Microtubule Forces

Kevin Slep

Microtubules are a Dynamic Scaffold

Microtubules in red, XMA215 family MT polymerase protein in green

Some Microtubule Functions

Cell Structure

Polarized Motor Track (kinesins and dynein)

Cilia structure (motile and sensory)

Mitotic and meiotic spindle structure

Cell polarity

Coordinate cell motility with the F-actin network

Architecture of Tubulin and the Microtubule α/β -Tubulin: The Microtubule Building Block

Tubulin is a heterodimer composed of α and β tubulin

 $\Box \alpha$ and β tubulin are each approximately • 55 kD and are structurally very similar to •each other.

•Each tubulin binds GTP: The α GTP is nonexchangeable and the dimer is very stable, Kd = 10⁻¹⁰; the β GTP is exchangeable in the dimer

The Microtubule Architecture

Tubulin binds head-to-tail along protofilaments, forming LONGITUDINAL interactions.

Longitudinal interactions complete the active site for GTP hydrolysis

13 protofilaments form a hollow tube-the microtubule: 25 nm OD, 14 nm ID (protofilaments interact via LATERAL interactions)

The MT is a left-handed helix with a seam, it rises 1.5 heterodimers per turn (α and β form lateral interactions)

MTs are polar-they have a plus end and a minus end

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

The γ Tubulin Ring Complex (γ TuRC) forms a lockwasher to nucleate MTs

Axial view

Side View

The Centrosome is a Microtubule Organizing Center (MTOC) rich in γ TuRC

MTOC's control where microtubules are formed

Centrosomes contain peri-centrosomal material (PCM) surrounding a pair of centrioles

 $\gamma TuRC$ nucleation complexes are localized to the PCM

Centrioles within centrosomes become basal bodies, which are nucleation centers for cilia (motile and primary) and flagella

Centrosomes duplicate once per cell cycle

Mother centriole nucleates growth of a daughter centriole with an orthogonal orientation

Microtubule Polarity and Dynamics

Polarized Microtubule Organization in Vivo

Microtubules are Dynamic

Fish melanophore injected with Cy3-tubulin Vorobjev, I.A. et al., J. Cell Sci. 112 (1999) Gary Borisy' s Lab

Microtubule Dynamic Instability

Nature Reviews | Molecular Cell Biology

Microtubule Ends Exhibit Dynamic Instability Not Simple Equilibrium Assembly

In Vitro Microtubule Dynamic Studies

Defining Microtubule Polarity: the use of markers

Axonemes

Longer microtubules grow from the axoneme's plus end

Polarity Marked MTs

GMPCPP MTs, crosslinked and labeled with a different fluor, or a higher stoichiometry of the fluor

Microtubule Associated Proteins (MAPs) Modulate Microtubule Dynamics

Depolymerization and Polymerization Factors:

•Depolymerization:

•Polymerization:

Stathmin Depolymerizing Kinesins (Kinl) Spastin, Katanin (generates MT breaks)

Stabilizing MAPs: MAP2, Tau) Many Plus End Tracking proteins: EB1, CLIP-170, CLASP, XMAP215

Force Generating Proteins: Microtubule Motor Proteins

Microtubule Motor Functions

- Cilia and Flagella Motility
- Vesicle Transport
- Protein transport, RNA transport
- Polarized Organization of Nucleus, Golgi, ER, Mitochondria and Other Organelles in Cells
- Microtubule, actin filament and intermediate filament transport
- Microtubule Catastrophe Factors
- Spindle Assembly
- Motility of Kinetochores and Chromosome Arms
- Intra-flagella transport for cilia, flagella, photoreceptor and chemoreceptor function

- 1. Kinesins and Kinesin-Related Proteins (cytoplasmic)
- 2. Cytoplasmic dyneins
- 3. Axonemal dyneins (cilia and flagella)

Cytoplasmic MT-based motors

Kinesin / kinesin-related proteins and cytoplasmic dyneins:

Kinesin I (conventional kinesin)

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

How kinesin (and dynein) motility is studied:

Motility assays:

(1) MT gliding assays(2) bead assays(3) single molecule fluorescence: FIONA

Types of imaging:

(1) DIC(2) fluorescence(3) optical trap(4) atomic force microscopy

Preparations for Motility Assays

Imaging MT motility using fluorescent MTs

Microtubules assembled with rhodamine tubulin -usually stabilized by taxol

Kinesin bound to surface of coverslip

Time: 30x

Polarity marked MT imaged by VE-DIC

Axoneme

MT plus end

Microtubule motor driven organelle motility

FIONA: Fluorescence Imaging with One-Nanometer Accuracy

Each motor head takes 16 nm steps,

The center of mass moves 8 nm/step = length of a tubulin heterodimer

How does kinesin use ATP to generate force for movement?

