
</tr>
<tr>
<td>Biotechnology</td>
<td></td>
</tr>
<tr>
<td>Alvéole</td>
<td>628</td>
</tr>
<tr>
<td>AnaBios</td>
<td>211</td>
</tr>
<tr>
<td>Anton Paar</td>
<td>704</td>
</tr>
<tr>
<td>Crayon technologies Inc</td>
<td>632</td>
</tr>
<tr>
<td>Dynamic Biosensors GmbH</td>
<td>119</td>
</tr>
<tr>
<td>GoldBio</td>
<td>816</td>
</tr>
<tr>
<td>Live Cell Instrument</td>
<td>333</td>
</tr>
<tr>
<td>Metrion Biosciences</td>
<td>214</td>
</tr>
<tr>
<td>Navitar</td>
<td>533</td>
</tr>
<tr>
<td>Nicoya</td>
<td>115</td>
</tr>
<tr>
<td>ScienCell Research Laboratories</td>
<td>219</td>
</tr>
<tr>
<td>Sophion Bioscience A/S</td>
<td>600</td>
</tr>
<tr>
<td>T&T Scientific Corporation</td>
<td>530</td>
</tr>
<tr>
<td>Books and Journals</td>
<td></td>
</tr>
<tr>
<td>American Physical Society</td>
<td>231</td>
</tr>
<tr>
<td>IOP Publishing</td>
<td>316</td>
</tr>
<tr>
<td>Journal of Biological Chemistry (ASBMB)</td>
<td>317</td>
</tr>
<tr>
<td>Journal of General Physiology</td>
<td>301</td>
</tr>
<tr>
<td>KinTek Corporation</td>
<td>401</td>
</tr>
<tr>
<td>MDPI IJMS</td>
<td>221</td>
</tr>
<tr>
<td>NanoSurface Biomedical</td>
<td>720</td>
</tr>
<tr>
<td>The Royal Society</td>
<td>330</td>
</tr>
<tr>
<td>Springer Nature</td>
<td>218</td>
</tr>
<tr>
<td>The Company of Biologists</td>
<td>814</td>
</tr>
<tr>
<td>Cameras</td>
<td></td>
</tr>
<tr>
<td>Axiom Optics</td>
<td>631</td>
</tr>
<tr>
<td>Carl Zeiss Microscopy LLC</td>
<td>701</td>
</tr>
<tr>
<td>Hamamatsu Corporation</td>
<td>700</td>
</tr>
<tr>
<td>HORIBA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>Navitar</td>
<td>533</td>
</tr>
<tr>
<td>PCO America</td>
<td>621</td>
</tr>
<tr>
<td>Photometrics</td>
<td>615</td>
</tr>
<tr>
<td>Thorlabs</td>
<td>309</td>
</tr>
<tr>
<td>Cell Biology Products</td>
<td></td>
</tr>
<tr>
<td>Agilent</td>
<td>505</td>
</tr>
<tr>
<td>Allen Institute for Cell Science</td>
<td>418</td>
</tr>
<tr>
<td>Alvéole</td>
<td>628</td>
</tr>
<tr>
<td>BioTek Instruments Inc</td>
<td>216</td>
</tr>
<tr>
<td>Cedarlane</td>
<td>204</td>
</tr>
<tr>
<td>Ecocyte Bioscience US LLC</td>
<td>728</td>
</tr>
<tr>
<td>Flucell AB</td>
<td>417</td>
</tr>
<tr>
<td>GoldBio</td>
<td>816</td>
</tr>
<tr>
<td>Montana Molecular</td>
<td>121</td>
</tr>
<tr>
<td>NanoSurface Biomedical</td>
<td>720</td>
</tr>
<tr>
<td>ScienCell Research Laboratories</td>
<td>219</td>
</tr>
<tr>
<td>Stryx</td>
<td>428</td>
</tr>
<tr>
<td>Cell Culture Products</td>
<td></td>
</tr>
<tr>
<td>BioTek Instruments Inc</td>
<td>216</td>
</tr>
<tr>
<td>Cedarlane</td>
<td>204</td>
</tr>
<tr>
<td>EtaTima Inc</td>
<td>209</td>
</tr>
<tr>
<td>GoldBio</td>
<td>816</td>
</tr>
<tr>
<td>ibidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>IonOptix</td>
<td>703</td>
</tr>
<tr>
<td>Linnwave</td>
<td>719</td>
</tr>
<tr>
<td>Live Cell Instrument</td>
<td>333</td>
</tr>
<tr>
<td>NanoSurface Biomedical</td>
<td>720</td>
</tr>
<tr>
<td>Olympus America Inc</td>
<td>604</td>
</tr>
<tr>
<td>RWD Life Science</td>
<td>117</td>
</tr>
<tr>
<td>ScienCell Research Laboratories</td>
<td>219</td>
</tr>
<tr>
<td>Stryx</td>
<td>428</td>
</tr>
<tr>
<td>T&T Scientific Corporation</td>
<td>530</td>
</tr>
<tr>
<td>Centrifuges</td>
<td></td>
</tr>
<tr>
<td>Beckman Coulter Life Sciences</td>
<td>308</td>
</tr>
<tr>
<td>RWD Life Science</td>
<td>117</td>
</tr>
<tr>
<td>Chromatography</td>
<td>419</td>
</tr>
<tr>
<td>Circular Dichroism Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Applied Photophysics</td>
<td>714</td>
</tr>
<tr>
<td>Hellma USA</td>
<td>332</td>
</tr>
<tr>
<td>Hinds Instruments Inc</td>
<td>830</td>
</tr>
<tr>
<td>JASCO</td>
<td>617</td>
</tr>
<tr>
<td>OLIS Inc, On-Line Instrument Systems</td>
<td>202</td>
</tr>
<tr>
<td>Computational Biological Products</td>
<td></td>
</tr>
<tr>
<td>Allen Institute for Cell Science</td>
<td>418</td>
</tr>
<tr>
<td>Cytobiotics Inc</td>
<td>840</td>
</tr>
<tr>
<td>Computational Software</td>
<td></td>
</tr>
<tr>
<td>Allen Institute for Cell Science</td>
<td>418</td>
</tr>
<tr>
<td>Cytobiotics Inc</td>
<td>840</td>
</tr>
<tr>
<td>NMRbox</td>
<td>CoMD/NMR</td>
</tr>
<tr>
<td>Computers, Hardware, and Software</td>
<td></td>
</tr>
<tr>
<td>Aurora Scientific Inc</td>
<td>139</td>
</tr>
<tr>
<td>OriginLab Corporation</td>
<td>432</td>
</tr>
<tr>
<td>Confocal Microscopes</td>
<td></td>
</tr>
<tr>
<td>Axiom Optics</td>
<td>631</td>
</tr>
<tr>
<td>Bruker Corporation</td>
<td>515</td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>Molecular Devices</td>
<td>501</td>
</tr>
