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SUMMARY A complete pictorial representation for the product operator formalism has been
developed to describe arbitrary multidimensional and multinuclear NMR experiments. A complete
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the effects of pulses can then be easily visualized. More importantly, the concepts of coherence
transfer, multiple quantum spectroscopy, and phase cycling are illustrated by examples such as 2D
COSY, 2D INADEQUATE, DEPT, and sensitivity-enhanced HSQC.
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8.1 Introduction

In the past two decades a variety of pulse NMR experiments have been developed with the
aim of enhancing the information content or the sensitivity of NMR spectroscopy. For the design
and analysis of new techniques three approaches have been pursued in the field of “spin engineer-
ing”. Many of the original concepts were based on simplified classical or semi-classical vector
models [1]. For the analysis of arbitrarily complex pulse experiments the density matrix theory
was used, often at the expense of physical intuition [2-5]. A third approach, the product operator
formalism [5-7], follows a middle course. It is founded on density operator theory but retains the
intuitive concepts of the classical or semi-classical vector models. This formalism systematically
uses product operators to represent the state of the spin system.

A close examination of product operator formalism reveals that the formalism weighs more on
the density operator theory side and is still not intuitive enough for a clear understanding of com-
plex NMR experiments to the average reader. On the other hand, the classical or semi-classical
vector model has severe limitations. Although it can successfully describe heteronuclear 2D spec-
troscopy for weakly coupled spin systems and other polarization transfer experiments, it cannot
explain homonuclear coherence transfer experiments (e.g. COSY) and experiments involving mul-
tiple quantum coherence (e.g. INADEQUATE). Furthermore, the latest triple-resonance NMR ex-
periments have been developed almost exclusively based on the product operator formalism, and
are far less intuitive to the general biophysics community. Attempts have been made to give graph-
ical representation for the operators used in product operator formalism [6,8-10]. However, the
original graphical scheme also uses energy levels and population distributions to represent some
operator terms [6], making it unsuitable to following the fate of the spin system in a classical vec-
tor diagram manner. Some later approaches use multiple reference frames to follow spin states of
different nuclei [9,10]. As a result the vector description of complex experiments are unnecessarily
complicated and insights into phase cycling and frequency labeling during evolution are sacrificed
in these representations [10]. A partial graphical representation using multiple-headed arrows to
represent both in-phase and antiphase coherence transfer processes has also been reported in the
literature to offer more insights into coherence transfer [8]. A correlated vector model, although
not intended as a graphical representation of the product operator formalism, used similar multiple-
headed arrows to analyze the HMQC experiment [11].

In this chapter, we will expand on the approaches followed in references [6,8] and describe
a complete pictorial approach [12] to the description of multi-dimensional NMR experiments. In
this approach, “non-classical” vectors similar to those used by Bazzoet al. [8] are first derived
for all product operator terms for a two-spin (I = 1=2) system based on the population distribution
of the spin state the operators represent. The pictorial description of evolution will then base
its reasoning on the strict product operator formalism, while vectors mostly within the classical
vector model framework will still be used to follow the fate of relevant spins in a weakly coupled
spin (I = 1=2) system. Non-classical graphical extensions are added to account for time evolution
of product operators only when necessary. For multispin systems, the pictorial representation of
two-spin operators is extended to three or more spins. This approach can be used to follow any
NMR experiment in an easily understandable way and offers an extension to the classical vector
model to explain those experiments that cannot be followed using the classical vector model, as
illustrated by its application to 2D COSY, INADEQUATE-2D, DEPT, and sensitivity-enhanced
HSQC experiments.
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8.2 Non-Classical Pictorial Representation of Base Operators

8.2.1 The Product operator formalism

In product operator formalism, the density operator of the spin system is expressed as a lin-
ear combination of base operator products. Cartesian base operators have found widespread use
because they are very well suited for the description of pulse effects and time evolution. When mul-
tiple quantum coherence is involved, shift base operators prove to be more efficient. The Cartesian
base operators areIx, Iy, Iz, andE=2 (E is the unit operator). For a weakly coupled two-spin system
(I = 1

2), there are 16 product operators. These operators are: (1) zero-spin operatorE=2; (2) one-
spin operatorsI1x, I1y, I1z, I2x, I2y, andI2z; (3) two-spin operators 2I1xI2x, 2I1xI2y, 2I1xI2z, 2I1yI2x,
2I1yI2y, 2I1yI2z, 2I1zI2x, 2I1zI2y, and 2I1zI2z. The one-spin operators are essentially classical. The
two-spin operators (product operators) are non-classical in nature. We will first discuss how to
represent these operators graphically using the two-spin system as an example. The time evolution
of product operators and the pictorial interpretation will be discussed later. All discussions will be
limited to spin 1/2 nuclei only.

