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Biological structure: A holistic system of the components performing a certain function in dive systems.
Biologicd sysemsinclude complex systems of the various levels of organization: biologica macromolecules,
subcdlular organdlles cdlls, organs, organisms, and populetions.

Age structure: The digtribution of the number of speciesin a population with respect to ages. A discrete and
continuous representations of the age structure are employed.

Biochemical kinetics: The branch of science examining the tempora behavior of the components of
chemicd reactions, thair transformations, and interactions.

Kinetic models: The models describing the behavior of the system's components in time. Concentrations of
the system's components are usualy the variables in these moddls. Most often, the ordinary differentia
equations are an gpparatus of kinetic modds, as well as the delayed equations, partid differentia equations,
and finite-difference equations.

Theory of metabolism control: The branch biochemica kinetics examining complex networks of metabolic
processes and the sengtivity of their individua stages to the changes in exterior and interior parameters of the
sysem.

L ogistic growth: The population growth law described by a curve that has alag period, and alimit value
determined by the capacity of the population ecologica niche.

Cdlular cycle: The sequence of phases passed by acell from the preceding to next fission. In continuoudy
proliferating cdls, it condgsts of the interphase (the growth period) and mitosis (the fission period).

M odels of the inter action between the species: Mathematical models govemed by differentia or finite-
difference equations describing the spatio-tempora changesin the population number of speciesin their mutua
interaction ( predation, symbios's, competition, etc.).

Molecular dynamics: The branch of physica and mathematical modeling of the behavior of biological
macromolecules (polypeptides, polynuclectides, proteins) that S mulates the concerted motion of the atoms,
which compose amolecule, in space and time.

M orphogenesis. The formation of forms: the gppearance of new forms and structures in the course of
individua and historical development of organisms. Models of the morphogenesis describe the spatio-
tempord evolution; classca modds use the partid differentid equations asatool.

Nerve conductivity: The capability of the nerve cells (neurons) of the excitation and of the transmission of
the excitation to other nerve cdls, muscular and other tissues.

Population dynamics: The branch of mathematical modeling thet describes the processes of growth and
development of individua populations and the interaction between different populations. Quantity and density
of populations are the variables in these modes.

Population: relaively isolated group of species of the same kind. In mathematical description, both
homogeneous populations and structured with respect to age, gender, etc. are considered.

L otic cultures of microorganisms: A technique for cultivating the microorganisms in which a substrate
comesin continuoudy and amixture of the substrate and biomassis continuoudy removed. This method is
widdy used in biotechnology. Modes of continuous cultivating are classica objects in mathematica biology
and are dso applicable to the naturd systems open with respect to matter.

Stationary regime: A regime of the functioning of a system which settles in time and whose charecteristics
then remain unchanged. In the models, this corresponds to the concept of an attractor.

Trigger models: nonlinear models (as arule, the systems of differentia equetions) with two or severd stable
dationary states.

Growth equation: differentid or finite-difference equation describing the change in quantity (density) of a
populetion in time.

Phase pattern: graphica image of asystem in the phase plane (or in amultidimensiona space); the values of
variables are marked on the coordinate axes. In such a representation, the behavior of variablesin time for
every initid point is described by a phase trgjectory. A set of such phase trgjectories for arbitrary initia
conditions represents a phese pattern.



Summary

Mathematical models represent a language for formaizing the knowledge on live systems obtained in
theoretica biophysics. Basic models represented by one or two equations alowing a qualitetive examination,
make it possible to describe principa regularities of biologica processes: growth restrictions, presence of
severd dable dationary sates, oscillaions, quasistochastic regimes, travelling pulses and waves, and the
gructures inhomogeneous in space. The nonlinearity of these moddsistheir most important property: it
reflects mathematically the openness of biologica systems and their Sate beyond thermodynamic equilibrium.
This type of modd s includes the models of growth, interaction between the species, lotic cultures of the
microorganisms, genetic trigger, intracelular calcium oscillations, glycolysis, nerve conductivity, and DNA
untwigting. The detdization and identification of these models from experimentd data alows the description of
red processesin live systems, the examination of their mechanisms, and makes these models heurigtic. The
models of primary processes of the photosynthesis are a good example. Using the computers, the imitation
models devel op vigoroudy, describing the behavior of a complex system on the basis of the knowledge on its
elements and on the regularities of their interaction. On the level of biologicd macromolecules, these are the
modes of molecular dynamics, based on the characteridtics of individua atoms an don the laws of their
interaction. The imitation modds are congtructed for dl the levels of the organization of live systems, from the
subcellular organelles to the biogeocenoses. The development prospects for mathematical modelsin biology
rest on the use of information technologies. The latter dlow the integration of knowledge both in the form of
mathematical objects and in the form of visud images, which presents a notion on complex laws of the
functioning of the regulation lawsin dive sysemsthat are difficult to be formalized.

1. Introduction

Biophysics represents a science on fundamenta laws underlying the structure, functioning, and development of
living sysems. Along with experimentd methods, it actively uses mathematicd modes for describing the
processss in living sysems of various organizetion leve, starting with biomacromolecules and then a the
cdlular and subcellular leve, a the level of organs, organisms, populations and communities, biogeocenoses,
and findly, a the leve of the biogphere as a whole. The mathematization degree in this or another field of
biophysics depends on the leve of experimenta cognition of the objects and on the facilities of mathematica
formdization of the processes under examination.

All living systems are far from thermodynamic equilibrium. They are the sysems open to the fluxes of matter
and energy and have complex inhomogeneous structure and hierarchic system for controlling the processes
both in the interior environment and changing conditions of the exterior environment. Therefore, mathematical
formdization of the concepts on the processes in living systems represents consderable difficulties. Unlike
physics, in which mathematics is a naurd language, these are mathematical modes in biology and
biophysics, as they are referred to, because of the individuality of biologica phenomena. The term «model»
emphasizes here, that some quditative and quantitetive characteristics of the process in a living sysem are
abstracted, idedlized, and described mathematicaly, rather than the system itsdlf.

In describing processes in biomacromolecules, the gpproaches of physics, quantum mechanics, and
thermodynamics are often employed. The complexities here are associated with unique structure of
biomacromolecules (proteins, lipids, polynucleotides) containing many thousands of atoms. Mahematica
modeling of intramolecular interactions between atoms and structurd fragments of such molecules and of their
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interactions with water environment and low-molecular compound is only possble by usng powerful
compuiter facilities (methods of molecular dynamics).

The second large class of models is represented by the models of biochemical reactions,induding enzyme
reections. These are well developed and andyticadly examined reactions of enzyme catdyss (Michadis-
Menten, Higgins, Reich, Sd’kov) and other locd modds governed by ordinary differentid equations.
Andyticd and numericd examination of these models dlowed the conditions for the emergence of quditatively
new regimes to be formulated: multi seedy- state, self-oscillating, and quasistochadtic in the chains of metabolic
reactions. This class a0 includes the modes of processes in active mediums, whose local € ements represent
biochemica reactions with regard to the processes of spatia transfer (the «reaction—diffuson» modds, for
details, see 6.3.6.3)

The next hierarchical leve, cdlular biophysics, is represented by the models describing processes in
biologicd membranes, subcdlular organdles (chloroplasts, mitochondria), and by the modes of the nerve
pulse propagation. Starting with 1990s, the theory of metabolic control is actively developed, whose godl is
the examination and search for maximally controllable stages in complex metabolic cydes of intracdlular
reactions.

Findly, mathematical biophysics of complex systems, which historically has appeared before the others,
includes the models associated with system mechaniams that determine the behavior of complex systems.
These are the modds of populaion dynamics, which became an origind «mathematicd polygon» of al
mathematica biology and biophysics. The basc models of populaion dynamics are the basis of modes in
cdlular biology, microbiology, immunity, theory of epidemics, mathematica genetics, theory of evolution, and
other directions of mathematica biology. Imitation modeling of multicomponent biologicd systems, aimed &
the prognoss of their behavior and at the search of optima control, belong to another direction in modeling
complex biologica systems. These are the models of haematogenes's, modds of the digestive tract and
models of other life support systems in organism, models of morphogenesis, and dso modds of the production
processin plants, models of aguatic and terrestrial ecosystems and, finaly globa models.

2. Specificity of mathematical modeling of living systems

Despite the diversity of living systems, they dl possess the following specific features that must be taken into
account in congtructing the models.

1. Complex systems All biologicd systems are complex, multicomponent, spatidly structured, and their
eements possess individudity. Two approaches are feasble in modding such sysems. The firs one is
aggregated and phenomenologica. According to this gpproach, the determining system characteristics are
sngled out (for example, the tota number of classes) and quditative properties of the behavior of these
quantities in time are consdered (sability of a Saionary date, presence of oscillations, existence of id
nonhomogeneity). Such an approach is historicd the most ancient and is inherent in the dynamic theory of
populations. Another agpproach implies the detailed consderation of the system's dements and their
interactions, the congtruction of an imitation modd, whose parameters have clear physica and biologica
sense. Such amodd does not permit an andytical examination but, if the fragments of a system are sufficiently
examined experimentaly, can yidd a quantitetive forecast of the system’s behavor under various exterior

impacts.

2. Proliferating systems (capable of self-reproduction). This mogt important feature of living sysems
determines their ability to reprocess inorganic and organic meatter for the biosynthess of biologica
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macromolecules, cdls, and organisms. In phenomenological modds, this property is expressed by the
autocataytic terms in equations, which determines the possibility of growth (exponentid under unlimited

conditions), of the ingtability of a Sationary state in local systems (the necessary condition for the appearance
of oscillatory and quasistochedtic regimes), and of the ingtability of homogeneous Sationary state in patialy
digributed systems (the condition of spatidly inhomogeneous digributions and autowave regimes). An
important role in the development of complex spatio—tempora regimes belongs to the processes of interaction
between the components (biochemical reactions) and to the transfer processes both chaotic (diffusion) and
associated with the direction of exterior forces (gravity, eectromagnetic fields) or with adaptive functions of

living organiams (for example, the mation of cytoplasm in cells under the action of microphylaments).

3. Open systems, steadily passing through themsdves the flows of matter and energy. Biologicd systems are
far from thermodynamic equilibrium and, therefore, are described by nonlinear equations. The linear
Onzager relations thet relate the forces and flows are valid only near the thermodynamic equilibrium.

4. Biologicd objects possess a complex multilevel regulation system. In biochemica kinetics, this is
expressed by the presence of feedback loops, both postive and negative, in systems. In equations of local
interactions, the feedbacks are described by nonlinear equations; their character determines the possibility of
the gppearance and properties of complex kinetic regimes, including oscillatory and quasistochastic ones.
Such types of nonlinearity, in describing the spatia distribution and transfer processes, stipulate the patterns of
dationary structures (spots of various forms, periodic disspative structures) and types of the autowave
behavior (moving fronts, traveling waves, leading centers, spird waves, etc.).

5. Living systems have a complex spatial structure. A living cell and the organdlles in it have membranes,
and any living organism contains enormous number of membranes, whose total area reaches tens of hectares.
It is naturd that the medium inside living systems cannot be regarded as a homogeneous one. The emergence
of such a spatid structure and the laws of its formation represent one of the problems in theoretical biology.
Mathematica theory of morphogenesis is one of gpproaches to the solution of this problem (for details, see
6.3.6.3).

The membranes not only single out various reaction volumes of living cells, but dso separate the biotic and
abiotic (medium). They play akey role in the metabolism sdlectively, passing through themsdlves the flows of
inorganic ions and organic molecules. In the membranes of chloroplasts, the primary photosynthess processes
occur: the accumuletion of the light energy in the form of the energy of highly energetic chemica compounds;
they are used for the synthesis of organic matter and in other intracellular processes. The key stages of the
breathing process are concentrated in the membranes of mitochondria, the membranes of nerve cdls
determine their capability to the nerve conductivity. Mathematicd models of the processes in biologica
membranes comprise a sgnificant portion of mathematical biophysics. Existing models are mostly presented
by the systems of differentid equations. However, it is obvious that continuous modds cannot describe in
detall the processes that occur in such individua and structured systems as living systems. As computationd,
grephicd, and intellectud facilities of computers develop, the imitation modes, based on the discrete
mathematics, play ever increasing role in mathematica biophysics.