<tr>
<td>Nikon Instruments Inc</td>
<td>614</td>
</tr>
<tr>
<td>Olympus America Inc</td>
<td>604</td>
</tr>
<tr>
<td>PicoQuant Photonics North America Inc</td>
<td>609</td>
</tr>
<tr>
<td>Siskiyou Corporation</td>
<td>141</td>
</tr>
<tr>
<td>Thorlabs</td>
<td>309</td>
</tr>
<tr>
<td>Crystallization Utilities</td>
<td></td>
</tr>
<tr>
<td>Linnwave</td>
<td>719</td>
</tr>
<tr>
<td>Crystallography</td>
<td></td>
</tr>
<tr>
<td>TA Instruments</td>
<td>314</td>
</tr>
<tr>
<td>Company Name</td>
<td>Booth Number</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Curvettes</td>
<td>818</td>
</tr>
<tr>
<td>NanoAndMore USA Corp</td>
<td></td>
</tr>
<tr>
<td>Data Acquisition</td>
<td></td>
</tr>
<tr>
<td>Alembic Instruments Inc</td>
<td>802</td>
</tr>
<tr>
<td>KinTek Corporation</td>
<td>401</td>
</tr>
<tr>
<td>NCI National CryoEM Facility</td>
<td>229</td>
</tr>
<tr>
<td>PicoQuant Photonics North America Inc</td>
<td>609</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Data Analysis Software</td>
<td></td>
</tr>
<tr>
<td>Abbelight</td>
<td>730</td>
</tr>
<tr>
<td>Allen Institute for Cell Science</td>
<td>418</td>
</tr>
<tr>
<td>Aurora Scientific Inc</td>
<td>139</td>
</tr>
<tr>
<td>KinTek Corporation</td>
<td>401</td>
</tr>
<tr>
<td>NMRbox</td>
<td>CoMD/NMR</td>
</tr>
<tr>
<td>OriginLab Corporation</td>
<td>432</td>
</tr>
<tr>
<td>PicoQuant Photonics North America Inc</td>
<td>609</td>
</tr>
<tr>
<td>Detergents</td>
<td></td>
</tr>
<tr>
<td>Avanti Polar Lipids Inc</td>
<td>601</td>
</tr>
<tr>
<td>Digitizers</td>
<td></td>
</tr>
<tr>
<td>NeoBiosystems Inc</td>
<td>630</td>
</tr>
<tr>
<td>Drug Discovery</td>
<td></td>
</tr>
<tr>
<td>AAT Bioquest Inc</td>
<td>429</td>
</tr>
<tr>
<td>Agilent</td>
<td>505</td>
</tr>
<tr>
<td>BioTek Instruments Inc</td>
<td>216</td>
</tr>
<tr>
<td>Dynamic Biosensors GmbH</td>
<td>119</td>
</tr>
<tr>
<td>Etaluma Inc</td>
<td>209</td>
</tr>
<tr>
<td>Fluxion Biosciences</td>
<td>320</td>
</tr>
<tr>
<td>Metriion Biosciences</td>
<td>214</td>
</tr>
<tr>
<td>Molecular Devices</td>
<td>501</td>
</tr>
<tr>
<td>Nanion Technologies</td>
<td>514</td>
</tr>
<tr>
<td>NanoSurface Biomedical</td>
<td>720</td>
</tr>
<tr>
<td>Nicoya</td>
<td>115</td>
</tr>
<tr>
<td>SB Drug Discovery</td>
<td>531</td>
</tr>
<tr>
<td>Electromechanical Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Strex</td>
<td>428</td>
</tr>
<tr>
<td>Electrophoresis Equipment</td>
<td></td>
</tr>
<tr>
<td>Crayon technologies Inc</td>
<td>632</td>
</tr>
<tr>
<td>Electrophysiological Data Acquisition</td>
<td></td>
</tr>
<tr>
<td>Alembic Instruments Inc</td>
<td>802</td>
</tr>
<tr>
<td>AnaBios</td>
<td>211</td>
</tr>
<tr>
<td>CytoDynamics Inc</td>
<td>840</td>
</tr>
<tr>
<td>Ecocyte Bioscience US LLC</td>
<td>728</td>
</tr>
<tr>
<td>ELEMENTS SRL</td>
<td>629</td>
</tr>
<tr>
<td>HEKA</td>
<td>302</td>
</tr>
<tr>
<td>Metriion Biosciences</td>
<td>214</td>
</tr>
<tr>
<td>Multi Channel Systems</td>
<td>300</td>
</tr>
<tr>
<td>Nanion Technologies</td>
<td>514</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Electrophysiological Instruments</td>
<td></td>
</tr>
<tr>
<td>ALA Scientific Instruments Inc</td>
<td>620</td>
</tr>
<tr>
<td>Alembic Instruments Inc</td>
<td>802</td>
</tr>
<tr>
<td>CytoDynamics Inc</td>
<td>840</td>
</tr>
<tr>
<td>ELEMENTS SRL</td>
<td>629</td>
</tr>
<tr>
<td>Fluxion Biosciences</td>
<td>320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEKA</td>
<td>302</td>
</tr>
<tr>
<td>Ionovation GmbH</td>
<td>804</td>
</tr>
<tr>
<td>Molecular Devices</td>
<td>501</td>
</tr>
<tr>
<td>Nanion Technologies</td>
<td>514</td>
</tr>
<tr>
<td>NeoBiosystems Inc</td>
<td>630</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Electrophysiology Equipment</td>
<td></td>
</tr>
<tr>
<td>ALA Scientific Instruments Inc</td>
<td>620</td>
</tr>
<tr>
<td>Alembic Instruments Inc</td>
<td>802</td>
</tr>
<tr>
<td>CytoDynamics Inc</td>
<td>840</td>
</tr>
<tr>
<td>ELEMENTS SRL</td>
<td>629</td>
</tr>
<tr>
<td>Fluxion Biosciences</td>
<td>320</td>
</tr>
<tr>
<td>Electrophysiology Software</td>
<td></td>
</tr>
<tr>
<td>CytoDynamics Inc</td>
<td>840</td>
</tr>
<tr>
<td>ELEMENTS SRL</td>
<td>629</td>
</tr>
<tr>
<td>HEKA</td>
<td>302</td>
</tr>
<tr>
<td>Molecular Devices</td>
<td>501</td>
</tr>
<tr>
<td>Multi Channel Systems</td>
<td>300</td>
</tr>
<tr>
<td>Nanion Technologies</td>
<td>514</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Filter Wheels</td>
<td></td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Flash Lamps</td>