8.2.2 Essence of the classical vector model

The essence of the classical vector model can be summarized as follows: in a Cartesian
coordinate system, a vector along thez-axes represents polarization (population difference between
theα andβ spin states):

Iz =
1
2
(Iα� Iβ) [8.1]

and a vector within thexy-plane represents single-quantum coherence (Figure 8.1):

Ix =
1
2
(I++ I�) [8.2]

Iy =
1
2i
(I+� I�) [8.3]

Effects of pulses and chemical shift evolution can be described as rotation of vectors alongx-,
y-, or z-axis. Using the same principles, we can construct the graphical representation of product
operators for a weakly-coupled spin system. The spin system is always treated in a heteronuclear
manner, with non-selective pulses affecting all the spins in a homonuclear system. The arrows
from different spins are labeled by their spin identities. In a weakly-coupled two-spin system,
two single-headed arrows represent a one-spin operator. One double-headed arrow graphically
describes one of the two operators in a two-spin product operator. The complete graphical rep-
resentation of 16 operators in a weakly-coupled two-spin system is shown in Figure 8.2. For the
simplicity of discussion, we will still refer to the multiple-headed arrow(s) associated with one
operator term as a “vector”, even though it is usually two or more single- or double-headed arrows
combined and they transform as a whole.

8.2.3 Derivation of one-spin vectors

For one-spin operatorsI1z and I2z in a coupled two-spin system, we represent them as two
parallel single-headed arrows along thez-axis (Figure 8.3) instead of energy levels showing pop-
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Figure 8.1:Classical vector representation of polarization and coherence for a one-spin system. (A) Po-
larization is represented by a vector on thez-axis. The direction of the vector depends on which state is
more populated. (B) Coherence is represented by a vector on thex- or y-axis depending on which axis the
magnetization is on.

ulation distributions [6]. Note that the sign convention is different than that in reference [6]. The
representation forI1z andI2z in a two-spin system can be derived in the following way. In a one-
spin system, thez-magnetization is described by a single vector along thez-axis because there
is population difference between the two energy levels linked by a transition. This is shown in
Figure 8.3A, where a filled circle represents a more populated state and an open circle represents
a less populated state than the demagnetized saturated state [6]. In a two-spin system with spin
1 and spin 2, there are two different transitions for spin 1. One transition corresponds to theα
state of spin 2 (αα ! βα), and the other, theβ state of spin 2 (αβ! ββ). At equilibrium, there
is polarization across these two transitions for spin 1 and they are similar but different in nature
because of the different spin state of spin 2. As a result we represent bothI1z andI2z in a two-spin
system by two parallel arrows each along thez-axis. This is illustrated forI1z in Figure 8.3B. Again
filled circles represent more populated states and open circles represent less populated states. Note
that there is only polarization for spin 1 in Figure 8.3B andI1z does not represent the equilibrium
state of a two-spin system. The equilibrium population distribution for such a system is shown in
Figure 8.3C.
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Figure 8.2: Non-classical vectors for the 16 operators of a weakly-coupled two-spin system. One-spin
operators are represented by two single-headed arrows along their corresponding axes. Two-spin operators
are represented by two double-headed arrows along their corresponding axes. The arrows are also labeled
by their spin identities (i.e., spin 1 or spin 2). The zero-spin operatorE=2 is included for completeness.