6. Imitation models of concrete complex living systems, as arule, take into account al available information
about given object. The imitation models are employed to describe the objects of different organization levels
of live matter: from biomacromolecules to biogeocenoses. In the latter case, the modds must include the
blocks describing both living and «inert» components (see 6.3.6.2). Models of molecular dynamics are a
classic example of imitation modds, in which the coordinates and impulses of dl atoms that compose a
biomacromolecule and the laws of their interactions are prescribed. A pattern of «ife» of a system, smulated
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by computer dlows one to follow the manifestation of physica laws in the functioning of the smplest biologica
objects — biomacromolecules and their environment. Similar models, in which the dements (bricks) are not
aoms but groups of atoms, are employed in modern technique of the computer congruction of
biotechnologica catdysts and thergpeutics that act on certain active groups of membranes of microorganisms
and viruses or perform some other directed actions.

The imitation models were crested for describing the physiological processes that occur in vitaly important
organs. nerve tissue, heart, brain, digestive tract, and blood vessels These models are used to smulate the
«scenarios» of processes that occur normaly and in various pathologies, to examine the influence of various
exterior impacts to these processes, including the thergpeutics. The imitation models are widely used for
describing the productio n process in plants and are gpplied to the development of optimal regime of growing
plants amed a obtaining the maxima harvest or the ripening of fruits uniformly didributed in time. Such
projects are especidly important for expansive and energy consuming greenhouse farming.

3. Basic modelsin mathematical biophysics

In mathematica biophysics, as in any science, smple modds exigt that are liable to anaytic examination and
possess properties that dlow a whole spectrum of natural phenomena to be described. Such models are
cdled basic. In physics, harmonic oscillator (a bal, materid point, on a spring without friction) is a basic
modd. Firgt, the essence of processes is examined in detail mathematically with the use of abasic model and
then, by analogy, the phenomena are comprehended that occur in much more complex red systems. For
example, the relaxation of conformation states of a macromolecule is congdered smilarly to an oscillator in
viscous medium.

Despite enormous diversty of living sysems, one can single out some of their inherent most important
properties. growth, self-restriction of growth, ability to switching, i.e., the existence of two or more stationary
regimes, sdf-oscillating regimes (biorhythms), spatid nonhomogeneity, and quasstochadticity. All these
properties can be demongtrated on comparatively smple nonlinear dynamic modds, which play the role of
basic modds in mathematica biology.

3.1. Unlimited growth. Exponential growth. Self-catalysis (Auto-catalysis)

The rate of growth is proportiond to the population numbers, no matter is this a hare population or a
population of cels, this is one of fundamenta assumptions underlying dl models of growth. For many one-cdll
organisms or for the cdlls contained in cdlular tissues, the proliferation means smple division, tha is, doubling
the number of cells for a certain time interva called the characterigtic divison time. The proliferation of plants
and animas, whose organization is complex, follows more complex laws; however, in the smplest model, one
may assume that the proliferation rate of a speciesis proportiona to the numbers of this species.

This is written mathematicaly with the use of a differentid equation linear with respect to a vaiabdle x
characterizing the numbers (concentration) of individuasin population:

dx

" =R x @

Here, R can be, in genera case, a function of both the numbers and time or depend on other exterior and
interior parameters.



The law (1) was formulated by Thomas Robert Mathus (1766--1834) in his book "On the Growth of
Population” (1798). According to (1), if the proportiondity coefficient R=r=fonst (as Mathus assumed),
then the numbers grow exponentialy and without limits:

X=X 5 X, =x(t=0). (2

For most populations, the limiting factors exist, and the growth of population terminates due to a variety of
reasons. Human population is the only exception: during the whole higtorica time, it increases even fagter than
exponentidly. The investigations performed by Malthus exerted a great influence both on economists and
biologidts, in particular, Charles Darwin andyzes the Mathus theory in his diariesin detail. Darwin understands
the straggle for existence in red living nature as one of the causes for bresking the Mathus law.

The law of exponentia growth isvalid at a certain growth stage for the cdll populations in atissue, for dgaor
bacteria in a culture. In modds, the mathematical expression that describes the increase in the rate of change
of aquantity is referred to as autocatalytic term (the catdysis means a modification of the reaction rate, usudly
the acceleration, with the help of substances that do not participate in the reaction), and the autocatalysis
meansthe "sdlf-acceleration” of areaction.

3.2. Bounded growth. The Verhulst equation.

The Verhulst model (1848) is abasic model that describes the limited growth:

= ka2 &)
dt K

The parameter K is called the "population capacity” and expressed in the units of numbers (concentretion); it is
of sysem character that is, determined by a number of different factors. Among the latter, these are the
limitation to the amount of subdtrate for the microorganiams, space available for a cdl population in a tisue,
the food base, or the refuge for superior animas. Diagrams of the dependence of the right-hand sde of Eq.
(3) on the numbers x and on the population numbersin time are presented in Figs. 1a, 1b.

fix) xh

Fig. 1: Bounded growth: (a) dependence of the growth rate on the numbers; (b) dependence of the numbers
on time for the logigtic equation.

The examination of a discrete anadogue of Eg. (3) in the second half of the 20th century has reveded its quite
new and wonderful properties. Consider the population numbers at sequentia moments, which corresponds to



ared procedure of counting the species (or cells) in a population. The dependence of the numbers a atime
step numbered n+1 on the numbers a the preceding stepn can be written as

X =X (X %)) @

The behavior of the variable x, in time as dependent on the parameter r can be characterized not only by
unbounded growth, as it was in the continuous mode (3), but aso be oscillating or quasistochastic, as it is
shown in Fig. 2 on the left. The parameter of own growth rate r increases in the downward direction. The
curves representing the dependence of the numbers at a given moment (+1) on the numbers at preceding

moment t are depicted in Fig. 2 on the left; This rate increases @ smdl numbers and, a higher numbers,
decreases and then vanishes. Dynamic type of the population growth curve depends on the growth rate at
smdl numbers, i.e, is determined by the derivative (by the tangent of inclination angle of this curve) a zero
that is determined by the coefficient r. For samal r (r <3), the population number tends to a stable equilibrium.
When the diagram on the left becomes steeper, the stable equilibrium passes into stable cycles. As the
numbers increase, the cycle length increases, and the values of numbersrepeet in 2, 4, 8, ... 2" generations. At
the vaue r > 2.570, the chaotization of solutions happens. At r aufficiently large, the population dynamics
demongtrates chaotic spikes (outbursts of the insect numbers). Equations of this type describe the numbers
dynamics of seasondly proliferating insects with not overlapping generations.
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Fig. 2: () dependence of the numbers at subsequent step on the numbers at preceding step and (b) behavior
of the numbers at different values of the parameter r for the discrete modd of logigtic growth (3): (1) bounded
growth; (2) oscillations; (3) chaos.

The discrete description proved to be instrumenta for the systems of most different nature. The representation
of dynamic behavior of a system & a plane in the coordinates k,, x,;] alows one to determine if the
observed system is oscillatory or quasistochagtic. For example, such representation of the cardiogram data
mede it possible to establish that norma systoles of human heart are of irregular character, while in the period
of breast-pang fits or in a preinfarct Sate, the systolic rhythm becomes dtrictly regular. Such a «rigid» regime
"aggravation?' is a protective reaction of organism in a stress Stuation and points to the danger to the life of
sysem.



3.3. Constraints with respect to a substrate. The models of Monod and Michaelis-M enten

Shortage of food is one of the limits for growth (in microbiologica language, substrate limitation). It iswell
known from biologica studies that, under the conditions of the limit by subdrate, the growth rate increases
proportiondly to the substrate concentration, and in the abundance of subdtrate, arrives a a congtant value
determined by genetic capabilities of population. For a certain period the population numbers increase
exponentidly, until the growth rates starts being limited by some other factors. The dependence of the growth
rate R in formula (1) on the subgtrate can be presented in the form

m,S

S+S

©)

R(S) =

Here, E isacongtant equa to the substrate concentration, at which the growth rate is equa to the half of
maximal; m, is the maximal growth rate equa to r in (2). Eq. (5) was written for the first time by outstanding
French biochemist Jacques Monod (1912--1976). In collaboration with Francoise Jacob, he developed a
concept on the role of trangport ribonuclein acid (messenger) — mMRNA- in the proliferation gpparatus of a cell.
As adevelopment of the concepts on gene complexes, which they have caled the operons, Jacob and Monod
postulated the existence of a gene class that regulates the functioning of other genes by affecting the synthesis
of RNA. This mechanism came to be completely for bacteria, and both scholars (and dso Andre L'vov) were
awarded by Nobd prize in 1965. Jacques Monod was aso a philosopher of science and an exceptiona

writer. In his famous book "Chance and Necessity” (1971), (Monod) spesks out his thoughts on random
origin of the life on earth and on the evoltion, and dso on the role of man and his responshility for the
processes that occur on the earth.

The Monod mode (5) coincides in form with the Michadis--Menten equation (1913) that describes a
dependence of the fermentative reaction rate on the subsirate concentration under the condition when the totdl
number of enzyme molecules is constant and much smaler than the number of substrate molecules:

S
= 6
mes) K. +s ©6)

Here, E, - is the Michagls congtant, one of most important quentity in enzyme reections, determined
experimentally and having the sense and dimension of the substrate concentration, a which the reaction rete is
a hdf of maximd. The Micheds--Menten law is derived on the bads of chemicd kinetics equations and
describes the formation rate of a product according to the scheme:

E+SU0O [ESJU E+P.

The Michadls--Menten formula (6) reflects deeper regularities in the kinetics of enzyme reactions thet, in turn,
determine the vitd activity and growth of microorganisms described by empirical formula (5); this determines
the amilarity of Egs. (5) and (6).

3.4. Competition. Selection

Biologica systems interacts with each other &t al levels, be it the interaction of macromoleculesin the process

of biochemica reactions or the interaction of species in populations. The interaction can occur in structures,
then a system can be characterized by a certain set of states, which happens at the level of subcdlular, cdlular,



and organism structures. Kinetics of the processes in structures is described in mathematica modedls, asarule,
by the systems of equations for probabilities of the states of complexes.

In the case, when the interaction occurs a random, its intendty is determined by the concentration of
interacting components and by their motility, the generdized diffuson. These are the concepts that are
conventiond in the basic models of the species interaction. The monograph by Vito Valterra "Mathematica
Theory of the Struggle for Exigence” (1931), in which mathematical moddls of the species interaction were
considered, became a classical book. In this book, properties of biologica objects and their interactions are
postulated in a mathematical form and then examined as mathematical objects.

Vito Volterra (1860-- 1940) acquired the worldwide popularity with hisworksin the field of integra equations
and functiond analyss. Beside pure mathematics, he was interested in the gpplication of mathematica methods
to biology, physics, and social sciences. For the yearsin Italian Air Forces, he was serioudy engaged in the
research on military engineering and technology (problems in bdligtics, bombing, and echo sounding). This
persondity combined the talent of scientist and the temperament of an active politician, principa opponent of
fascism. He was the only Italian senator who voted againgt the passage of power to Mussolini. When, in the
years of fascigt dictatorship in Itay, Volterra had worked in France, Mussolini, who wanted to attract the
world -wide famous scholar to his sde, proposed him various high positions in fascigt Italy, dways received a
decisve refusd. The antifascigt position made Volterra to rgject the chair of the Rome University and the
membership in Italian academic societies.

Volterra got serioudy interested in the dynamics of populaions starting with 1925, after the discussons with a
young zoologis Umberto D'Ankona, future husband of his daughter, Louisa D'Ankona, examining the
datidtics of fish markets in Adriatic, has established a curious fact: when in the years of the Firs World War
(and immediately after) the fishing intensity dropped sharply, the rdative portion of predator fish in a catch hed
increased. This effect was predicted by the mode " predator--victim™ proposed by Volterra

Volterra assumed, by andogy with datistical physics, that the interaction intengty is proportiond to the
probability of meeting (collision probakility for molecules), thet is, to the product of concentrations. These and
some other assumptions (see 6.3.6.2), made it possible to construct a mathematical theory of the interaction
between populations of the same trophic level (competition, symbiosis) or different trophic levels (predator-

pray, parasite--host).