<td></td>
</tr>
<tr>
<td>Rapp OptoElectronic GmbH</td>
<td>710</td>
</tr>
<tr>
<td>Fluid Flow Chambers</td>
<td></td>
</tr>
<tr>
<td>ibidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>Fluorescence Anisotropy</td>
<td></td>
</tr>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>KinTek Corporation</td>
<td>401</td>
</tr>
<tr>
<td>OLIS Inc, On-Line Instrument Systems</td>
<td>202</td>
</tr>
<tr>
<td>Fluorescence Correlation Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Boston Electronics</td>
<td>721</td>
</tr>
<tr>
<td>Ionovation GmbH</td>
<td>804</td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>JASCO 617</td>
<td></td>
</tr>
<tr>
<td>Fluorescence Image Analysis Equipment</td>
<td></td>
</tr>
<tr>
<td>Aurora Scientific Inc</td>
<td>139</td>
</tr>
<tr>
<td>Etaluma Inc</td>
<td>209</td>
</tr>
<tr>
<td>HORIBA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>Live Cell Instrument</td>
<td>333</td>
</tr>
<tr>
<td>PCO America</td>
<td>621</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence Lifetime Imaging</td>
<td></td>
</tr>
<tr>
<td>Axiom Optics</td>
<td>631</td>
</tr>
<tr>
<td>Boston Electronics</td>
<td>721</td>
</tr>
<tr>
<td>HORIBA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>ID Quantique SA</td>
<td>800</td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>PCO America</td>
<td>621</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Fluorescent Filters</td>
<td></td>
</tr>
<tr>
<td>89 North</td>
<td>709</td>
</tr>
<tr>
<td>Chroma Technology</td>
<td>709</td>
</tr>
<tr>
<td>Fluorescent Probes</td>
<td></td>
</tr>
<tr>
<td>Cedarlane</td>
<td>204</td>
</tr>
<tr>
<td>Montana Molecular</td>
<td>121</td>
</tr>
<tr>
<td>Fluorometers</td>
<td></td>
</tr>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>HORIBA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>Quantum Northwest Inc</td>
<td>200</td>
</tr>
<tr>
<td>Glass Capillary Tubing</td>
<td></td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Glassware</td>
<td></td>
</tr>
<tr>
<td>ibidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>High-Throughput Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Anton Paar</td>
<td>704</td>
</tr>
<tr>
<td>Dynamic Biosensors GmbH</td>
<td>119</td>
</tr>
<tr>
<td>Ecocyte Bioscience US LLC</td>
<td>728</td>
</tr>
<tr>
<td>Fluxion Biosciences</td>
<td>320</td>
</tr>
<tr>
<td>Ionovation GmbH</td>
<td>804</td>
</tr>
<tr>
<td>JASCO</td>
<td>617</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Molecular Devices</td>
<td>501</td>
</tr>
<tr>
<td>Multi Channel Systems</td>
<td>300</td>
</tr>
<tr>
<td>Nanion Technologies</td>
<td>514</td>
</tr>
<tr>
<td>NanoSurface Biomedical</td>
<td>720</td>
</tr>
<tr>
<td>Nicoya</td>
<td>115</td>
</tr>
<tr>
<td>PIEZOCONCEPT</td>
<td>732</td>
</tr>
<tr>
<td>Sophon Bioscience A/S</td>
<td>600</td>
</tr>
<tr>
<td>Image Acquisition Systems</td>
<td></td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Aurora Scientific Inc</td>
<td>139</td>
</tr>
<tr>
<td>Etaluma Inc</td>
<td>209</td>
</tr>
<tr>
<td>HORIBA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>Mizar Imaging 820</td>
<td></td>
</tr>
<tr>
<td>PCO America</td>
<td>621</td>
</tr>
<tr>
<td>Image Analysis</td>
<td></td>
</tr>
<tr>
<td>Laboratory for Fluorescence Dynamics</td>
<td>315</td>
</tr>
<tr>
<td>Malvern Panalytical</td>
<td>431</td>
</tr>
<tr>
<td>Molecular Devices</td>
<td>501</td>
</tr>
<tr>
<td>Company Name</td>
<td>Booth Number</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Image Analysis Software</td>
<td></td>
</tr>
<tr>
<td>Allen Institute for Cell Science</td>
<td>418</td>
</tr>
<tr>
<td>Aurora Scientific Inc</td>
<td>139</td>
</tr>
<tr>
<td>Boston Electronics</td>
<td>721</td>
</tr>
<tr>
<td>Nikon Instruments Inc</td>
<td>614</td>
</tr>
<tr>
<td>OriginLab Corporation</td>
<td>432</td>
</tr>
<tr>
<td>Image Analysis, High Resolution</td>
<td></td>
</tr>
<tr>
<td>AbbeLight</td>
<td>730</td>
</tr>
<tr>
<td>Etaluma Inc</td>
<td>209</td>
</tr>
<tr>
<td>Oxford Instruments America Inc</td>
<td>414</td>
</tr>
<tr>
<td>PCO America</td>
<td>621</td>
</tr>
<tr>
<td>Image Intensifiers</td>
<td></td>
</tr>
<tr>
<td>Axiom Optics</td>
<td>631</td>
</tr>
<tr>
<td>PCO America</td>
<td>621</td>
</tr>
<tr>
<td>Image Stabilization</td>
<td></td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Imaging Chambers</td>
<td></td>
</tr>
<tr>
<td>Live Cell Instrument</td>
<td>333</td>
</tr>
<tr>
<td>Strex</td>
<td>428</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Imaging Systems</td>