Crystal structure of the kinesin motor domain: two heavy chains are dimerized via the stalk regions

How does kinesin use ATP hydrolysis to generate force for movement?

** ATP hydrolysis cycle regulates MT affinity and docking of the neck linker onto the motor domain through conformational change

- ** **Nucleotide Free**: head is bound to MTs and the linker is mobile
- ** ATP binds: linker docks into the motor domain, throwing the back head forward
- ** ATP hydrolysis: lowers kinesin's affinity for the MT, kinesin detaches the linker from the motor domain

Kinesin is a processive motor

A single motor can travel for hundreds of ATPase cycles along a MT without dissociating

WHY?

- 1. cycles of the motor heads are coordinated with each other so that one kinesin doesn't let go until the other one binds the MT (hand-over-hand motion)
- 2. kinesin spends half of its cycle in the MT-bound state (vs. ~5% for myosin)

The ATP hydrolysis cycle and Kinesin Processivity

Ron Milligan's Web site, Scripps

A. J. Kim & S. A. Endow April 2000

VE-DIC Microtubule Motility Assay: Ncd is a Minus End-directed MT Motor

ned driven microtubule translocation and rotation Walker, R., E.D. Salmon, S.A. Endow (1990) Nature 347:780-782

Roles for dynein:

-Minus end-directed vesicle trafficking

-Localization of the Golgi at cell's center

-Mitotic spindle assembly and dynamics

ATP-dependent structural changes in Dynein

Structural changes must be propagated to the microtubule binding domain

Α

Structures of Cytoplasmic Dynein

Imaging dynein motility using Quantum Dots

Dynein Step Size (FIONA): Fluorophore on the Motor or Tail

Motor-Labeled 16 nm steps

Tail-Labeled 8 nm steps

Dynein: Each head (motor): 16nm steps Center of mass (tail): 8nm steps

	 Axomenal Dyneins Cilia vs. Flagella 		•
	Cilia: move single cells or move fluid over cells	Flagella: motor sperm and protozoa through liquid	د د
2 2	Oar-like Power stroke and Recovery	Multiple beating patterns	5
3	Shorter (~10 μm)	Longer (>100 μm)	5
recovery stroke	Many working together: Coordinated movement	Cells typically have one or two	

Movement of both cilia and flagella is generated by the bending of their core: the <u>axoneme</u>

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Kinesin vs. Dynein

Kinesin

Direction Step Size Oligomer Nucleotide Fold Family Plus End (exception: NCD) 8 nm (16 nm single head) Dimer ATP G-protein-like numerous members

Subunits Associated chains (cargo)

Dynein

Minus End varies (8, 12, 16 nm, etc.) Dimer ATP AAA domains cytoplasmic (homodimer) axonemal (heterotrimer) Associated chains (cargo)

Mitosis:

Achieving Accurate Chromosome Segregation

Time-Lapse of Mitosis

Video Enhanced DIC Microscopy of Mitosis in Newt Lung Cells (Taricha granulosa)

Victoria Skeen, Robert Skibbens, and E. D. Salmon University of North Carolina at Chapel Hill (see Skibbens et al., 1993, J. Cell biol. 122:859-875) Frame Time = HR:MIN:SEC

Microtubule Organization Within the Bi-Polar Metaphase Mitotic Spindle

©1998 GARLAND PUBLISHING

Chromosomes Segregate Toward MT Minus Ends at Spindle Poles

The Mitotic Spindle is a Dynamic Assembly of Microtubules (MTs) and MT Motor Proteins

<u>Motors</u>

Mitchison and Salmon, 2001, Nat. Cell Biol. 3:E17-E21

In Tissue Cells, Kinetochores Exhibit Directional Instability

States of Kinetochore Bi-Stability Depolymerization and the Slip-Clutch

Depolymerizing State, Force Generating Polymerization State, Resistive