The smplest of these modds, the modd of sdection on the basis of competitive relaions, works in
congdering competitive interactions of any nature: biochemica compounds of various types of opticd activity,
competing cells, species, and populations. Its modifications are applied when describing the competition in
economy. Let us to consdder two absolutdy identical species with the same proliferation rate that are
antagonigts, that is, when meeting, they suppress each other. A modd of their interaction can be written as
(Chernavskii, 1984)

dx
= ax - bxy

™

dt
dy
— = ay - bxy
dt

According to thismode, symmetric sate of the existence of both speciesis unstable: one of interacting species
inevitably dies out, while another proliferates infinitely. The introduction of alimit in subgtrate (type 5) (eg.5) or
a system factor (type 2) (eg.2) alows the congtruction of models, in which one of species survives and dtains
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certain stable numbers. They describe the Gause —competition principle well known in experimenta ecology,
according to which only one species survives in every ecologica niche.

In the case, when the species possess different own growth velocities, the coefficients in autocatalytic terms
are different, and the system'’s phase pattern becomes nonsymmetrical. At various rettions of parametersin
such a system two possibilities exist: the survivd of one of two species and extinction of another (if mutua
suppression is more intense than the salf-regulation of the numbers) and the coexistence of both species (when
mutua suppression isless then the sdlf-limitation of the number of each species).

3.5. The Jacob and Monod trigger system

The Jacob—Monod modd of dternative synthesis of two ferments, presented in Fig. 3a, is one more classic
bistable sysem. A gene-regulator of each scheme synthesizes an inactive repressor. This repressor, combining
with the product of opposite system of the enzyme synthesis, forms an active complex. The active complex,
reversibly reacting with a portion of the structura gene, the operon, blocks the synthesis of mRNA. Thus, the
product of the second system P, is a corepressor of the first system, while P; is a corepressor of the second
system. One, two, and more molecules can participate in the corepresson process. Obvioudy, a such a
character of the interaction, the second system will be blocked by intense activity of the first system and vice
versa. Models of such sysem were proposed and thoroughly examined by B.C.Goodwin and
D.S.Chernavskii. After corresponding simplifications, the equations describing the synthesis of the products P,
and P> take the form:

dPl Al
= m T 4.P o,

dt Bl+P2

dp, A, )
= m qZPZ'

dt B, +P

2 1

Here, P; and P2 arethe products concentrations, A, A2, By and B are expressed through the parameters of
their systems. The power index m shows, how many molecules of the active repressor (compounds of

molecules of the product with molecules of inactive repressor that is assumed to be in aundance) combine
with the operon to block the synthesis of mMRNA. A phase pattem of the system (trgectories of a system

under different initial conditions on the coordinate plane, where parameters of the syssem are marked on the
axes) a m = 2 and certain relations between the remaining parameters is shown in Fig. 3b. It isif a trigger
character, like the phase patern of the sysem of two competing species. The amilarity suggest that the
competition of species, enzymes, and States underlies the ability of a syslem to switching. The possibility of a
trigger to switch from one stationary state to another is an important aspect in the models of cdlular cycle,
differentiation, and in other models. A system can be «thrown» over the separatrix in two ways. by adding a
sufficient amount of the subgtance that was minimd in the initid deae, or parametricdly, having changed the
character of the phase pattern so that the initia state of the system becomes unstable (the trangition through the
saddle—node hifurcation) and the system acquires only one stable steady State that was separated by a
separatrix from the initid state. This is the regulation type thet is proposed in the models of the cdlular cycle.
Moreover, the change of the system’ s parameters can be conditioned by genetic program, for example, in the
case of cdlular cycle, occur in the process of the cdll’s growth.
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Fig. 3. (a) Jacob—Monod scheme for the synthesis of two enzymes; (b) phase pattern of atrigger system. .

3.6. Classic Lotka—Volterramodéls

The smplest nonlinear models of the interaction between chemica substances in the Lotka eguations and
between species in the Volterra models made it possible, for the firgt time, to understand that selfoscillations
are possible in an energetically rich system due to specificity of the interaction between its components. Lotka
consdered his equation in 1925 in the book «Elements of Physicochemica Biology»; it describes a system of
the following chemicd reections

AbP XpP YP Bb

In some volume, the substance A is in abundance. Molecules of A turn convert into molecules of X (the zero
leve reaction) a a constant rate (the constant ko). The substance X can convert into the substance Y, and the
rate of this reaction is the higher, the higher the concentration of the substance Y (the second order reaction).
This is shown by reverse arow over the symbol Y in the scheme. In turn, molecules of Y decompose
irreversbly and, as a result, the substance B forms (the first order reaction). The system of equations
describing thisreection hasthe form:

dx _

I =k - kxy,

dy

d_t= Kxy - K,y (9)
aB

__kzy

dt

Here, X, y, and B are concentrations of chemical components. The first two equations of the system are
independent of B, therefore, they can be considered separately. In this system, at certain vaues of the
parameters, damped oscillations are possible.
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Fig. 4.: The Lotkamodel of chemicd reactions. Phase pattern of a system for the parameter vaues
corresponding to damped oscillations.

Classc Valterra equation describing the predator—prey interaction of species is abasic modd of continuous
ocillations. Asin the models of competition (8), the interaction between species is described according to the
principles of chemicad kinetics: the decrement rate of the pray numbers (x) and the gain in the predator
numbers (y) is believed to be proportional to their product

(10)

A phase pattern of this system is presented in Fig. 5. The numbers of preys (x) and predators (y) are marked
on the axes. It is seen that the numbers of predators and victims preys oscillate in antiphase. The Smplest
Volterramodd (10) has an essentia drawback: oscillation parameters of its variables vary with fluctuations of
parameters and variables of the system (nonrobust system).

Fig. 5.: Volterramode predator—prey describing continuous oscillations of the numbers. (a) the phase pattern;
(b) the dependence of the numbers of predators and preys on time.

3.7. Modéd s of theinteraction between species

In the middle of the 20th century, the interest to ecology and fast development of computing facilities, which
made it possble to solve and examine the systems of nonlinear equations, simulated the development of
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population dynamics. This direction is dedicated to the search for generd criteria to establish, what models
can describe those or another features in the behavior of interacting populations and, in particular, Sable
oscillations.

These studies developed in two directions. The representatives of the firgt direction, describing the functions of
mode systems, prescribe only qualitative properties of these functions, such as positiveness, monotonicity, and
the relation large—smaller (Kolmogorov, 1972; Rosenzweig, 1969; Pielou, 1969; Mac’ Atrur, 1971; Nisbet
and Gurney, 1982).

Kolmogorov’'s work (1935, revised in 1972) can serve as an example. He considered a generdized modd of
the interaction between biologica species, the scheme predator—prey or parasite-host. The modd is
presented by a system of two equations of generd type:

dx
— =k, (X)x- LX)y,
dt (12)

dy
dt =k 2 (X ) y.
The following assumption are made in this modd:
(@] Predators do not interact with each other, i.e, the proliferation coefficient of predators k. and the
number of preys L consumed by one predator a a unit of time are independent of y.
2 The increment of the number of preys in the presence of predators is equd to the increment in the
absence of predators minus the number of preys consumed by predators. The functionsk1(x), ko(x)

and L(x) are continuous and defined on the pogitive semiaxes x,y 3 0.
3 dk4/dx<0. This means that the proliferation coefficient of preys in the absence of predetors

monotonoudy decreases with the increase in the numbers of preys, which reflects the limitation of food
and other resources.

4 dko/dx<0, ko(0)<0<ko(¥). With the growth of the prey, rumbers, the proliferation coefficient of
predators decreases monotonoudy with increasing numbers of preys, passng from negative vaues
(when there is nothing to egt) to poditive vaues.

5 The number of preys, consumed by one predator at a unit of timeL(x)>0 for N>0; L(0)=0

An analysisof modd (11) and its specid cases, for example, the Rozenzweig model (1965, 1969), lead to the
concluson that regular ocillations in the sysem take place if the numbers of predators is limited by the
presence of preys. If the numbers of preys, is limited by the presence of resources they need, or the numbers
of predators are bounded not by the quantity of preys, but by some other factor, this leads to damped
ocillations. Damped oscillations dso happen in the presence of a refuges for prays, which makes them
inaccessible for predators.

In the framework of the second direction, various modifications of the Volterra modd were sequentialy
conddered, obtained by including various additiond factors into the origind system (Yevlev, 1955;
MacArthur, 1971; Giplin, 1973; Poluektov, 1980; Shafer, 1984; Dunban, 1984; Bazykin, 1985; Malchow
and Medvinskii, 1995, 1998).

A modification of the Volterra modd with regard to subgtrate limitations in the Monod form (Eg. (5) and a
description of the sdf-limitation of the numbers (asin Eq. (2)) lead to the modd examined by A.D.Bazykin in
his book «Biophysics of Interacting Populations» (1985).
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- = - - Ex?,

dt 1+ px

dy _ Dxy 12
dt y 1+ px o

System (12) combines properties of the basic equations (1), (2), (5), and (10). At smal numbers and in the
absence predators, the prays (x) will proliferate by exponentid law (1); the predators {y) in the absence of
prays will die out dso by exponent. If there are many species of this or another kind, then, according to the
basic modd (2), the Verhulst system factor works (the term -Ex? in the first equation and the term -My? in the
second one). Intensity of the interaction between species is assumed proportiond to a product of ther
numbers (as n mode (10)) and described in the Monod (form modd 5); the species pray plays the role of
subsirate, and the species-predator plays the role of microorganisms. Parametric space of modd (12) is
divided into a number of domains with different character of the phase pattern. This mode alows the
description of complex types of behavior of interacting species: the presence of two stable steady dates,
dumped oscillations of the numbers, auto-oscillations, etc. Theoreticd andlyss of models of the interaction
between species can be found in the book «Biophysics of Interacting Populaions» by A.D.Bazykin and dso
in the books by Svirezhev and Logout, 1978, by Zadavskii and Poluektov, 1988, and in others..

Computing facilities made it possible to gpply the results obtained with the moddls (11), (12) to concrete
populations, in particular, to the problems of optima fishery (hunting, etc) and to the development of biologica
methods of the struggle with insect-pest. The development of criteria for the nearness of a system to
dangerous boundaries, after which the system ceasesto exists or passesinto a quditatively another Sate. In so
doing, character of the dynamics of a population changes dramatically, for example, the population passes
from monotonous growth to sharp oscillations of its numbers or smply dies out. Such boundaries are referred
to as bifurcational ones. An andysis of model properties shows that very dow restoration of the numbers
after the impact of an unfavorable factor is one of indicators of the nearness to a dangerous boundary. A
change in a form of the oscillations of predator and pray numbers is dso an indicator of danger. If nearly
harmonic oscillations become relaxationd, that is, characteristic times of the changes in numbers sart growing
more and more different with the amplitude increasing in time, this can result in the loss of the system’ s stability
or in the extinction of one or both species.

3.8. Models of the enzyme catalysis

Enzymes are highly specidized cataysts accelerating the rate of biochemica reactions by hundred thousand
and million times. Any enzymatic transformation sarts with the fixation of subgrate molecules by an active
center of enzyme and completes by bresking these fixations. For the first time, the hypothesis on the formation
of a ligble substrate—enzyme complex was suggested by Brown and Anry in 1902. Trying to quditatively
explain the phenomenon of the saturation of amidase reactions by subgtrates, Anry in 1904 has suggested that
the reaction of the enzyme substrate complex formation is in the state of equilibrium and derived the equation
of initid reection rate

ms
+S

mes) = K
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Michadlis and Monod in 1914 and later Briggs and Holane in 1925 have arrived at a Smilar eguation
assuming quas- Sationary character of the enzyme—substrate complex formation reaction. In 1943, Chance
has experimentally confirmed the formation of such acomplex by a spectrophotometric method and traced the
changes in its concentration in the course of the reaction catdyzed by the enzyme peroxidase. In 1930,
Holdane has extended theoretica concepts on the enzyme—substrate complex to the case of two-substrate
and reversible reactions and postulated the existence of different enzyme —substrate, enzyme—product, and
enzyme-inhibitor intermediate complexes. At presence, a great number of such complexes have been
examined.