<td></td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Axiom Optics</td>
<td>631</td>
</tr>
<tr>
<td>BioTek Instruments Inc</td>
<td>216</td>
</tr>
<tr>
<td>HEKA</td>
<td>302</td>
</tr>
<tr>
<td>Live Cell Instrument</td>
<td>333</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Mizar Imaging</td>
<td>820</td>
</tr>
<tr>
<td>Nikon Instruments Inc</td>
<td>614</td>
</tr>
<tr>
<td>PCO America</td>
<td>621</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Thorlabs</td>
<td>309</td>
</tr>
<tr>
<td>Incubators</td>
<td></td>
</tr>
<tr>
<td>Linnovave</td>
<td>719</td>
</tr>
<tr>
<td>Live Cell Instrument</td>
<td>333</td>
</tr>
<tr>
<td>TOKAI HIT USA INC</td>
<td>528</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Infrared Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>JASCO</td>
<td>617</td>
</tr>
<tr>
<td>Molecular Vista Inc</td>
<td>718</td>
</tr>
<tr>
<td>Ion Channels</td>
<td></td>
</tr>
<tr>
<td>AnaBios</td>
<td>211</td>
</tr>
<tr>
<td>CytoCybernetics Inc</td>
<td>840</td>
</tr>
<tr>
<td>Fluxion Biosciences</td>
<td>320</td>
</tr>
<tr>
<td>Metrion Biosciences</td>
<td>214</td>
</tr>
<tr>
<td>SB Drug Discovery</td>
<td>531</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Isotope-Labeled Compounds</td>
<td></td>
</tr>
<tr>
<td>Larodan AB</td>
<td>532</td>
</tr>
<tr>
<td>Matreya LLC</td>
<td>405</td>
</tr>
<tr>
<td>Label Free Sensing</td>
<td></td>
</tr>
<tr>
<td>Molecular Vista Inc</td>
<td>718</td>
</tr>
<tr>
<td>Navitar</td>
<td>533</td>
</tr>
<tr>
<td>Nicoya</td>
<td>115</td>
</tr>
<tr>
<td>Labeling Dyes</td>
<td></td>
</tr>
<tr>
<td>Crayon technologies Inc</td>
<td>632</td>
</tr>
<tr>
<td>CytoCybernetics Inc</td>
<td>840</td>
</tr>
<tr>
<td>TCI America</td>
<td>419</td>
</tr>
<tr>
<td>Laboratory Apparatus & Equipment</td>
<td></td>
</tr>
<tr>
<td>Alvéole</td>
<td>628</td>
</tr>
<tr>
<td>Electron Microscopy Sciences</td>
<td>319</td>
</tr>
<tr>
<td>RWD Life Science</td>
<td>117</td>
</tr>
<tr>
<td>Lasers</td>
<td></td>
</tr>
<tr>
<td>Molecular Devices</td>
<td>501</td>
</tr>
<tr>
<td>PicoQuant Photonics North America Inc</td>
<td>609</td>
</tr>
<tr>
<td>Rapp OptoElectronic GmbH</td>
<td>710</td>
</tr>
<tr>
<td>RPMC Lasers Inc</td>
<td>111</td>
</tr>
<tr>
<td>Life Sciences</td>
<td></td>
</tr>
<tr>
<td>Agilent</td>
<td>505</td>
</tr>
<tr>
<td>Alvéole</td>
<td>628</td>
</tr>
<tr>
<td>AnaBios</td>
<td>211</td>
</tr>
<tr>
<td>BioCAT</td>
<td>430</td>
</tr>
<tr>
<td>BioTek Instruments Inc</td>
<td>216</td>
</tr>
<tr>
<td>Bon Opus Biosciences</td>
<td>217</td>
</tr>
<tr>
<td>Cedralane</td>
<td>204</td>
</tr>
<tr>
<td>Excilites Technologies</td>
<td>729</td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>Larodan AB</td>
<td>532</td>
</tr>
<tr>
<td>Metrion Biosciences</td>
<td>214</td>
</tr>
<tr>
<td>Navitar</td>
<td>533</td>
</tr>
<tr>
<td>Nicoya</td>
<td>115</td>
</tr>
<tr>
<td>Photometrics</td>
<td>615</td>
</tr>
<tr>
<td>RWD Life Science</td>
<td>117</td>
</tr>
<tr>
<td>T&T Scientific Corporation</td>
<td>530</td>
</tr>
<tr>
<td>Light Sheet Microscopy</td>
<td></td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Bruker Corporation</td>
<td>515</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Mizar Imaging</td>
<td>820</td>
</tr>
<tr>
<td>Navitar</td>
<td>533</td>
</tr>
<tr>
<td>Olympus America Inc</td>
<td>604</td>
</tr>
<tr>
<td>Photometrics</td>
<td>615</td>
</tr>
<tr>
<td>PIEZOCONCEPT</td>
<td>732</td>
</tr>
<tr>
<td>Light Sources</td>
<td></td>
</tr>
<tr>
<td>89 North 709</td>
<td></td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Chroma Technology</td>
<td>709</td>
</tr>
<tr>
<td>Excilites Technologies</td>
<td>729</td>
</tr>
<tr>
<td>Rapp OptoElectronic GmbH</td>
<td>710</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Thorlabs</td>
<td>309</td>
</tr>
<tr>
<td>Lipids</td>
<td></td>
</tr>
<tr>
<td>Avanti Polar Lipids Inc</td>
<td>601</td>
</tr>
<tr>
<td>Cedralane</td>
<td>204</td>
</tr>
<tr>
<td>Larodan AB</td>
<td>532</td>
</tr>
<tr>
<td>Matreya LLC</td>
<td>405</td>
</tr>
<tr>
<td>T&T Scientific Corporation</td>
<td>530</td>
</tr>
<tr>
<td>TCI America</td>
<td>419</td>
</tr>
<tr>
<td>Liposome Preparation Equipment</td>
<td></td>
</tr>
<tr>
<td>Avanti Polar Lipids Inc</td>
<td>601</td>
</tr>
<tr>
<td>T&T Scientific Corporation</td>
<td>530</td>
</tr>
<tr>
<td>Liquid Chromatography Instruments</td>
<td></td>
</tr>
<tr>
<td>JASCO</td>
<td>617</td>
</tr>
<tr>
<td>Magnetic Resonance Imaging</td>
<td></td>
</tr>
<tr>
<td>Bruker Corporation</td>
