Summer Course in Biophysics

June 5, 2014

How DNA Is Packed In The Cell: Chromosomes, Genes, Nucleosomes

Brian D. Strahl Department of Biochemistry & Biophysics UNC-School of Medicine

Outline

I. Chromatin organization

- The DNA packaging problem
- Histones and nucleosome core particle
- Chromatin folding and nuclear organization
- Euchromatin vs Heterochromatin
- II. Factors that influence chromatin organization and gene function
 - Histone post-translational modifications (PTMs) and the 'histone code'
 - Histone variants
 - DNA methylation
- III. Tools and technologies leading the charge in chromatin research
 - Modification-specific antibodies and chromatin immunoprecipitation
 - High-throughput microarray/DNA sequencing technologies
 - Proteomics and mass spectrometric analyses

The DNA packaging problem

-E. Coli: (Chlamydia trachomatis)	1X	1 million base pairs
-Yeast genome:	12X	12 million base pairs
-Fruit fly genome:	122X	122 million base pairs
-Human genome:	3400X	3.4 billion base pairs

If our strands of DNA were stretched out in a line, the 46 chromosomes making up the human genome would extend more than six feet (~ 2 meters)

A Matter of Fitting In!

8850 meters (~5.5 miles)

Mount Everest image: http://www.unu.edu/mountains2002/photoexhibit/thehimalaya.htm

pipet tip image: Biologix Research

(slide provided by Raymond Reeves)

How is DNA packaging achieved?

First order of DNA compaction

Nucleosomes are the building blocks of chromatin

Histone structure

Nucleosome organization

H3-H4 tetramers build a "wall" that is "capped" by H2A-H2B dimers

Blue= H2A/H2BWhite= H3/H4

Luger et al, Nature 1997

Luger et al, Nature 1997

Second order of DNA compaction

Secondary Structure

• H1 : essential for the solenoid structure

Third order of DNA compaction

Histone-depleted metaphase chromosome

Histone-depleted metaphase chromosome

A condensed metaphase human chromosome

FIGURE 1-14 An electron micrograph of a human chromosome. Chromosome XII from a HeLa cell culture. (Courtesy of Dr. E. Du Praw.)

HHMI

Genome architecture: chromatin domains

Heterochromatin vs. Euchromatin

- Highly condensed
- Repetitive sequences
- Replicates later in the cell cycle
- Transcriptionally OFF

- Decondensed
- Single copy sequences (genes)
- Replicates early in the cell cycle
- Transcriptionally ON

Outline

- I. Chromatin organization
 - The DNA packaging problem
 - Histones and nucleosome core particle
 - Chromatin folding and nuclear organization
 - Euchromatin vs Heterochromatin
- II. Factors that influence chromatin organization and gene function
 - Histone post-translational modifications (PTMs) and the 'histone code'
 - Histone variants
 - DNA methylation
- III. Tools and technologies leading the charge in chromatin research
 - Modification-specific antibodies and chromatin immunoprecipitation
 - High-throughput microarray/DNA sequencing technologies
 - Proteomics and mass spectrometric analyses

Molecular mechanisms that influence chromatin structure and function

- 1. Chromatin remodeling complexes (e.g. Swi/Snf)
- 2. Histone modifications
- 3. Histone variants (e.g. H2A.Z, CENP-A, etc.)
- 4. DNA methylation

Molecular mechanisms that influence chromatin structure and function

- 1. Chromatin remodeling complexes (e.g. Swi/Snf)
- 2. Histone modifications
- 3. Histone variants (e.g. H2A.Z, CENP-A, etc.)
- 4. DNA methylation

Histone Modifications

- Acetylation
- Phosphorylation
- Methylation
- ADP-ribosylation
- Ubiquitination
- Sumoylation

Histone Modifications

- Acetylation
- Phosphorylation
- Methylation
- ADP-ribosylation
- Ubiquitination
- Sumoylation

Histone acetylation and chromatin structure

(Adapted from Wade & Wolffe - Current Biology, 1997)

Bromodomain-containing proteins can bind to acetylated histones

(Taken from E. Pennisi - Science, 2000)

Epigenetic 'Toolkit'

Gardner, Allis & Strahl (2011) OPERating ON chromatin, a colorful language where context matters. *J. Mol. Biol.* **409**:36-46.

Histone Code 'readers'

Histone Modifications

- Acetylation
- Phosphorylation
- Methylation
- ADP-ribosylation
- Ubiquitination
- Sumoylation

Histone Modifications

- Acetylation
- Phosphorylation
- Methylation
- ADP-ribosylation
- Ubiquitination
- Sumoylation

Histone H3 methylation

Staining of female metaphase chromosomes with site-specific methyl H3 antibodies

methyl (Lys 9) H3

methyl (Lys 4) H3

(Taken from Boggs BA et al. - Nat Genet., 2002)

Roles of H3 lysines 4 and 9 methylation

(Taken from Bannister et al. - Nature, 2001)