The incluson of an inhibitor to the system, in particular, in the case when the substrate molecules play the role
of an inhibitor and form both adive and inactive complexes with the subdtrate, lead to more complex and
nonlinear expression for the rate of reaction:

k s

v = P
K,tsts" /K,

Such type of nonlinearity entails important properties of enzyme sysems. manifoldness of steedy dates,
oscillatory character of the changes in variables, and quasi- gochagtic regimens. An andysis of kinetic features
of various schemes of enzyme reactions with the help of representations in a phase plane and in a parametric
pace is presented in detall in (Ivanitsky et a, 1978, Murray, 1993)

3.9. Modéd of a continuous microor ganism culture

Microbiological populations are a good experimental object for verifying ideas and results of both ecologicd
and evolutionary idess. Microorganisms are mostly one-cdlular organisms, they possess a high surface-
volume raio and, therefore, high intendity of the exchange with environment, high proliferation rates, and large
meass increments. Usudly, the apparatus of ordinary differentia equations is used for mathematical description
of microbia populations. As for microbiologica systems, such a description is much better judtified than as
related to the land and water highest organisms. In laboratory investigations, in vitro, more than 10%°
individuds are usudly treated. In a large industrid fermentor, about 10'®-10' yeast-cdls can live
smultaneoudy. A deviation of the numbers from average vaues caused by random factors is proportiona to
]/JN , Where N is the population numbers. Thus, for numerous populations, one may congtruct a model in

terms of average numbers or concentrations. Relative homogeneity of a microorganism culture in the
cultivator’ s volume is another factor that allows the spatia effectsto be disregarded.

In microbiology, an empirical gpproach to the congruction of models is commonly used. Of dl the factors thet
affect the growth of a cdl, alimiting one is usudly chosen, and then a dependence of the growth rate on its
concentration is found empirically. Generdly, the cdl concentration kinetics in a homogeneous culture is
described by the equation

dx
— = - 13
dt x(m- v) (13

Here, x isthe cdll concentration in a cultivator, and mis a function describing the proliferation of a population.
It may depend on the cdll concentration x, substrate concentration (denoted usudly by S), temperature, pH of
amedium, and on other factors; nisthe rate of dution

16



To support a culture in the region of unlimited growth, externd regulators are required. In the case of growth
limited by an externd factor, for example, by the shortage of substrate, teady working regime of cultivator is
atained by sdf-regulation. This takes place in naturd lotic systems and in the most frequently used type of
continuous cultivators, hemogtate, in which the dilution rate for a culture or the flow veocity is prescribed.
Monod (1950) and Herbert (1956) were the first in developing the hemostate theory, which is continuoudy
refined since then. In modern modds, structura nonhomogeneity of biomess, age-relaed nonhomogeneity,
and other details of cultivating are taken into account.

Under the condition of continuous mixing, it is possble to assume that the totd cultivetor volume is uniformly
filled, and that the concentrations of a substrate and cdlls are the same at every point of cultivator. Then, the
behavior of these concentrationsin time can be described by the system of ordinary differentia equetions:

dx

(a) =m(S)x - Dx,
dt
ds
(b) —==DS; - ams)x - DS, (14)
m,s
S) =
(¢) M(S) K +s

m

Here, Sis the subgirate concentration; X is the cell concentration in a cultivetor; S is the concentration of a
substrate loaded into cultivator; D is the flow (deluson) velocity of a culture; and a is an «economica
coefficient» indicating what portion of consumed substrate is spent to the biomass increment. The meanings of
other terms in the right-hand sides of equations are as fallows. n{S)x is the biomass increment at the account
of consumed subgtrate; -Dx s the outflow of biomass from cultivator; -am(S)x is the amount of substrate
consumed by the culture cdls DS, is the inflow of substrate into cultivator; and -DS is the outflow of
unutilized subgrate from cultivetor. The growth rate of biomass is assumed to be dependent only on the
substrate concentration according to the Monod formula (5).

The modd considered is smplified and, to describe real processes, requires some complements. For example,
a high concentrations, the subdtrate can exert an inhibiting action, and then the formula for the growth rate
should be written as

m.s
K _ +S +As?

m

(15)

me ) =

In a system with such dependence of the growth rate on the subsirate, trigger regimes are possible, i.e, the
presence of two stable steady states and the dependence of steady substrate and biomass concentrations on
theinitia conditions (on the volume of yeast and on theinitid biomass concentration).

The growth rate of biomass can dso be influenced by the concentration of metabolism products in the medium
that surround a cell. Then, two equations that describe the dynamics of the biomass concentration in the
continuous cultivation process must be supplemented by the third equation describing the dynamics of
metabolism products concentration

m S
= il 16
me) K, +tS)+(K. +P) ( )
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Formula (16) iswell known as the Monod-Jerusdemskii formula

In biotechnology, for caculating the optima cultivation regimes, the formulas are gpplied that take into account
other peculiarities of the metabolism of the microorganisms themsalves, and dso of the conditiors of their
cultivation.

3.10. Age structure of populations

The homogeneity of cellsin a microbe population is dways rdative. The age structure plays an important role
in the growth processes in microbe populations. Only the cdlls of a certain age (or certain Sze) are capable of
dividing, i.e, of increesing their numbers. The age heterogeneity of a population can be a cause of complex
nonmonotone dynamics of its numbers.

The smplest two-age mode of a cell population was proposed by N.V.Stepanova (1985). The population is
divided into two groups of cdlls: the young and old ones. The cdlls of the first group grow intengively, but have
not reeched physiologica maturity and are incapable of dividing. The members of the second group are
cgpable of dividing, and the fisson process can be delayed with the help of inhibitors. Equations for the
numbers of young (N,) and old (N,) cells have the form

AN, 2 1
=—N,-—N,-DN,,
at T, T, an
AN, 1 1
=—N,-—N,- DN,
dt T, T,

Here O, isthe average maturation time of ayoung cdll; O, is the average reproduction period of an old cdll;
and D isthe flow velocity. The multiplier 2 in the first equation reflects the fact that an old cdl dividesinto two
young ones. An assumption that the old cells can secret an inhibitor dlows the description of oscillatory
regimes in the system.

3.10.1. TheLediematrices
A specification of the population age structure leads to a class of matrix models, first proposed by Ledie
(1945, 1948). It is assumed that a population contains n age groups and those with the numbers k, k+1, ...,

k+p procreate offoring. The proliferation occurs a certain moments ts, tz, |, th. Then, a aninitid moment t,,
the population is characterized by the column vector

X (to)
X (t,) =2 19

Xn (tO)

The vector X(t1) that characterizes the population at the next moment, for example, in the year, is rdaed with
the vector X(tq) by the passage matrix L asfollows:
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x () =2 =[ bty |. (19
b, x, )

Let us explain the meaning of the vector on the right- hand side The offspring that has appeared for a unit of
time from al reproductive groups joins the group 1. It means that the first component of the vector is;

k
O*'P

X () =a a;x(t) =a X (to) +a X, (t) + ... (20)
i=k

+ta k+pXk+p(t0)'

The second component is obtained with regard to the passage of individuas, which were in the first group at
the moment t,,, into the second group and with regard to possible degth of a part of these individuds:

blxl(to)i 0< bn <l

The third group and dl remaining components are obtained smilarly. All individuas, which wereinthelast age
group at the moment t,, die out a the moment t,. Therefore, the last component of the vector X(tq1) is

composed only of the individuas that have passed from the preceding the group:

x,(t) =b ,x ,(t),0<b, <1

The coefficients a and b are the birthrate and surviva rate, respectively. They were condant in the Ledie
modds, in more complex models, they can be represented by more complex functions depending on time,
substrate concentration, and population size.

The vector X(t1) is obtained by multiplying the vector X(tg) by the métrix L:

X(t;) = LX(t,)

(21)
thismatrix has the form
0 0 a, a Ay=p 0 O
b, 0 0 O 0 0 0O O
L= 0 b, 0 O 0 0 0O O 22)
0O O 0O O
0O O b,, O

The diagond condst of zeros, the surviva coefficients b are below diagond dements, and the terms that
characterize the number of individuals born in corresponding groups are in the first raw. All remaining dements
of the matrix are equa to zero. Thus, if the structure of the matrix L and theinitia population gate (the column
vector X(tg)) are known, it is possible to forecast the state of the population at an arbitrary moment:
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X (t,) =LX (t,,) =L X (t,)
(23)

The leading egenvaue of the matrix L yieds the rate, at which a population proliferates, when its age structure
becomes stable.

3.10.2. Continuous models of the age structure

Continuous models ded with a continuous function of the age digtribution of organisms rather than with the

numbers of individua groups. An equation for the digtribution function density was suggested by MacCendrick

in 1926, «rediscovered>» by von Ferster in 1959 and wears the name of the latter. The equation represents a

differentid form of the conservation law for the numbers of individuas. There are two independent variablesin

thisequation: t, the time, and t, the age which is counted from the moment of birth; n(t,t)dt isthe number of

individuds whose ageisin theinterva [ t,,t +dt ]. The tota number of the individuas of dl ages a amoment t
¥

is determined by theiintegral N (t) = Oh (t,t )dt . The Forster equation has the form

fnt,t) Tng.t)
=- 24
ﬂt + T [D (t) +W(t, t)n(t,t)] (24)

with theinitid condition n(0;t )=g(t)

There is the derivetive dn/dt on the left-hand side of Eq. (24), moreover, it is taken into account that dt/dt=1;
the terms on the right-hand side describe the processes that lead to the change in the number of the cdls of

certain age. The decrement of cells can be induced by various causes, such as the mortaity and migration; for
alotic culture, dl these causes can be disregarded as compared to the flow of cdls through cultivetor. The
flow velocdity D(t) isindependent of the age of cells, but can depend on time. The term -w(t,t )u(t}t ) describes
the decrement of cdls form a given age interva during the fission into the daughter cells a arate of w. The
increment of the numbers resulting from the proliferation occurs in the zero age and is a part of the boundary
conditionatt=0:

¥
n(t,0) = k Oh(t,t W (t,t *)dt * (25)

Here, k isthe offgoring numbersin asingle proliferation act, W(t,t*)dt * isthe probability of the proliferation of
apaentintheageinterva [t*t‘+dt’] that isegua to the specific proliferation rate

dt
W o(t,t)dt =w(t,t)dt, w=w ol
t

(26)

If the parents remain in population after the proliferation (yeest), then W(t}t) isthe density of unconditiona

probability of afisson at the aget (the fisson age digtribution function). If the cells drop out of their age group
after the fisson (algae, bacteria), then W(t,t) is the dengty of conditiond probability of fisson & the age t if
the cell has reached this age without fisson.
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There are modds that describe the distribution of cdlls with respect to Szes and masses. They are easier to
correlate with experimentd data, sSince there are experimental methods for determining the sizes of cells. The
methods of micromeasurements are actively developed that aso alow the other parameters of individud cells
(for example, photosynthetic activity, chlorophyll content in agee, intracdlular pH, etc.) to be measured. The
methods of lotic microfluorimetry are applied ever wider, which makes it possble to register spectrd
characteristics of hundreds and thousands of microorganisms and construct corresponding distributions of the
indicators of individuas. Information about the evolution of these didributions presents new possibilities for
esimating the state of microorganism populations, for example, the state of the plankton populations in sees,
of the microorganismsin soil, and of the blood cels.

4. Ogcillations and rhythmsin biological systems

Periodic change in various characteristics is typica of biological systems. The period of these variations can be
related to periodic changes in the life conditions on the earth, such as the seasons of the year and the
dternation of day and night. However, many periodic processes have a frequency not related explicitly to the
external geo-space cycles. These are the so-cdled “biologicd clocks’ of various nature: the oscillations of

biomacromolecules, biochemica oscillations, rhythms of breething, cordid contractions, periodic changes in
body temperature, and up to population waves. Regular periodic change in the quantities represents one of the
types of daionary (time-independent) regimes of a syssem'’s behavior. The regimes that become settled with

time and then remain unchanged are cdled the attracting ones or the attractors. If oscillaionsin a sysem
have congant period and amplitude, settle independently of initid conditions and are supported due to
properties of the system itsdf rather than because of periodic forcing, then such a system is caled the self-
oscillating system. In the phase plane, the atracting regime of salf-oscillations has a closed isolated phase
trgectory, the limit cycle. Continuous oscillations in such sysems are stable, Snce devidions from a
dationary oscillatory regime are damping. Class of sdf-ostillatory systems includes the oscillations in
metabolic systems, periodic photosynthesis processes, variations of the cacium concentration in a cel,

oscillations in a cordid muscle, and variations in the numbers of animas in populations and communities,
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Fig. 6. Biologicd and geophysical rhythmsin nature.