<td>515</td>
</tr>
<tr>
<td>NMRbox</td>
<td>CoMD/NMR</td>
</tr>
<tr>
<td>OriginLab Corporation</td>
<td>432</td>
</tr>
<tr>
<td>Mass Spectrometry</td>
<td></td>
</tr>
<tr>
<td>Avanti Polar Lipids Inc</td>
<td>601</td>
</tr>
<tr>
<td>Matreya LLC</td>
<td>405</td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital</td>
<td>329</td>
</tr>
<tr>
<td>Mathematical and Statistical Software</td>
<td></td>
</tr>
<tr>
<td>KinTek Corporation</td>
<td>401</td>
</tr>
<tr>
<td>NMRbox</td>
<td>CoMD/NMR</td>
</tr>
<tr>
<td>OriginLab Corporation</td>
<td>432</td>
</tr>
<tr>
<td>Micro Environmental Control</td>
<td></td>
</tr>
<tr>
<td>Alvéole</td>
<td>628</td>
</tr>
<tr>
<td>NanoSurface Biomedical</td>
<td>720</td>
</tr>
<tr>
<td>Microdissecting Instruments</td>
<td></td>
</tr>
<tr>
<td>Rapp OptoElectronic GmbH</td>
<td>710</td>
</tr>
<tr>
<td>Microelectrode Holders</td>
<td></td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Microfluidic Chambers</td>
<td></td>
</tr>
<tr>
<td>Ecoocyte Bioscience US LLC</td>
<td>728</td>
</tr>
<tr>
<td>Fluxion Biosciences</td>
<td>320</td>
</tr>
<tr>
<td>LUMICKS</td>
<td>101</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Microinjectors</td>
<td></td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Micromanipulators</td>
<td></td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Electron Microscopy Sciences</td>
<td>319</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Zaber Technologies Inc</td>
<td>238</td>
</tr>
<tr>
<td>Micropipette Pullers</td>
<td></td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Micropositioners</td>
<td></td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>PI (Physik Instrumente)</td>
<td>610</td>
</tr>
<tr>
<td>Company Name</td>
<td>Booth Number</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Microscope Accessories</td>
<td></td>
</tr>
<tr>
<td>Alvéole</td>
<td>628</td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Axiom Optics</td>
<td>631</td>
</tr>
<tr>
<td>Electron Microscopy Sciences</td>
<td>319</td>
</tr>
<tr>
<td>Etaluma Inc</td>
<td>209</td>
</tr>
<tr>
<td>Excitels Technologies</td>
<td>729</td>
</tr>
<tr>
<td>ibidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>Linnwave</td>
<td>719</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Mizar Imaging</td>
<td>820</td>
</tr>
<tr>
<td>NanoAndMore USA Corp</td>
<td>818</td>
</tr>
<tr>
<td>NanoSurface Biomedical</td>
<td>720</td>
</tr>
<tr>
<td>Rapp OptoElectronic GmbH</td>
<td>710</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Thorlabs</td>
<td>309</td>
</tr>
<tr>
<td>TOKAI HIT USA INC</td>
<td>528</td>
</tr>
<tr>
<td>Microscope Stages</td>
<td></td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Nikon Instruments Inc</td>
<td>614</td>
</tr>
<tr>
<td>Mizar Imaging</td>
<td>820</td>
</tr>
<tr>
<td>PIEZOCONCEPT</td>
<td>732</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Zaber Technologies Inc</td>
<td>238</td>
</tr>
<tr>
<td>Microscopes</td>
<td></td>
</tr>
<tr>
<td>AbbeLight</td>
<td>730</td>
</tr>
<tr>
<td>ASI/Applied Scientific Instrumentation</td>
<td>529</td>
</tr>
<tr>
<td>BioTech Instruments Inc</td>
<td>216</td>
</tr>
<tr>
<td>Electron Microscopy Sciences</td>
<td>319</td>
</tr>
<tr>
<td>Etaluma Inc</td>
<td>209</td>
</tr>
<tr>
<td>HORIZA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>Ionovation GmbH</td>
<td>804</td>
</tr>
<tr>
<td>Leica Microsystems</td>
<td>708</td>
</tr>
<tr>
<td>Live Cell Instrument</td>
<td>333</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Mizar Imaging</td>
<td>820</td>
</tr>
<tr>
<td>NanoAndMore USA Corp</td>
<td>818</td>
</tr>
<tr>
<td>Nikon Instruments Inc</td>
<td>614</td>
</tr>
<tr>
<td>Olympus America Inc</td>
<td>604</td>
</tr>
<tr>
<td>PicoQuant Photonics North America Inc</td>
<td>609</td>
</tr>
<tr>
<td>Rapp OptoElectronic GmbH</td>
<td>710</td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Thorlabs</td>
<td>309</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Zaber Technologies Inc</td>
<td>238</td>
</tr>
<tr>
<td>Microscopy Chambers</td>
<td></td>
</tr>
<tr>
<td>ibidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>Linnwave</td>
<td>719</td>
</tr>
<tr>
<td>Microscopes</td>
<td></td>
</tr>
<tr>
<td>abidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>Linnwave</td>
<td>719</td>
</tr>
<tr>
<td>Microtomes</td>
<td></td>
</tr>
<tr>
<td>Electron Microscopy Sciences</td>
<td>319</td>
</tr>
<tr>
<td>RWD Life Science</td>
<td>117</td>
</tr>
</tbody>
</table>