8.2.4 Derivation of two-spin vectors

We start the pictorial representation of two-spin operators from 2I1zI2z. This operator de-
scribes longitudinal two-spin order of spin 1 and spin 2. The population distribution is shown in
Figure 8.3D. It can be seen that the polarization of spin 1 is in opposite sense when spin 2 is inα
state than inβ state. This can be understood in the following way. In a weakly-coupled two-spin
system, an ensemble of spin 1 can be divided into two halves. One half of spin 1 is associated with
theα state of spin 2 and the other half is associated with theβ state of spin 2. Then Figure 8.3D
shows that theα state of spin 1 is more populated than theβ state of spin 1 when its coupling
partner spin 2 is in theα state. However, theα state of spin 1 is less populated than theβ state of
spin 1 when its coupling partner spin 2 is in theβ state. Therefore we represent these two polar-
izations by two single-headed arrows with opposite directions. Together these two arrows form a
double-headed arrow representing the polarization of spin 1. The situation is similar with spin 2
and it is also represented by a double-headed arrow. The two double-headed arrows for spin 1 and
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Figure 8.3:Relationship between vector representation and population distribution. Populations are sym-
bolically represented by open circles for states that are depleted, filled circles for states that are more popu-
lated than in the demagnetized saturated state. (A) The vectorIz and its population distribution for a one-spin
system. (B) The vectorI1z and its corresponding population diagram in a two-spin system. The two arrows
come from the two transitions possible for spin 1. (C) The equilibrium state for a two-spin system. (D) Pop-
ulation diagram for vector 2I1zI2z. For spin 1 the polarization is in opposite sense for the two transitions
involved. Therefore theI1z component in 2I1zI2z is represented by two arrows pointing to opposite directions
giving a double-headed arrow when combined. The same applies to theI2z component.
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spin 2 combined together represent the product operator 2I1zI2z (Figure 8.3C). This can be better
understood when expanding the operator term in the following way:

2I1zI2z =
1
2
(I1zI

α
2 � I1zI

β
2)+

1
2
(Iα

1 I2z� Iβ
1 I2z) [8.4]

It can be seen clearly that the population difference (z-magnetization) of one spin has opposite
signs when the other spin (coupled to the first spin) is in a different spin state. Experimentally, the
spin state represented by the vector 2I1zI2z is the one obtained in a Selective Population Inversion
(SPI) experiment in a two-spin AX system. When the population across one transition of the A
spin is inverted from its equilibrium state by a selective 180� pulse on only one transition of the A
doublet, the polarization across only one of the X transitions is inverted, leaving both A and X in
an antiphase state.

Now the vectors of the other two-spin product operators can be obtained based on rotational
properties (Figure 8.4). Starting from 2I1zI2z a selective 90� x-pulse acting on spin 1 will give
2I1yI2z, the antiphasey-magnetization on spin 1. A non-selective 90� x-pulse will generate 2I1yI2y,
a combination of zero-quantum coherence and double-quantum coherence. The non-classical vec-
tors for other two-spin product operators can be derived similarly as shown in Figure 8.4. Finally,
the zero-spin operatorE=2, although not involved in the description of NMR experiments, is de-
scribed by a sphere at the origin based on its symmetry properties.

8.3 Graphical Description of Time Evolution

8.3.1 Chemical shift evolution

For weakly-coupled spin systems, the density operator evolves under the Hamiltonian

H = ∑
k

ωkIkz +∑∑
k<l

πJkl(2IkzIlz) [8.5]

whereωk is the chemical shift frequency of nucleusk in the rotating frame. Because all terms in
the Hamiltonian commute, we can follow the evolution caused by chemical shift andJ-coupling
separately in any arbitrary order. In the following discussion, we will use the symbolic notation by
Sørensenet al. [6] but use an opposite sign convention2 to be consistent with the sign convention
in the classical vector model.

In product operator formalism, the chemical shift evolution in a two-spin system is described
by

I1x
ω1τI1z�����! I1x cosω1τ� I1y sinω1τ [8.6]

I1y
ω1τI1z�����! I1y cosω1τ+ I1x sinω1τ [8.7]

I1yI2z
ω1τI1z�����! I1yI2z cosω1τ+ I1xI2z sinω1τ [8.8]

2In the classical vector description of NMR experiments, the left-hand rule is often used, i.e., a 90� pulse on the
x-axis will rotate thez-magnetization vector to they-axis. In the more mathematics-oriented literature, the right-hand
rule is often used, as in the case of reference [6]. Here we adopt the sign convention found in the classical vector
models for smooth transition from classical vector models to non-classical vector models.
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Figure 8.4:Derivation of two-spin vectors from 2I1zI2z. The phase of the pulses is indicated byx andy.
The numbers 1 and 2 for the pulses show the pulses are applied selectively on either spin 1, spin 2, or both.