4.1. Oscillationsin Glycolysis

The glycolysis is a clasic example of an oscillatory biochemica reaction. In the glycolytic process, the
glucose and other sugars decompose, moreover, the compounds containing six molecules of carbon turn into
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tricarbon acids that include three carbon molecules. Due to the excess of free energy in the glycolys's process,
two ATP molecules form per one molecule of the six-carbon sugar. The main role in the generation of
observed concentration oscillations of the reaction components fructose-6 phosphate, fructose -1, 6
phosphate, and restored NAD, (nicotine-aminadenin-dinucleotide) belongs to the key enzyme of the glycolytic
path, phosphofructokinase (PPK). A smplified scheme of reectionsis represented in Fig. 7

Activation

[GI] ® F6P ® FP,®
x

Fig. 7. Smplified scheme of the glycolysisreactions.

In scheme in Fig 7, [Gl] is the glucose, F6P is the fructose 6-phosphate, substrate of the key reaction, and
(FP,) — fructosebiphosphate is a product of this reaction, which is a subdtrate in the next stage. The both
reections are catalyzed with enzymes. In dimensionless coordinates, the system of equations that governs the
reactions can be written as

dx X y

—=k-C

dt (Ko %) (K +y) @
ﬂ:c X y S y

dt (Ko %) (K, +y) 0 (KE +y)

Here, the dependencies of reaction rates on the varigbles are written in the Michais-Menten (Monod) form,
asin Eq. (6). The kinetics of the changes in variables and the phase patterns of the system at various val ues of
parameters are presented in Fig. 8. Oscillatory reections in the glycolyss systlem were first predicted with a
mathematicad modd (Higgis, 1964) and only after that registered experimentaly in a laboratory with the help
of the method of differentiad spectrophotometry (B.Chance).
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4.2. Intracdlular calcium oscillations

In many types of living cdls, the oscillaions of intracellular calcium concentration are observed; their period
can vary in the range from 0.5 to 10 min. The smplest scheme of the processes that lead to the enzyme-
conditioned calcium concentration oscillations is presented in Fig. 9. For the first time, these oscillations have
been observed by End with co-authors (1970) on the of skeletal muscle cdls, by Fabiato (1975) on the cells
of sarcoplasmatic reticulum of an ox heart, and later by many other researchers.

Fig. 9. Scheme of the processes, leading to intracellular oscillations of calcium concentration (Dupont,
Goldbeter, 1983). Here, P, is areceptor simulaing the oscillations.

A scheme and a moddl of these processes were proposed and described by Dupont and Goldbeter (1989,
1994). The following processes are conddered: the inflow and outflow of cdcium through a plasmatic
membrane (velocity congtants v, and v, respectively); the enzyme-activated release of calcium from the pool
(velocity ); the active trangport of cytosolic cacium into the pool (V,); the release of cacium from the pool
activated by the cytosolic cacium (vs); free drain of cacium from the pool into the cytosol (V). A reduced
model conssts of two differentia equations

ds,

=v,- v, tvy-v, tvg tyg

dt
28
. (28)

dt

SV, - Vg Vg

Here, § isthe cacium concentration in the cytosol; S is the calcium concentration in the enzyme-sensitive
pool. The expressions for velocities were proposed for the first time by Simogyi and Stuckin (1991):

nH
KeS,S,

Vg SV

29
s @)

=k,S

6 6% 2

The modd predicts the ostillations of the calcium concentration in time that are close to experimenta (Fig.
10).
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Fig. 10. Modd of intracellular calcium concentration oscillations. The kinetics of calcium concentration for
different vaues of parameters (Dupont, Goldbeter, 1983).

4.3. Céllular cycles

A cdl duplicates its contents and divides into two cdlsin itslife cycle. In an organism of amammad, to support
its life, millions new cells are produced every second. Perturbations in the cell proliferation are manifested as
oncologicd diseases. Thisiswhy modding of the cdlular divison regulaion mechaniams atracts greet interest.

Cdlular cycle consgts of two phases. the Mitoss (M - phase) includes the division of preliminarily duplicated
nuclear materid and the divison of the cdl itsdf, the cytokinesis, and takes about one hour. The interphase
takes much longer: this period between two mitoses includes the growth stage G, , the DNA replication phase
(S), and the preparation phase G, for the divison. The cdl cyde is regulated by genes and by proteins-
enzymes of two mgor classes. Cyclin-dependent protein- kinases (Cdk) induce a sequence of processes by
phosphorilating individuad proteins. The cyclines that are synthesized and decomposed in each new division
cycle, become linked to the Cdk molecules and control their ability to the phosphorilation without cyclin the
Cdk are not active. The number of these molecules regulators is different in the cdls of different types. Inthe
divison of ayeest cdl, one Cdk and nine cylcines play the main role; they form new nine different cycline-Cdk
complexes. In mammals, whose organization is much more complex, six Cdk and more than a dozen of
cydlines have been examined. The exit of a cdll from the G and G, phases is controlled by the promoter-
factor of the S phase (SPF) and by the promoter-factor (MPF), which are the geterodimers. There exists a
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gpecid control point of the cdlular cycle (Start), a which the growth terminates (G, - phase) and the synthesis
of DNA darts.
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Fig. 11. Scheme of cdlular cycle.

A smple modd of this process was proposed by Tyson (1995). The existence of atranscription factor SBF is
postulated, which can be in active S and in passive S, forms. It passesinto the active form under the action of

the cycline CIn (N) and Start-kinase (Cdc28-CIn3) and becomes inactivated by another substance (E). The
cycline is produced by the activation of SBF and degenerates. The SBF is activated by Cln and the start-

kinase and inactivated by the phosphatase. A dimensionless mode of these processes has the form

dn S
at k. +s
s
N
(30)

ds 1-5 s
—=(a+I|n - m
t k; +1-s k, +s

The modd has one or three ationary solutions (two stable solutions) depending on the values of parameters
and describes a switch of the system from the G, - phase into the S-phase as the parameter g increases (in the
process of cdlular growth).

The addition of two equations of smilar type dlows the description of a switch from the G,-phase into the
mitosis phase M. A complete modd that takes into account other regulaion enzymes in the phosphordated
and dephosphordated form contains nine nonlinear equations (Novak, Tyson, 1993) and describes agreeably
the divison kinetics of the oocytes Xenopus. This modd is applicable to the description of the divison of
other cdls, with the parameters properly chosen. A great number of works was dedicated to the attempts of
modeling a periodic impact on the celular cycle amed at the optimization of the parameters of x-ray, radio,
and chemotherapy in treeting the cells of oncologica tumors.

In modern literature on mathematicd biology, thousands of sdlf-oscillating systems on various leves of living

nature are considered. No doubts, the self - oscillatory character of these processes is an evolutionary invention
of nature and their functiona role has a number of aspects. Firdly, the oscillations make it possble to divide
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processes in time, when severd different reactions occur at the same time in the same compartment of a cell,
organizing the periods of high and low activity of individud metabolites. Secondly, characteristics of the
oscillations, their amplitude and phase, carry certain information and can play aregulatory role in the cascades
of processes that occur on the levels of a cel and of aliving organism. Findly, the oscillatory (potentidly or
redly) sysems serve as locd dements of distributed active media capable of a spatiatempord sdf-
organization, including the morphogenesis processes.

Intracdlular oscillations determine endogenous biologica rhythms (biological docks) inherent to dl living
systems. These are the rhythms that determine the periodicity of cdlular divison and control the time of birth
and deeth of living organisms. The modes of oscillatory systems of type (27)--(30) are used in the enzyme
cadyds, theory of immunity, theory of trans-membrane ion trangport, microbiology, and biotechnology.

5. Space-time self-or ganization of biological systems

All biologicd sysems — biologica macromolecules, cdls, tissues, and biocenoss — are active distributed

gysems. The transformation of substances and energy in these systems occurs in individud eementary
volumes related to each other by the substance trangportation, diffusive or directed under the action of
externd forces or with the hep of specid adaptation mechaniams inherent to living organiams. Every
elementary volume is a sysem open with respect to mass and substance thet is far from thermodynamic
equilibrium, moreover, the energy-carrying substances or other energy sources are distributed in space and
connected between themsdves by the fluxes of substance and energy. In such systems, the so-caled
autowave processes are possible: the propagation of pulses and excitation waves, the formation of Stationary
gpatialy inhomogeneous digtributions of substances, and other sdf-organization phenomena (for details, see
6.3.6.3). Processes in excitable membranes of the nerve fibres, such as the nerve pulses, waves in the nerve
networks of brain, and the excitation waves in muscles, are the most thoroughly examined. The waves of
electric potentids propagate in the fibres of cordid muscle. Pathologicd states here in the form of arrhythmia
and fibrillation are determined by the appearance of autonomous sources of waves, the reverberators. Other
types of autowave processes manifest themsalves in the morphogenesis processes in the tissue differentiation.
Genetic systems of the protein biosynthesis are locad reaction dements of such systems, and the transport
processes are performed by the systems of active transmembrane transport. In some communities (collective
amoebas), the celular interaction is performed by secreting the substances-attractants (cyclic AMP). Mutua

movement of the cdls to a source of sgnds and their aggregation are of a wave character. Autowave
processes are dso in the basis of the motionsin the walls of blood vessel channels, peristalsis of other sections
of gastrointesting tract, mechanical displacements of the cells on a plane surface, and other processes.

5.1. Lifewaves

The drive for growth and proliferation leads to the propagation is space, occupation of new habitat, and
expansion of living organisms. The life propageates as a flame over a seppe during a steppe fire. This metgphor
reflects the fact that the fire propagation (in a one-dimensiond case, the propagation of aflamein a Bickford
fuse) and the propagation of a species are described by the same modd. The famous combustion modd was
independently proposed by Fisher (1937) and by Russan mathematicians Petrovskii, Kolmogorov, and
Piskunov (1937), namely in abiologicd statement as the propagation model of a dominating Species in space.
The dl three authors of this sudy are the outstanding Russan mathematicians. Academician Ivan Petrovskii
(1901-1973) is the author of fundamenta studies in the theory of differentia equations, algebra, geometry,
mathematical physics, he was the rector of Lomonosov Moscow State University (1951-1973). Andrey
Kolmogorov headed Russian mathematical school in the probability theory and theory of functions, he is the
author of fundamenta works in mathematica logic, topology, theory of differentid equetions, theory of
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information; he was an organizer of school and university mathematical education, and has written a number of
studies based on biologica statements.

Condder a statement of the problem on the propagation of a pecies in an active, i.e,, rich of energy (food)
medium. Let the propagation of a species a any point of the straight liner>0 is described by the functionf(x)
= x(1x). At an initid moment, the dl domain on the left of zero is occupied by a species x whose
concentration is close to unity. On the right of zero, the territory is empty. At a moment t = O, the species
darts propagating (diffusing) to theright a a congtant diffusion D. This processis described by the equation

Zx

Tr2

11TT_)t(:f(X)+D (3D)

In such a system, for t>0, a concentration wave starts propagating into the domain r > 0, which isaresult of
two processes. random motion of individuas (diffuson of particles) and the proliferation described by the
function f(x). With time, the wave front moves to the right and its form approaches a definite limit form.
Propagation veocity of the wave is determined by a diffusion coefficient and by aform of the function f(x); for
the function f(x) that vanishesa x = O and a x = 1 and is pogtive a intermediate points, the velocity is
expressed by the smple formula: | =2¢Df (0).

An andysis of spatid trandocations in the modd predator—pray (10) shows that, in such a system, in the case
of unlimited space, the waves of «escape and pursuit» start propagating (Chow and Tam, 1976). In a limited
space, dationary spaialy inhomogeneous structures (dissipative structures) settle, or the autowaves,
depending on the system’ s parameters.