Biophysical Society
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications</td>
<td></td>
</tr>
<tr>
<td>AIP Publishing</td>
<td>305</td>
</tr>
<tr>
<td>Cell Press</td>
<td>201</td>
</tr>
<tr>
<td>IOP Publishing</td>
<td>316</td>
</tr>
<tr>
<td>Pumps</td>
<td></td>
</tr>
<tr>
<td>ibidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>NeoBiosystems Inc</td>
<td>630</td>
</tr>
<tr>
<td>Reagents</td>
<td></td>
</tr>
<tr>
<td>Abbelight</td>
<td>730</td>
</tr>
<tr>
<td>Agilent</td>
<td>505</td>
</tr>
<tr>
<td>Bon Opus Biosciences</td>
<td>217</td>
</tr>
<tr>
<td>Electron Microscopy Sciences</td>
<td>319</td>
</tr>
<tr>
<td>Gene Tools LLC</td>
<td>215</td>
</tr>
<tr>
<td>GoldBio</td>
<td>816</td>
</tr>
<tr>
<td>Larodan AB</td>
<td>532</td>
</tr>
<tr>
<td>TCI America</td>
<td>419</td>
</tr>
<tr>
<td>Recording Chambers</td>
<td></td>
</tr>
<tr>
<td>Ecocyte Bioscience US LLC</td>
<td>728</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Rheometers/Viscometers</td>
<td></td>
</tr>
<tr>
<td>Anton Paar</td>
<td>704</td>
</tr>
<tr>
<td>Scanning Electron Microscope</td>
<td></td>
</tr>
<tr>
<td>Stanford-SLAC Cryo-EM Center</td>
<td>129</td>
</tr>
<tr>
<td>Scanning Probe Microscopes</td>
<td></td>
</tr>
<tr>
<td>HEKA</td>
<td>302</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Molecular Vista Inc</td>
<td>718</td>
</tr>
<tr>
<td>NanoAndMore USA Corp</td>
<td>818</td>
</tr>
<tr>
<td>Scientific CMOS Cameras</td>
<td></td>
</tr>
<tr>
<td>Axiom Optics</td>
<td>631</td>
</tr>
<tr>
<td>PCO America</td>
<td>621</td>
</tr>
<tr>
<td>Photometrics</td>
<td>615</td>
</tr>
<tr>
<td>Thorlabs</td>
<td>309</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Screening, High-Throughput</td>
<td></td>
</tr>
<tr>
<td>Bon Opus Biosciences</td>
<td>217</td>
</tr>
<tr>
<td>Dynamic Biosensors GmbH</td>
<td>119</td>
</tr>
<tr>
<td>Ecocyte Bioscience US LLC</td>
<td>728</td>
</tr>
<tr>
<td>ibidi USA Inc</td>
<td>828</td>
</tr>
<tr>
<td>Metrin Biosciences</td>
<td>214</td>
</tr>
<tr>
<td>Multi Channel Systems</td>
<td>300</td>
</tr>
<tr>
<td>Nanion Technologies</td>
<td>514</td>
</tr>
<tr>
<td>NanoSurface Biomedical</td>
<td>720</td>
</tr>
<tr>
<td>Nicoya</td>
<td>115</td>
</tr>
<tr>
<td>Nikon Instruments Inc</td>
<td>614</td>
</tr>
<tr>
<td>SB Drug Discovery</td>
<td>531</td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital</td>
<td>329</td>
</tr>
<tr>
<td>Sensors</td>
<td></td>
</tr>
<tr>
<td>Linnowave</td>
<td>719</td>
</tr>
<tr>
<td>Montana Molecular</td>
<td>121</td>
</tr>
<tr>
<td>Shutters</td>
<td></td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>KinTek Corporation</td>
<td>401</td>
</tr>
<tr>
<td>NMRbox</td>
<td>CoMD/NMR</td>
</tr>
<tr>
<td>OriginLab Corporation</td>
<td>432</td>
</tr>
<tr>
<td>Spectrofluorometers</td>
<td></td>
</tr>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>OLIS Inc, On-Line Instrument Systems</td>
<td>202</td>
</tr>
<tr>
<td>Spectrometers</td>
<td></td>
</tr>
<tr>
<td>Anton Paar</td>
<td>704</td>
</tr>
<tr>
<td>Applied Photophysics</td>
<td>714</td>
</tr>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>Navitar</td>
<td>533</td>
</tr>
<tr>
<td>Spectrophotometers</td>
<td></td>
</tr>
<tr>
<td>BioTek Instruments Inc</td>
<td>216</td>
</tr>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>HORIBA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>JASCO</td>
<td>617</td>
</tr>
<tr>
<td>OLIS Inc, On-Line Instrument Systems</td>
<td>202</td>
</tr>
<tr>
<td>Spectroscopy Accessories</td>
<td></td>
</tr>
<tr>
<td>Applied Photophysics</td>
<td>714</td>
</tr>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>HORIBA Scientific</td>
<td>409</td>
</tr>
<tr>
<td>Sphingolipids</td>
<td></td>
</tr>
<tr>
<td>Avanti Polar Lipids Inc</td>
<td>601</td>
</tr>
<tr>
<td>Larodan AB</td>
<td>532</td>
</tr>
<tr>
<td>Matreya LLC</td>
<td>405</td>
</tr>
<tr>
<td>Stepper Technology</td>
<td></td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Zaber Technologies Inc</td>