8



Biophysical Society Online NMR Textbook Non-Classical Vector Model

Figure 8.5:Vector representation of chemical shift evolution. (A) Chemical shift evolution of in-phase
vector I1y is shown in a conventional form and in a decomposed form. When evolution is emphasized
the conventional form is more useful. When coherence selection or frequency labeling is emphasized the
decomposed form proves more efficient. (B) Chemical shift evolution of antiphase vectorI1yI2z. The two
sub-vectors of spin 1 in the beginning representing the two halves of spin 1 corresponding to theα andβ
states of spin 2. The two sub-vectors evolve independently whenJ-coupling is not considered or decoupled.
The final result is two antiphase vectors (in decomposed form) with the amplitude modulated by chemical
shift of spin 1. (C) Chemical shift evolution of multiple-quantum vectors. Chemical shift evolution of spin 1
and spin 2 occurs independently. After decomposition intox- andy- components, four possible combinations
of two vector projections are obtained.

In product operator formalism, the chemical shift evolution in a two-spin system is described
by

I1x
ω1τI1z�����! I1x cosω1τ� I1y sinω1τ [8.9]

I1y
ω1τI1z�����! I1y cosω1τ+ I1x sinω1τ [8.10]

I1yI2z
ω1τI1z�����! I1yI2z cosω1τ+ I1xI2z sinω1τ [8.11]

The graphical scheme for chemical shift evolution of of in-phase vectorI1y is shown in Figure 8.5A,
where we show both the overall vector after the evolution and its decomposed components. The
decomposedx- andy-components are more helpful to understanding the spin physics when they
belong to different coherence pathways in multiple pulse experiments. The graphical representa-
tion for chemical shift evolution of of antiphase vectorI1yI2z is shown in Figure 8.5B. Note that
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J-coupling between spin 1 and spin 2 is not considered (or decoupled) here and the two sub-vectors
with thexy-plane evolve independently. After decomposition we have two antiphase vectors as a
result.

Product operators withp transverse single spin operators are a superposition of multiple quan-
tum coherence of ordersq= p�2n (n= 0;1;2; :::), wherep is the number of transverse single spin
operators in the product. The chemical shift evolution of multiple quantum terms can be described
separately because the chemical shift Hamiltonians for different spins commute with each other.
For example, for a product operator representing two-spin coherence, the chemical shift evolution
is described by

2I1xI2y
ω1τI1z�����! ω2τI2z�����! 2(I1x cosω1τ� I1y sinω1τ)(I2y cosω2τ+ I2x sinω2τ) [8.12]

The graphical scheme for multiple quantum term 2I1xI2y is shown in Figure 8.5C, whereω1 andω2

are precession frequencies of spin 1 and spin 2, respectively. The resulting vectors of the product
term can be obtained by taking the projection of vectors for spin 1 and spin 2 and combining them
to form four new vectors as shown in Figure 8.5C. The resultant vectors contain the chemical shift
evolution effects of both spins because the evolution of both spins will modulate the amplitude
of the overall vector. It should be emphasized that the Cartesian operators do not represent pure
orders of multiple quantum coherence. However, they are well suited for our purpose to describe
evolution effects in the time course of the pulse sequence.

8.3.2 Scalar coupling evolution

Scalar coupling (J-coupling) is the interaction between two spins through bonds and is one
of the most important and exploited phenomena in multidimensional NMR. It is the origin of
splitting of resonances in the NMR spectrum and its magnitude is a sensitive measure of torsional
angles in the molecule under investigation. Scalar coupling is also the basis of many important
multidimensional coherence transfer experiments such as COSY and TOCSY. In the context of
vector diagrams, it leads to the failure of the classical vector model. In the following the product
operator description for weak scalar coupling along with the non-classical vector representation
will be presented.

For weak coupling between two nuclei of spinsI = 1
2 the product operator rules are

I1x
πJ12τ2I1zI2z��������! I1x cos(πJ12τ)�2I1yI2z sin(πJ12τ) [8.13]

I1y
πJ12τ2I1zI2z��������! I1y cos(πJ12τ)+2I1xI2z sin(πJ12τ) [8.14]

2I1xI2z
πJ12τ2I1zI2z��������! 2I1xI2z cos(πJ12τ)� I1y sin(πJ12τ) [8.15]

2I1yI2z
πJ12τ2I1zI2z��������! 2I1yI2z cos(πJ12τ)+ I1x sin(πJ12τ) [8.16]