Post-translational modifications decorate histones

Molecular mechanisms that influence chromatin structure and function

- 1. Chromatin remodeling complexes (e.g. Swi/Snf)
- 2. Histone modifications
- 3. Histone variants (e.g. H2A.Z, CENP-A, etc.)
- 4. DNA methylation

Histone Variants

Histones	Features	Assembled by (organism)
Archaeal histones	Ancestral histone fold proteins without tails found in singly wrapped	Unknown
	tetrameric units that comprise nucleosome particles.	
H2A, H2B	Canonical core histones encoded by replication-coupled genes.	FACT (yeast, Drosophila)
H2AZ (HTZ1)	H2A variant found in nearly all eukaryotes that has a diverged	SWR1 (yeast), Tip60
	self-interaction domain.	(Drosophila)
macroH2A	Vertebrate-specific H2A variant with a C-terminal globular domain.	Unknown
	Enriched on the mammalian inactive X-chromosome.	
H2A-Bbd	Vertebrate-specific H2A variant that is widely distributed. Relatively	Unknown
	deficient on the inactive X-chromosome.	
H2AX	H2A form with an SQ[E/D] \emptyset (\emptyset = hydrophobic) C-terminal motif that	INO80 (yeast)
	becomes serine phosphorylated at sites of double-stranded breaks.	
H3, H4	Canonical core histones encoded by replication-coupled genes.	CAF-1 (plants, animals, fungi)
H3.3 (H3.2 in	H3 variant that replaces H3 and differs at position 31 and at a few residues	HIRA (mammals)
plants)	on helix 2 that allow deposition outside of replication.	
Packaging	Core and linker histone variants adapted for tight packaging of DNA in	
histones	sperm and pollen in some organisms.	

Table 1 Histone variants and associated chromatin assembly complexes

(Table from Henikoff and Ahmad, Annu. Rev. Cell Dev. Biol, 2005)

Molecular mechanisms that influence chromatin structure and function

- 1. Chromatin remodeling complexes (e.g. Swi/Snf)
- 2. Histone modifications
- 3. Histone variants (e.g. H2A.Z, CENP-A, etc.)
- 4. DNA methylation

DNA methylation

Occurs in: (1) select organisms and (2) usually at CpG dinucleotide residues

1. Organisms found in: 2. Occurs on Cytosine:

Humans Mice Frogs Flies*_(low levels and CpT)

5-Methylcytosine

How DNA methylation regulates gene repression?

- A) By sterically blocking the binding of transcription factors (e.g. E2F, NF-kB, CTCF
- B) & C) By recruiting chromatin modifying activities
- D) By affecting RNA Polymerase II transcription

(figure from Klose & Bird, Trends Biochem Sci., 2006)

Outline

- I. Chromatin organization
 - The DNA packaging problem
 - Histones and nucleosome core particle
 - Chromatin folding and nuclear organization
 - Euchromatin vs Heterochromatin
- II. Factors that influence chromatin organization and gene function
 - Histone post-translational modifications (PTMs) and the 'histone code'
 - Histone variants
 - DNA methylation
- III. Tools and technologies leading the charge in chromatin research
 - Modification-specific antibodies and chromatin immunoprecipitation
 - High-throughput microarray/DNA sequencing technologies
 - Proteomics and mass spectrometric analyses

Histone modification-specific antibodies have enabled the study of chromatin!

methyl (Lys 4) H3

(Taken from Boggs BA et al. - Nat Genet., 2002)

(Provided by Jason Lieb, UNC)

ChIP-Seq

- Follow standard ChIP procedure
- Identify uniquely aligned sequences in human genome

Mass spectrometry is a vital tool in combinatorial PTM discovery

A. Bottom-up MS

ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIA QDFKTDLRFQSSAVMALQEASEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA-134

B. Top-down MS

ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIA QDFKTDLRFQSSAVMALQEASEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA-134 Mass Spectrometry technologies have revealed novel histone 'marks' and specific histone codes

nature structural & molecular biology

Regulated nucleosome mobility and the histone code

Michael S Cosgrove¹, Jef D Boeke^{2,3} & Cynthia Wolberger^{1,4}

Mass spectrometry is a vital tool in combinatorial PTM discovery

NATURE METHODS | VOL.4 NO.6 | JUNE 2007 |

Pervasive combinatorial modification of histone H3 in human cells

Benjamin A Garcia¹, James J Pesavento², Craig A Mizzen^{1,3} & Neil L Kelleher^{1,4}

Research

Molecular & Cellular Proteomics 8.10

BRIEF COMMUNICATIONS

High Throughput Characterization of Combinatorial Histone Codes*

Nicolas L. Young‡, Peter A. DiMaggio§, Mariana D. Plazas-Mayorca¶, Richard C. Baliban§, Christodoulos A. Floudas§, and Benjamin A. Garcia‡¶∥

SILAC-based approaches are unlocking identification of novel (Stable isotope labeling by amino acids in cell culture) effector proteins

Bromodomain-containing proteins can bind to acetylated histones

(Taken from E. Pennisi - Science, 2000)

Semi-synthetic modified nucleosomes explore multivalent engagements in chromatin

Thank you!