5.2. Autowaves and dissipative structures

Nonlinear interaction of the components in a syssem combined with transport processes leads to complex
spatid and tempord behavior regimes of the system’s components. The first model of such kind of interaction
was examined by Turing in his work «Chemicd Basis of Morphogeness». Alan M. Turing (1912-1954),
English mathematician and logician, became famed for his studies in computer logic and the theory of
automation. In 1952, he published the first part of an investigation dedicated to mathematica theory of the
dructure formation in an initidly homogeneous sysem where chemicd reactions occur Smultaneoudy,
including autocatalytic processes accompanied by the energy consumption, and passve processes of
transport—diffuson. The Turing work became classic, and its ideas are in the bads of modern theory of
nonlinear systems, theory of sdlf - organization, and synergetics. Consider the system of equations:

T x o ( y+D T 2x
= X’y X 2
T?t E: 3
y _ y
1t Q(X,Y)'*‘Dyﬂrz-

Equations of such a type are called the «eaction—diffusion» equations (see 6.3.6.3). In linear systems, the
diffusion is a process that leads to the equdization of concentrations over the whole reaction volume.
However, in the case of nonlinear interaction between the variables x and y, the ingtability of homogeneous
dationary dtate can arise, and complex spatio-time regimes form like the autowaves or dissipative
structures. They ae represented by dationary in time and inhomogeneous in space concentration
digtributions, maintained on the account of the disspation of system’s energy. The gppearance of structuresin
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such sysemsis stipulated by the difference in the diffusion coefficients of reagents, namely, by the presence of
ashort-range «activator» with asmd| diffuson coefficient and of along-range «inhibitor» with alarge diffuson
coefficient.

5.3. Thebasic model «Brusselator »

Such regimes in a two-component sysslem were examined in detaill on the basc modd «brussdator»
(Prigogine and Lefever, 1968), named after the Brussels scientific school headed by 1.R.Prigogine, in which
these investigations were carried out most intensvely. 1I'ya Prigogine (born in Moscow, 1917) worked in
Belgium for dl his life. From 1962, he is the director of Internationd Solvey Inditute for Physical Chemidtry,
and from 1967, the director of the Center of Statisticdl Mechanics and Thermodynamics of the Texas
Univerdty, USA. In 1977, he won the Nobd Prize for his works on nonlinear thermodynamics, in particular,
on the theory of dissipative structures. Prigogine is the author and co-author of the whole series of books:
«Thermodynamic Theory of Structure, Stability, and FHuctuations», «Order out of Chaos», «Time Arrow,
and others. In these books, he develops mathematical, physico-chemicd, biological, and philosophica ideas
of the theory of sdf-organization in nonlinear systems, examines the causes and regularities of the birth of
«order out of chaos» in the energy-rich systems open for the fluxes of matter and energy, which are far from
thermodynamic equilibrium, under the action of random fluctuations.

The classic «brussdator» mode has the form

ﬂX_A+X2Y B +1 x+ézx
T ( ) T

r
(33)
2 2
ﬂ—y=Bx S XY 4 Z
It Ir

and describes a hypothetica scheme of chemica reactions:

A U X, 2X+Y U 3X,
B+X U Y +C, X U R

The so-cdled three-molecule reaction, the conversion of two molecules x and one molecule yinto x, isakey
dtage. Such areaction is possible in the processes with participating enzymes with two cataytic centers.

The specification of the models of type (32-33) made it possible to describe the propagation of wavesin a
cordid muscle, formation of the plankton patches in the ocean (Machow, Medvinskii) etc.

5.4. Modéds of morphogenesis

The nonlinearity of a reaction combined with the diffuson of substance provides for the possihility of spatio-
time regimes, including the formation of spatiad dructures in an initidly homogeneous system, the
mor phogenesis.

Modds of the formation of the structures, gationary in time and inhomogeneous in space, the «pattern
formation», including models of the skin coloration of animads, are described in detal in the monographs
JD.Murray, «Lectures on Nonlinear Differentid Equations», Oxford, 1977 and J.D.Murray, «Mathematical
Biology», Springer, 1993. The coloration of the «leopard skin» type could appear in the reaction-diffuson
system, in which the locd interaction is described by the mechanisms similar to the Jacob and Monod
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mechaniams (the Chernavskii modd). A mode describing the cdll differentiation in hydrais dso widdly known
(Gierer, Mainhardt, 1972). A locd dimensionless modd has the form

2

du

— =a-but+t———F=1(u,v),

dt v(l+Ku") (34)
dv )

— =u"-v=g(u,v

ot g(u,v)

where a, b, and K are congtants. The model describes an autocataytic production of the activator u by the
term UY/[v(1+K )] with respect to the saturation up to the quantity 1/(Kv) for large u. The inhibitor v is
being activated with increasing u according to the second equation, but inhibits the production of the activetor.

In Murray’s works, for describing the skin coloration in animas, a model was used, whose locd verson,
proposed by Thomasin 1976, possesses similar properties:

TT—?=g f(u,v) +NZ2u, :IT—\:=gg(u,v) +dN?v,

f(u,v)=a-u-h(uyv), g(u,v)=a(b-v)-h(u,v), (35)
_ ruv

" T

Here, a, b, a ad r are positive parameters. The rdation of diffusion coefficients d islarger than unity, which
is the condition of diffusion ingtability. The factor g determines the size of adomain in periodic coloration.

()

Fig. 12. Examples of the modding results (a)—(c) and of the natura coloration of ajaguar’ stail (d)—(f)
(J.D.Murray, «<Mahematical Biology», Springer, 1993).

More redistic models that take into account the mechanochemicd interactions, are examined in the works by
L.V.Bdousov and B.N.Bdintsev (B.N.Bdintsev, Physical Bases of Biological Intermutation, Moscow, 1991).

5.5. The Belousov—Zhabotinskii reaction
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Spatio-time regimes predicted by the mode s reaction-diffusion can be observed using chemica models. The
most famous among them is the reaction described in 1958 by Russian chemist Belousov: the oxidetion of
ditric acid by the potassum bromate catalyzed by the ion pair N&*- N&"*. The examination of this reaction
was continued by Zhabotinskii  (1964) who has shown that, instead of cerium, manganese and iron can be
used as a catdydt, and, ingtead of citric acid, a number of organic compounds can be used as a deoxidizer.
These compounds have a methylene group or form it in the oxidation. The maonic and brominemaonic acids
are such compounds. Usudly, the reactions are carried out a 25C in a sulphate mixture of potassum
bromate, malonic and brominemaonic acids and cerium sulphate. Hundreds of studies are dedicated to the
Belousov-Zhabotinskii reaction, dnce it presents a possbility to observe the features of complex sdf-
organization processes in a Smple chemica system and dlows the various types of control including different
illuminetion regimes (Muller, Zykov, 1998). A smplified scheme of thisreaction is presented in Fig 13.

BrOs w (/> Br,)
N v
/ N

3+ C e4+

N
pBl‘_ BMA

Fig. 13. Scheme of the Bl ousov—Zhabotinskii reaction.

In the case of thorough mixing, the variaions in the solution coloration are observed in a certain range of initial

concentration, induced by the variations of the N&4+ concentration. The oscillations of N&3+ are of relaxation
character, their period is clearly divided into two parts: the T, phase of increase and the T, phase of decline.

|
7
|
|

Fig. 14. Oscillations in the Zhabotinskii model (Zhabotinskii, 1974).
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From the chemica standpoint, the reaction mechanism is very complex and contains the tens of intermediate
stages. Here are the main stages:

(2) the oxidation of the trivaent cerium by the bromate:

BrO3
ce®” p ce*

(2) the deoxidation of the quadrivaent cerium by the maonic acid:

PN

IE
Ce** p ce’*

Products of the bromate reduction, formed at Stage 1, produce the bromine-derivaive MA. Brommaonic

acids obtained are destroyed with yielding Br-. The bromide is a strong inhibitor of the reaction. Here is a
scheme of thisreaction:

k1 k3 kg ks
Ab Yp Xp Zb
k2

The notation: X — the cerium ion concentration; y — autocatalisator concentration, z — the bromide
concentration.

Taking into account the hierarchy of the reaction rate constants and introducing dimensionless variables, we
transform the kinetic equations into the system of two equations for the cerium ion concentrations and one
equation for the autocatayst x:

dy

I—Ily(c - x) - Lyz +lg,

dx

Ezlly(c— x) - Ix, (36)
dz

—_ 2
E—I3x i (ly-lg)“x -1,z

Taking into account the hierarchy of the reaction rate congtants, one can replace the differential equation for z
by an dgebraic equation and, introducing dimensionless variables, pass to the system of two equations.

d

Z=ya-x)-dx,

dtd (37)
ed—f=y{1- x[L1+a +(y-a)’]}+e
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In the world literature, the moded «oregonators», proposed by Field, Koros and Noyes (1972) is most widdly
employed. Asalocd eement, the moddl

dx (1

e—=qy - X X(1- x

at qay y ( )

dy

d—=-qy-xy+21f (38)
dt

dz

—=x-1

dt

is mogt frequently used. Here small parameters e, and d reflect a corresponding hierarchy of the times of
processes, and X corresponds to the dimensionless concentration of HBrO,, y - Br, z - Ne #".

To sudy the spatio-time structures, the model describing the patio-time dynamics of HBrO, (the u varigble)
and that of the catalyst Ne#+ (the varigble v) is frequently used:

1 -
ﬂ_u=DJ+_(u-u2- v - q)
Tt e u+q (29)
:TT—\::u—v

Results obtained in examining the Belousow-Zhabotinskii reaction in experiments and in modding are widdy
used for describing and interpreting the processesin active media of the most diverse biological nature.

5.6. Theory of nerve conductivity

Cdls of different organs can be divided into two types. excitable cells of the nerve tissues, heart, cels of

smooth and skeleton muscles and nonexcitable cdlls, such as the epithelium cells and photoreceptors. After an
impact of eectric current, the excitable cdls rdax immediately to ther initid date. In excitable cdls, a
sequence of processes occurs that depends on a vaue of the current pulse passing through the membrane. If a
pulse exceeds a threshold value, a sSingle nerve pulse gppears on the excitable membrane of the nerve tissue,
the so-cdled action potential that lasts about 1 ms and propagates dong a nerve tissue at a speed from 1 to

100 nV/s, preserving constant amplitude and form.

Modern concepts on the generation of a nerve pulse are based on the studies by A.Hodgkin, A.Haxley, and
B.Katz, peformed on giant squid tissues (1952) and honored by the Nobel Prize. The propagation
mechanism of an dectric pulse dong a membrane axon (width of about 50-70 A) is associated with the fact
that the permitivity of a membrane depends on existing currents and voltages and is different for different ions.
The sodium (Na and Ka) ply the mgor role in this process. Cacium ions aso play an important role in
regulating the processes. The first modd of the propagation of an eectric pulse dong the axon of giant squid
was proposed by Hodgkin and Haxley (1952); at present, it is gill the basic modd for describing such
phenomena. In this mode, positively directed current (I) from the interior to the exterior sSde of the axon
membrane is conddered. The current 1(X) consads of the flows of ions through the membrane and of the
current induced by a change in the transmembrane potentid on the membrane that possesses the capacitance
C. Hereisthe generd equation for the current changes.
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dv
=c—+]. 40
() Cdt+|' (40)

Here, C is the membrane capacity, | is the contribution of currents due to the transmembrane transport of
ions. On the basis of experimentd data, Hodgkin and Huxley have written the following equation for |; :

I =Tya Tl T1L =9Nam3h(v _VNa)+gNKm4 (V=Via) oy (V-Vy) (41)

where V is the potentid, |, 1., 1 ae resectively, sodium and cacium currents and the «leskage»

current conditioned by the flows of other ions through the membrane, g are the membrane capacities for
corresponding ions. The quantities m, n, and h are the variables varying from 0 to 1, for which the following
empiricaly obtained equations are vaid:

dm_ b

ot =a,(V)(2-m)-D,(V)m

d

d—::an(V)(l—n)— b, (v )n (42
dh

?=ah(V)(1-m)-bh(V)m

Quaditatively, an, and am represent the functions smilar to (1+tanhV)/2, and an isafunction like (1-tanhV)/2.