<td>238</td>
</tr>
<tr>
<td>Sterols</td>
<td></td>
</tr>
<tr>
<td>Larodan AB</td>
<td>532</td>
</tr>
<tr>
<td>Matreya LLC</td>
<td>405</td>
</tr>
<tr>
<td>Stimulators</td>
<td></td>
</tr>
<tr>
<td>ALA Scientific Instruments Inc</td>
<td>620</td>
</tr>
<tr>
<td>Alembic Instruments Inc</td>
<td>802</td>
</tr>
<tr>
<td>Aurora Scientific Inc</td>
<td>139</td>
</tr>
<tr>
<td>Strex</td>
<td>428</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Stimulus Isolators</td>
<td></td>
</tr>
<tr>
<td>ALA Scientific Instruments Inc</td>
<td>620</td>
</tr>
<tr>
<td>Stopped-Flow Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Applied Photophysics</td>
<td>714</td>
</tr>
<tr>
<td>JASCO</td>
<td>617</td>
</tr>
<tr>
<td>OLIS Inc, On-Line Instrument Systems</td>
<td>202</td>
</tr>
<tr>
<td>Superresolution (SR) Microscopy</td>
<td></td>
</tr>
<tr>
<td>Abbelight</td>
<td>730</td>
</tr>
<tr>
<td>Axiom Optics</td>
<td>631</td>
</tr>
<tr>
<td>Bruker Corporation</td>
<td>515</td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Nikon Instruments Inc</td>
<td>614</td>
</tr>
<tr>
<td>Olympus America Inc</td>
<td>604</td>
</tr>
<tr>
<td>Surface Plasmon Resonance Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Dynamic Biosensors GmbH</td>
<td>119</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Nicoya</td>
<td>115</td>
</tr>
<tr>
<td>TCSPC Components</td>
<td></td>
</tr>
<tr>
<td>Boston Electronics</td>
<td>721</td>
</tr>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>ISS Inc</td>
<td>715</td>
</tr>
<tr>
<td>Mad City Labs Inc 500</td>
<td>609</td>
</tr>
<tr>
<td>PicoQuant Photonics North America Inc</td>
<td>609</td>
</tr>
<tr>
<td>Temperature Controllers</td>
<td></td>
</tr>
<tr>
<td>ALA Scientific Instruments Inc</td>
<td>620</td>
</tr>
<tr>
<td>Aurora Scientific Inc</td>
<td>139</td>
</tr>
<tr>
<td>Linnowave</td>
<td>719</td>
</tr>
<tr>
<td>Warner Instruments</td>
<td>304</td>
</tr>
<tr>
<td>Tomography</td>
<td></td>
</tr>
<tr>
<td>NCI National CryoEM Facility</td>
<td>229</td>
</tr>
<tr>
<td>Stanford-SLAC Cryo-EM Center</td>
<td>129</td>
</tr>
<tr>
<td>UV Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Edinburgh Instruments</td>
<td>618</td>
</tr>
<tr>
<td>Hinds Instruments Inc</td>
<td>830</td>
</tr>
<tr>
<td>JASCO</td>
<td>617</td>
</tr>
<tr>
<td>KinTek Corporation</td>
<td>401</td>
</tr>
<tr>
<td>OLIS Inc, On-Line Instrument Systems</td>
<td>202</td>
</tr>
<tr>
<td>Vibration Isolation Systems</td>
<td></td>
</tr>
<tr>
<td>Sutter Instrument</td>
<td>400</td>
</tr>
<tr>
<td>TMIC</td>
<td>511</td>
</tr>
<tr>
<td>Video Microscopy Systems</td>
<td></td>
</tr>
<tr>
<td>Etaluma Inc</td>
<td>209</td>
</tr>
<tr>
<td>Mad City Labs Inc</td>
<td>500</td>
</tr>
<tr>
<td>Mizar Imaging</td>
<td>820</td>
</tr>
<tr>
<td>Navitar</td>
<td>533</td>
</tr>
<tr>
<td>Visible Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Hinds Instruments Inc</td>
<td>830</td>
</tr>
<tr>
<td>OLIS Inc, On-Line Instrument Systems</td>
<td>202</td>
</tr>
<tr>
<td>Voltage Clamp Instrumentation</td>
<td></td>
</tr>
<tr>
<td>ALA Scientific Instruments Inc</td>
<td>620</td>
</tr>
<tr>
<td>Alembic Instruments Inc</td>
<td>802</td>
</tr>
<tr>
<td>ELEMENTS SRL</td>
<td>629</td>
</tr>
<tr>
<td>Fluxion Biosciences</td>
<td>320</td>
</tr>
<tr>
<td>Multi Channel Systems</td>
<td>300</td>
</tr>
<tr>
<td>NeoBiosystems Inc</td>
<td>630</td>
</tr>
<tr>
<td>X-Ray Diffraction Equipment</td>
<td></td>
</tr>
<tr>
<td>Anton Paar</td>
<td>704</td>
</tr>
<tr>
<td>BioCAT</td>
<td>430</td>
</tr>
<tr>
<td>X-Ray Imaging Equipment</td>
<td></td>
</tr>
<tr>
<td>BioCAT</td>
<td>430</td>
</tr>
<tr>
<td>Zeta Potential</td>
<td></td>
</tr>
<tr>
<td>Anton Paar</td>
<td>704</td>
</tr>
<tr>
<td>Wyatt Technology Corporation</td>
<td>403</td>
</tr>
</tbody>
</table>
BPS–IOP eBooks, creating the defining collection of ebooks in biophysics. Submit your book proposal today or contact us to discuss your ideas further.

Four books published in 2019 • Seven books coming in 2020 • Three books already scheduled for 2021

To learn more about this book program or becoming an author, Visit the BPS booth in Lobby G or the IOP booth (316) in the Exhibit Hall
Are You Taking Advantage of Your Member Benefits?

Take advantage of membership benefits that allow you to:

- Keep up with the latest research
 Access to *Biophysical Journal* online – the premier journal of quantitative biology

- Get published for less
 Publish in the *Biophysical Journal* and pay reduced rates for pages and print color

- Save money on meetings
 Get significant member discounts to the BPS Annual Meeting, Thematic Meetings, and BPS Conferences

- Increase your career development skills
 Webinars on timely and relevant career development topics

- Expand your network
 Connect with your peers at Society meetings including BPS Annual Meeting, Thematic Meetings, BPS Conferences, and local networking events

- Get financial assistance
 Apply for travel awards and bridging funds to attend the BPS Annual Meeting, or apply for funds to help support your local meetings and events

- Stay connected and informed
 Gain easy access to other members through the members-only directory; stay informed with a monthly newsletter and member communications; connect with other members through BPS Subgroups and Student Chapters

- Advance your career
 Get access to career development resources, including the BPS Job Board, external career resources, and career expert columnist “Molly Cule”

- Make your voice count
 Join thousands of biophysicists across the globe speaking in one strong voice advocating for funding basic science in general and for biophysics specifically

Visit biophysics.org to renew your membership or join the Society.
Thematic Meetings 2020

Biophysics at the Dawn of Exascale Computers
Hamburg, Germany
May 12–15, 2020

Spatial Organization of Biological Functions
Bangalore, India
August 16–19, 2020
Early Abstract and Registration Deadline: April 17, 2020

Physical and Quantitative Approaches to Overcome Antibiotic Resistance
Stockholm, Sweden
August 30–September 2, 2020
Early Abstract Deadline: May 1, 2020
Early Registration Deadline: May 20, 2020

For more information visit www.biophysics.org
Don’t Forget Your BPS20 T-Shirt!

Society Merchandise available at the BPS Booth in Lobby G

Piezo Nanopositioning Systems
Microscope Stages
Modular Motion Control

MicroMirror TIRF Microscope
RM21® Single Molecule Microscopes
Atomic Force Microscopes

Applications
Super Resolution Microscopy
Single Molecule Microscopy
AFM & NSOM
Optical Microscopy
Optical & Magnetic Tweezers
Volumetric Imaging & Particle Tracking

Booth # 500
www.madcitylabs.com

USA: sales@madcitylabs.com
Europe: sales@madcitylabs.eu

CoSMoS TIRF images courtesy of A. Haskins, University of Wisconsin-Madison
BPS 2021
BOSTON
65TH BIOPHYSICAL SOCIETY ANNUAL MEETING
FEBRUARY 20–24, 2021 | BOSTON, MA

ABSTRACT SUBMISSION & REGISTRATION OPEN
JULY 1, 2020

BIOPHYSICS.ORG/2021MEETING