If the current pulse | (t) is applied to a membrane, then Eq. (40) takes the form

dv
CF:gNamsh(V 'VNa)+g NKm4(V _VKa)+gNL (v 'Vla)+|a (43)

Equations (40)-(43) compose a system of four equations known as the Hodgkin—Huxley system. Being
computed, it reproduces agreesbly the phenomena of the passing of current through a squid axon membrane
observed experimentdly. The system has a stable stationary solution in the absence of exterior currents, but
when the pulse gpplied exceeds a threshold value, demongtrates a regular periodic excitation of the
membrane,

The modd can be smplified with respect to the tempora hierarchy of the varigbles m, n, and h. The sodium
currents (the vdue m) are much faster than the cacium ones (the vaue n); therefore, according to the
Tikhonov theorem, the differential equations for the sodium component can be replaced by geometrica
eguations (dnmv/dt=0). If one assumes that the leakage currents are even dower (h=hy= congt), then the model
is reduced to the system of two equationsin two variables:

d_v
dt
f(v) =v(a-v)(v-1)

_ L dw
=f(v)-wtl, dt—bv—gw, (44)

where0 < a< 1, band g are postive congtants, v plays the role of potential, and w characterizes nonlinear
conductivity properties of a membrane for al types of ions. The Fitz—Hugh—Nagumo modd (1961, 1962) is
well examined andyticaly and frequently used as aloca eement for describing the wave propagetion in active
biologicd media, such as a cordid muscle (Fig. 16) or a cerebric tissue
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Fig. 15. Evolution of aspird wave in the Fitz-Hugh—Nagumo modd (Tsgikama, 1989).

105

Fig. 16. Spira waves of the potential propagation in arabbit hart (the experiment by Bonke and Shopman,
1977).

6. Physico-mathematical models of biomacromolecules

Functional properties of proteins, as wdl as their enzyme activity, are determined by their cgpability of
conformationd transformations. Interna motions of atoms and atom groups in globular proteins occur with
characterigtic times about 1013-1015 s and with amplitudes about 0.02 nm. Significant changes in the
conformation, for example, opening a «pocket» of the reaction center for the formation of the enzyme-
subgtrate complex, require collective coordinated motions with characterigtic times by many orders longer and
with amplitudes of an order of tens of Angstroms. Only in the end of the 20" century, powerful computer
facilities made it possible to follow, by the method of molecular dynamics, how the physicd interactions of
individua atoms are redized in the form of macrascopic conformeation motions.

The modd of amolecular system of N atoms is represented by N materid points, whose motion is described
by classic Newton equations.
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Initia coordinates and velocities of particles are prescribed with regard to the data of X-ray spectroscopy and
nuclear magnetic resonance. Conformation energy of a molecule is determined by the aggregate atom-atom
interactions and can be gpproximated by the potentia function

1 1
U (ryo..., rn)=—akb(b-b0)2+gé_kQ(Q-Qo)2+?ékj[1+cos(nj - doj +
o A B q4q o AC c¢C
a(rT-r—6+f)+a<r7-rT)

(45)

The summation is performed over dl vaent bonds, vaent angles, dihedrd (torsion) angles, par of particles
without vaent bonds, and over the pair of particles that form a hydrogen bond. The congtants in formulas
depend on atype of the bond and the types of particles, b isthe length of valent bond, Q isthe vaent angle, j
is the dihedrd angle, r is a distance between the particles. The force acting to the i-th particle is cdculated
from the expression for the potentia energy:

_— Tu(ry,...ry)
i ﬂri

Potential (45) contains the terms corresponding to different physicd components of aomic interaction:
deformation energy of vaent bonds, deformation energy of valent and dihedral angles, and the energy of Van
der Waals and dlectrodtatic interactions. Parameters of the atom-atom interactions are determined empiricaly
from the conditions of maxima consstency between the gpectra, thermodynamic, and dsructurd
characteristics of low-molecular components of biologica macromolecules caculated from the potentid and
mesasured experimentaly. The trgectories obtained for individua atoms are anadyzed by the method of
corrdaion functions and with the help of the charts of free conformation energy of molecules. These charts
represent the surfaces of the redlization probability digtributions of different energy conformations and their
cross-sections. For the correlating degrees of freedom, as arule, extended narrow areas are observed, along
which the collective transformation of conformation occurs. For noncorrdating variables, there is a set of
unlinked sharp locd minima. The trangition between the latter involves the traverse of a high potentia barier.
Otherwise, there are vast areas of rdatively free motion. Structure of the hypersurfaces of the potentia energy
levels for the systems with conformation degrees of freedom cardindly differs from smilar hypersurfaces of
rigid molecular systems, for example, in crystas, where they are of regular character.

6.1. Molecular dynamics

The first numerical experiments with a protein molecule, the inhibitor of the tripsne of pancrestic gland, were
carried out by the method of molecular dynamics by JA.MacKemon and colleagues in 1957. The molecule
conssts of 58 amino acid resdua and contains 454 heavy atoms. The structure aso includes four interrd
water molecules locdized in the accordance with crystallographic data It proved to be possible to reproduce
the main ement of the protein secondary structure: an antiparalel convoluted b-structure, and aso ashort a-
spird segment.
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In recent years, the caculations of molecular dynamics of mioglobine, lisocime, cabindine, and retina- bonding
protein were performed; the transport of an eectron in the protein complexes such as ferrocytochrome C —
ferrocytochrome B5 and ferrocytochrome Gperoxidase in a water environment was also modeled. As a
result of modeling, spatid Structure of these complexes was predicted. In the calculations, considerable |ability
of the region of protein-protein contact was observed, including the displacement of an aromatic protein group
into the contact region for the times about 1 ps. The results of molecular dynamics corroborate the role of
fluctuations in the dectron-conformation interactions that accompany the processes of eectron transport,
migration and transformation of energy, and enzyme catayss.

6.2. Models of the DNA motility

In modeling the functional mations of the DNA, it proved to be fruitful to search for a mechanicd anadogue,
thet is, for amodd system well examined in mechanics with a Smilar set of sructurd dements, motions, and
interactions. There exist hundreds of various models that describe motions of the DNA: continud and discrete,
spird and disregarding the spird structure, imitating the motion of every or dmogt every atom of a fragment
and imitating only he mgor subunits, homogeneous models and the models taking into account the existence of
a sequence of bases.

Modds of an dadtic bar of a circular cross-section (Leve 1 in the figure) are the Smplest ones. A discrete
analogue is represented by a chain of linked disks (or beads), whereas every disk corresponds to one or
severd nucleotide pairs. The dynamics of eastics bar is characterized by three types of internd motions.
longitudind displacements, rotetiond or torsonmotions, and transverse displacements. Usua plane waves are
the solutions of a system of equations, and the spectrum of the DNA oscillations consists only of three
acoudtic branches: longitudind, transverse, and flexurd.

Models of the second level take into account that the DNA molecule consigts of two polynuclectide chains,
and it can be modded by two dastic bars weekly interaction between them and convoluted into a double
soird. A discrete andogue of such a mode represents two chains of disks linked by longitudind and
transverse springs, and the diffness of longitudind springs is much stronger than that of transverse ones. The
gpectrum of torson oscillations caculated by such (linear) modd conssts of two branches acoustic and
optical.

The third hierarchic level accounts for the fact that each of the chains conggs of three subunits: sugars,
phosphates, and bases. The fourth level is represented by the lattice models of the DNA and describes the
motion of atoms that compose a lattice cell (Powell, 1987). Problems of this kind prove to be solvable in a
linear (harmonic) approximation, yielding complex DNA spectra that contain a multitude of branches. Models
of the fifth leved smulate structure and motions of the DNA with a maximum accuracy (the modes of
molecular dynamics).
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Levels Models

Fg. 17. Leves of the modding of DNA moatiliy.

Englander, Kalenbach, Heeger, and Krumhand, 1980, carried out a pioneering research in examining the
internal dynamics of the DNA. The method of hydrogen-tritium exchange was used to show a principa

possibility of the formation of open states in the DNA defined as matile loca regions (from one to severd

pairs of bases long), insde which the hydrogen bonds are torn. The formation of such open datesisrelated to
consderable angular deviations of the bases from an equilibrium state. Mathematicaly, this process was
described with the use of the Hamiltonian formalism widdy applied in theoretical and mathematica physcs. In
modding the internd DNA moatility, the authors did not limit themselves to modding smdl deviaions from an
equilibrium date (harmonic or linear approximation), but consdered the motions of large amplitude
(nonharmonic or nonlinear approximation). It was shown that nonlinear wave solutions of the Gordon sine-
equation

i ] ,+sinj =0 (46)
are the mathematical images that can imitate the open DNA states. Here, the function j (z,t) describes angular
deviations of the bases from the equilibrium Sates.
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A modification of the Englander model (Y akushevich, 1998) describes the processes of rotationa motions of
the bases around the sugar- phosphate chains characterigtic of large amplitudes. These motions lead to the
rupture of hydrogen bonds and to the formation of open states. In describing the dynamic properties, an
andogy between the DNA molecule and a chain of linked pendulums is used. The bases associated with
sugars play therole of rotating pendulumsin the DNA, the sugar - phosphate chain plays the role of a horizontal
chain, and the role of the externd gravitationd field is played by the field induced by the second thread of the
DNA that weekly interacts with the first one through the hydrogen bonds between the bases. Dynamics of the
chain is well examined and described by a set of n nonlinear equations. For the n-th pendulum, the equation
hastheform
d
dt?

n

I :K(J n+1” 2] n+j n—1) - mgh Sinj

n H

(47)

wherej  isthe angular deviation of the n-th pendulum from an equilibrium stete; | is the second moment of
the pendulum; K is the gtiffness coefficient; m and h are the pendulum’ s mass and length, respectively; ad g is
the gravitation congtant. In passing to a continua gpproximation, one may write the equation for the dynamics
of rotational oscillations of the DNA bases:

lj - K, . +V,sinj =0, (48)

tt

where |, is the second moment of a bass, Ko is the stiffness coefficient of a sugar- phosphate chain, and Vo
gnj isaforce acting between the bases inside the pairs.

This eguation of the type Sne- Gordon has a solution of the type «kink»:
j (z.t) =4darctg{exp(g X/ d)}. (49)
Here, g =[1- Iv? /7K 2°1"? x =z - vt; V isthe velocity of a nonlinear wave (kink) propagation;

d = (K ,a® /v )" and a is adistance between the nearest pairs of bases aong the chain. A qualitative
pattern corresponding to this solution is presented in Fig. 18.
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Fig. 18. The DNA untwisting scheme.

Two sugar-phosphate chains are depicted by two long lines, while the bases are marked by a multitude of

ghort lines. The kink corresponds to a loca region with torn pairs of bases. Solution (49) describes a loca

deformation (the opening of the pairs of bases) moving dong the DNA molecule a a speed v. In the
propagation process of a wave, the acceleration can be observed due to constant pumping of energy and the
deceleration because of the effects of interna friction. The irregularities of the DNA are taken into account in
the form of blocks with dominating content of the G- C-pairs on the background of remaining part of molecule
that generdly contains the A-T-pairs. This dlows the esimation of the minimum vaue of nonlinear wave

velocity that is necessary to surmount a barrier of GC blocks and to continue the motion. The mode

conddered dlows a quditative explanation of the long-range interaction effects in the DNA molecule and the
propagation of conformation waves through the regulator regions, which is especidly important for the
regulation of the DNA activity. The nonlinear conformation waves moving dong the DNA can aso play arole
in the coordination of the work of severd genes.

7. Modeling of complex biological systems

Achievements of modern biology revedled numerous facts on the structure and regulation types of many
intracellular systems. Schemes of processes are composed, chemical structure and, in most cases, molecular
structures of the components of processes are examined, including the bio-regulators. This made it possible to
congruct mathematica computer models that dlow the formalization d the knowledge on complex biologica
objects. The degree of specification of models can be different depending on the god of modeling and on the
completeness degree of the examination of objects. If the modeling is aimed at the control, for example, an
efficiency increase in the output of a biotechnologica process is desired, then it is often sufficient to consider
individua blocks as components and examine dationary states of a system. For practica purposes of
biotechnology and pharmacology rather complex metabolic nets are consdered. They are modded by
«congtructors», thet is, programs that write automaticaly differential equations according to prescribed
scheme of processes and expressions for the rates of individud reections. In investigation such complex
systems, the theory of metabolic control has deserved a good reputation.
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If an object is thoroughly examined, mathematicd modes become an effective method of fundamenta
research. By solving inverse problems, they dlow the estimation of kinetic and physcd parameters of a
holigtic system, which is impossble in experiment without fractionating a sysem. In complex biologicd
systlems, the latter leads to the modification of the functiond activity.

7.1. Metabolic control analysis.

Developed for estimating the state of complex metabolic nets, the theory of the control of metabolism is a
speciadly desgned mathematicd apparatus for examining the regular properties of polyenzyme metabolic
sysems in which metabolic intermediates are not only the participants of the stages of a chemicd
trandformation, but dso the regulators of individua enzymes. The mgor results in the modern theory of

Metabalic Control Andysis were obtained by English (H. Kacser and JA. Burms) and German (R. Heinrich
and T.A. Rappoport) researchers. Substantial contribution to the development of mathematical bass of this
theory was made by Russian scientists B.N. Kholodenko and O.V. Dyomin.

The regulator features of metabolic systems manifest in their ability to corastently vary the vaues of flows and

the concentrations of substances in changing conditions of environment so that a Sationary state with minima

deviations from a concentration norm of the key metabolites be maintained in a cdl. In earlier works, it was
assumed that the decisive role in controlling a system belongs to a single link (for example, they introduced a
notion of a regulaing enzyme subject to the effector impact, the «bottle neck», the enzyme with low catdytic
activity limiting the substarce flow dong the metabolic channedl, etc.).

The further specification of the concepts on the functioning of metabolic nets has shown that the regulator
properties are inherent in a metabolic system as a whole and appear due to the interaction and correlated
functioning of dl the links of a sysem.

In the framework of the theory of the Metabolic Control Andyss, the description of the regulation in a
metabolic system is performed in the language of specid quantitative characterigtics, system and locd
indicators of the regulation. The main system indicators, the control coefficients, characterize the contributions
of individud enzymes and aso of externa parameters to the control of system varigbles, that is, Sationary
metabolic flows and concentrations.

The control coefficient of an enzyme E; with respect to flux Jis determined by the expression
IR M ) (50)
TinE,

The control coefficient of an enzyme E; with respect to a metabolite x, is represented as

e Tinx,

" finE,
Locd indicators (eladticity coefficients) describe the kinetic properties of individua functiond links of a system,
the enzyme reections. The dadticity coefficient of an enzyme Ei with respect to a metabolite x« describes a
response of the rate of the i—th reaction v; to the change in the concentration of the given metabalite:

._ﬂln|vi|

ekl_ﬂlnx (1)
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Since its rise, the theory of metabolic control andyss isdirectly related to experimenta investigations devoted
to the measurements of quantitative indicators of the regulation in various metabolic systems.

7.2. Mathematical models of primary photosynthetic processes

At present, the system of primary photosynthetic processes is one of the most thoroughly experimentdly
examined biologicd systems. This determines a possihility of constructing successful methematicd models of a
system as a whole and of its fragments. The contents and structure of the components of the photosynthetic
apparatus are determined by biochemical and genetic methodsand by the methods of the X-ray andyss.

The system of primary processes possesses one more extremely important feature that distinguishes it form
other biologicd systems. This system is being «switched on» by the light, and it can be tested as an eectronic
device by the deta-shaped (laser flash) or rectangular (switching on a congtant light) impulses. Therefore,
gpectrophotometricd  methods prove to be extremey efficient here (differentid and impulse
spectrophotometry in the absorption bands of individua molecules, participants of the primary reactions,

fluorometry, the methods of e ectronic paramagnetic and nuclear magnetic resonance, etc.). It is also important
that it is possible to separately single out fragments of photosynthetic reaction centers of the photosystems 1
and 2 from a photosynthesizing organelle, the chloroplast, and bacteria reaction centers from chromotophore
of photosynthesizing bacteria, by biochemical methods. The fragments of photosystems singled out preserve
the ability to the absorption of the light and to the light-induced divison of the charges. It is possible, by
chemicaly modifying the compostion of such fragments and by changing the regime of the illumination, the
redox conditions, and the pH of amedium, to observe the relaxation processes by spectral methods and make
conclusions on kinetic characterigtics of the system, firgt of al, such as the congtant rates of the eectron

transfer on individua steps of the photosynthetic eectron transport chain. Namely due to these features, the
system of primary photosynthesis processes proved to be afavored object for mathematical modeling.

There is an important problem in mathematicd modeling: the identification of the system’s parameters, thet is,
the estimation of the constant rate of individua reactions from experimenta curves that reflect the change in
time of the concentration of this or another component. It is often possible to experimentdly register the
change of only one or severa components (for example, he EPRsSgnd of a photoactive pigment of
photosystem | or fluorescence intendity of photosystem 1) and, with mathematica modd, identify the rate
congtants for the eectron transfer processesin the photoreaction center or in other parts of the chain. It iswell
known from the mathematical theory of identification that an unambiguous estimetion is possible only for linear
systems with completely observed vector of states. Naturdly, this condition is not fulfilled in red systems.
However, usng additiond experimenta data, such an estimate can be performed for rdatively smple systems,
for example, for isolated photoreaction centers. In a holistic, nonfragmented system, such as the chloroplast
of green plants or the chromatophore of bacteria, which include the whole aggregate of the components of
photosynthetic apparatus, the registered kinetic curves are, as arule, of complex character, since they reflect
the interconnection of numerous processes. The information on kinetic parameters of a system can be derived
from such curves only with the help of mathematica models. In so doing, a problem arises, how to conjugate
the knowledge and concepts on individud stages of photosynthesis processes, examined separately by the
methods of different sciences, into a united scheme.

The primary photosynthetic processes include the aosorption of a quantum of light, the migration of energy ina
light- harvesting complex, conssting of the molecules of chlorophyll and carotinoides, the charge separation in
photoreaction centers, the dectron transfer and coupled trandocation of protons and other ions through the
thylakoid membrane, and the formation of the transmembrane eectrochemical potentia that is necessary for
the functioning of the ATP-synthase. As a result of primary photosynthess processes, the macroergic ATP
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(adenosine-triphosphate) compounds from the ADP (adenosine- diphosphate) and inorganic phosphate as well
as the reduced NADP (nicotine- amide- dinucl eotide-phosphate) are produced that are necessary for the work
of the Calvin cycle of CO, fixation. The scheme of the processes in the thylakoid membrane is schemeticaly
shownin Fig. 19.
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Fig. 19. Scheme of the processesin a chloroplast.

In the first models of the photosynthetic eectron transport (in 1960-1970s), the reaction of trangport from a
molecule-donor to molecule- acceptor was described by the mass action law, assuming that the reaction rate is
proportiona to the compostion of the reagent concentrations (bimolecular reactions). However, as is seen
from Fig. 19, the trangport processes occur here in fixed carrier complexes rather than by the way of random
collisons. At present, not only chemical compostion is deciphered, but dso the coordinates of individua

molecular groups participating in the eectron transport. It is possible to indicate an «eectronic path», thet is,
the path of an dectron from one atom to another within the same molecule.

The specification degree of the description of processesis determined by the goas of modeing. Usudly, each
molecule is consdered as a carrier, which can be in one of the states: neutrd (oxidized), without an eectron,
and reduced (neutral) with an electron. Various conformation states are aso possible, as well as protonated
and deprotonated states, €tc.

In the generd case, when a complex consgts of n carriers, states of the complex [C Coponn. Cn] are
determined as an ordered aggregate of the states of the carriers C; that compose the complex



The trangitions between the states are described by equations linear with respect to the probabilities of the
states:

dp, 2 : - "
%:é (p k- p,k;), withtheinitid conditions p (0)=b, i =1,...I
i=1

or in the vector form

dP .
—=k'P, P(0)=B
dt

The probability to find a carrier in a certain sate L is a sum of probabilities of the complex’s dates in which
the carrier is represented in the given State

P(D)=a p(S,.1)
Sq L

The more accurate are the concepts on the processes that occur in a complex, the more detailed scheme can
be composed and the larger number of equations is required to describe the trangitions between the States.
Thus, the trangtions between the states of the photosystemn 2 complex are presented in Fig. 20. Due to large
differences between the rate congtants in individua links of the chain (fast processes are marked by the
dashed arrows) and with regard to the tempord hierarchy, the syssem can be reduced, and the differentia
equations for fast variables can be replaced by algebraic ones.
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Fig. 20. Scheme of the trangtions between the ates in photosystemn 2 of the higher plants.
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The cytochrome complex and the photosystem 1 complex are dso characterized by a set of large number of
states. The model that describes, in addition, the interaction between the complexes, ion fluxes, and the work
of ATP-synthase contains the tens of equations and hundreds of parameters, and many of them are well
known from literature. However, these parameters were estimated for different objects and under different
conditions. Mogt often, they are being estimated in experiments on separated fragments, where the reaction
rate coefficients can differ from those in the whole chloroplasts. Therefore, when using in a modd, the
parameters, as arule, require arefinement.

The results of detailled mathematicadl modding and parameter identification for individud photosynthesizing
complexes, included in the complicated system of interacting components and the results of reduced modds
dlow the concluson that the regulator properties of a sysem are different at different levels of the system
organization. At the leve of photosynthetic reaction centers, the contral is iff. A quantum of light starts a
strict sequence of processes, and its absorption leads to the redistribution of the charges and conformation
changes directed at the fastest carrying out of an eectron outside the photosynthetic pair. The photosynthetic
reaction centers themselves are «standardized» for a large degree: their organization is Smilar to PS1, PS2,
and bacterid centers. The identification of mathematical models based on experimenta data confirms that the
parameters change rather alittle when the externa conditions, such as pH, the redox potentia, viscosity of a
medium, etc., vary. Kinetic patterns of the processes that occur in these centers are, as arule, of the smple
relaxation character.

At the leve of the interaction between the systems, the regulation is of more «flexible» character. Here, the
diffuson stages substantidly depend on pH, the redox conditions, and viscosity, which dlow the regulation of
these stages at the cdlular and organism levels when the externd conditions vary and in the process of growth.
The kinetic patterns are more complicated and they can contain a number of maxima, which is manifested in
characterigtic forms of the fluorescence induction curves in the minute tempord range.

The accumulation of knowledge on structure and composition of the photosynthesis gpparatus and details of
its organization, on one hand, and the development of computer technology on the other hand, the
mathematical modedling becomes ever more instrumentd in the trandation of the data of spectral measurements
into the language of kinetic parameters and, further, with the help of computer visudization, into the language
of structura changes of the photosynthesis apparatus.

8. Conclusons

Mathemetica biophysicsis avery rapidly developing fied a the junction of gpplied mathematics, physics, and
experimentad and theoreticd biology. The quditative modding continuous developing, passing from the
examination of models of two-component loca systems in ordinary differentid equations and mappings and
partid differentia equations of the reaction-diffusion type to more complicated mathematica objects. delayed
equations, equations with random terms, and to the modes of higher dimenson. The imitation modding
develops especidly fast and dlows the computer smulation of the behavior of complex biologica systems on
the basis of the concepts on the properties and interactionof their dements. The integration of various types of
knowledge on the system and visudization of these concepts in the form of computer modds with al
advantages of the visua thinking into the cognition process is a quditaively new stage of mathematica

modeling in biophysics
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literature on modelsin physiology ]

Kholodenko B. N. (1991) Modern Theory of Metabolism Control . [ Theoretical concepts on the theory of
metabolism control are presented as well as their goplications to the examination of complex biologica
systems, including the dectron trangport systems of mitochondrions]

Riznichenko G. Yu. (1991) Mathematical Models of Primary Photosynthesis Processes. [Mathematical
goparaus and principles of the condgruction and identification of the models are presented for the
photosynthesis processes in fragments of photosynthetic reaction centers of bacteria and of the highest plants.
Estimations of physical parameters of the processes are presenetd.]
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electron trangport in multtenzyme complexes and between molecules in a solution and in the systems including
both, the dectron transport within the complex and the diffuson controlled stages, are considered. The
models are examined that represent the systems of differential equations and the models thet imitate the
processes d the dectron transport in chloroplasts and their fragments and mitochondrions by setting the
probabilities of individud eementary events. |
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