In Equation 8.13, the in-phase termI1x cos(πJ12τ) will give two in-phase peaks (cosine modulation
on I1x) separated byJ Hz after Fourier transformation, while the antiphase term 2I1yI2z sin(πJ12τ)
is not observable because

Tr[(I+1 + I+2 )(2I1yI2z sin(πJ12τ))] = 0 [8.17]
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Figure 8.6: Scalar coupling evolution of product operators. (A) Scalar coupling evolution of antiphase
vector 2I1xI2z. Only the transverse vector from spin 1 evolves due to the local field produced by spin 2.
After decomposition, it gives rise to sine modulated in-phase vector�I1y sin(πJ12τ) and cosine modulated
antiphase vector 2I1xI2z cos(πJ12τ). (B) Scalar coupling evolution of in-phase vectorI1y. Under scalar cou-
pling it gives rise to cosine modulated in-phase vectorI1y cos(πJ12τ) and sine modulated antiphase vector
2I1xI2z sin(πJ12τ). (C) Multiple quantum coherence does not evolve under the active scalar coupling in-
volved.
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This can also be clearly seen from the vector representation of the antiphase terms: the positivex-
or y-component has equal magnitude as the negative counterpart and will cancel with each other. In
Equation 8.15, the in-phase termI1y sin(πJ12τ) will give two antiphase peaks (sine modulation on
I1y) separated byJ Hz after Fourier transformation, while the antiphase term 2I1xI2z cos(πJ12τ) is
still not observable. It should be emphasized that an antiphase term is always unobservable directly.
However, ifJ-coupling is present, the antiphase term will be converted to in-phase magnetization
by scalar coupling as described in Equations 8.15 and 8.16, thus giving observable signals orig-
inating from the antiphase terms. It can also be easily seen that the in-phase magnetization will
lead to antiphase magnetization and vice versa due to scalar coupling from Equations 8.13–8.16.
This is in contrast to the evolution of chemical shifts and/or pulses in that the resulting vectors can
not be obtained by simply rotating the starting vector.

The graphical representation for scalar coupling is shown for 2I1xI2z (Figure 8.6A) andIy
(Figure 8.6B). Starting from antiphase vector 2I1xI2z, only spin 1 will evolve under the influence of
scalar coupling due to the local field from thez-magnetization of spin 2 [10, 11]. After timeτ, the
transverse components have moved towards each other and can be projected to thex- andy-axes to
give in-phase and antiphase components as shown in Figure 8.6A. Note that the decomposition is
unique because only the base vectors in Figure 8.2 are allowed in the representation. Similarly, the
in-phase vector 2I1y will evolve to give both in-phase and antiphase components as shown in Fig-
ure 8.6B. It can be thought of as the in-phase magnetizationIy is partially converted to the antiphase
magnetization 2I1xI2z sin(πJ12τ) and the remaining in-phase magnetization isI1y cos(πJ12τ). Es-
sentially, the magnetization is oscillating between in-phase and antiphase vectors. The difference
between the classical model and the non-classical model with respect to spin coupling is that only
one spin (the one tipped down to thexy-plane) is included in the classical model, while the spin
states of both spins are included in the non-classical model. Multiple-quantum coherence does not
evolve under active coupling, the effect is shown in Figure 8.6C.

8.3.3 Effects of pulses

With all the vectors developed for all 16 operators for a two-spin system, it is straightforward
to visualize the effect of pulses in any NMR experiment. Figure 8.7 shows the results of a hard
90� pulse of phasex on various starting vectors. In Figure 8.7A,z-magnetizationI1z is converted
to transverse magnetizationI1y as in the classical vector model. In Figure 8.7B, antiphase vector
2I1yI2z is transformed to antiphase vector 2I1zI2y. Now the transverse magnetization resides on
spin 2 as opposed to on spin 1 before the pulse. This is the coherence transfer step, which oc-
curs in many multi-dimensional NMR experiments such as COSY and HETCOR. In Figure 8.7C,
antiphase magnetization 2I1xI2z is converted to multiple quantum coherence 2I1xI2y as readily vi-
sualized with our model, because vector components from both spin 1 and spin 2 are within the
xy-plane. This process plays a central role in multiple quantum spectroscopy experiments such as
INADEQUATE and HMQC. Finally, after multiple quantum coherence has been allowed to evolve
during the incremented time period, it has to be converted to single quantum coherence for detec-
tion. This is readily visualized in Figure 8.7D, where one of the vector components is rotated by
the 90�x pulse to thez-direction, leaving only the transverse magnetization from the other spin for
detection with antiphase being converted to in-phase magnetization under J evolution. In short, the
four rotations described in Figure 8.7 summarize all important roles of radio-frequency pulses in
modern NMR: preparation of transverse magnetization (Figures 8.7A and 8.7C), mixing of mag-
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Figure 8.7:Pictorial description of the effect of 90�

x pulses. (A) Zeeman magnetization is converted to
single quantum coherence by a 90�

x pulse. (B) Antiphase vector 2I1yI2z is converted to antiphase vector
2I1zI2y. Magnetization is transferred from spin 1 to spin 2. (C) Multiple quantum coherence is generated
from an antiphase vector by a 90� pulse on thex-axis. (D) Multiple quantum coherence is converted back to
single quantum coherence by a 90� pulse on they-axis.
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netization from different spins (Figure 8.7B), and conversion to single-quantum magnetization for
detection (Figure 8.7D).

8.3.4 Vector representation of three-spin systems

The pictorial representation of product operators for systems with three or more spins (I = 1
2)

can be derived based on the analysis for a two-spin system. For any in-phase term, we will represent
the overall magnetization vector as one single-headed arrow. For antiphase operator terms, thez-
magnetization for a specific spin will be described by only one double-headed arrow labeled as that
spin along thez-axis. All the other transverse components in the product term will be represented
by a double-headed arrow along their corresponding axes with spins also labeled (Figure 8.8). As
will be shown later, this scheme is simple and sufficient to describe any recent multi-dimensional
triple-resonance experiment.

8.4 Application of the Non-Classical Vector Model

In this section we will apply our vector model to describe some of the most important 2D and
3D experiments. First, the 2D homonuclear COSY [13] experiment will be analyzed. Two multiple
quantum experiments, INADEQUATE-2D [14-16] and DEPT [17,18], will also be described using
this vector model. Then an example of the sensitivity-enhanced experiments, sensitivity-enhance
HSQC [22], will be described. The pulse sequences of these experiments are shown in Figure 8.9.
Some fine points about using the new vector model will also be discussed when appropriate.

8.4.1 Coherence transfer: the 2D COSY experiment

The homonuclear COSY experiment is one of the most important experiments in modern
NMR and the first 2D experiment described. Its pulse sequence is so elegantly simple, and yet
the underlying process cannot be understood using classical magnetization arguments. The pulse
sequence is shown in Figure 8.9A. The new vector description of COSY for two weakly-coupled
spins is shown in Figure 8.10. We start fromz-magnetization from spin 1 on thez-axis. One half
of the population difference corresponds to theα state of spin 2 and the other half corresponds to
theβ state of spin 2. A 90�x pulse will tip the magnetization to they-axis. Chemical shift evolution
of spin 1 at angular frequencyω1 during t1 will rotate the magnetization to a new position as
shown in Figure 8.10A. Now we decompose the magnetization intox-component labeled (a) and
y-component labeled (b) and follow their fate separately. UnderJ-coupling, thex-component (a)
gives an in-phase magnetization (c) with cosine modulation and an antiphase magnetization (d)
with sine modulation. Note that for antiphase vector (d), the transverse magnetization is on spin 1
throughout the evolution timet1.

Origin of diagonal peaks

In Figure 8.10B, the details beginning from the second 90�

x pulse is given for in-phase mag-
netization vector (c). The second 90�

x pulse will not affect the magnetization alongx-axis. During
acquisition timet2, scalar coupling will again give rise to an in-phase vector and an antiphase vec-
tor. The chemical shiftω1 modulation of the in-phase vector will give an observable signal on spin
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Figure 8.8:Some non-classical vectors for a three-spin system. The numerical factors for the product oper-
ators are dropped for simplicity. The in-phase components are combined (seeI2y) and antiphase relationship
among spins is emphasized.
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Figure 8.9:Pulse sequences of COSY (A), INADEQUATE (B), DEPT (C), and 2D sensitivity-enhanced
HSQC (D). The pulse flip angles (π=2 or π) are distinguished by the pulse widths. The pulse phases are
indicated for the first transient of the phase cycle for each experiment. All 180� pulses in (D) are applied on
they-axis.
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Figure 8.10:Non-classical vector description of the COSY experiment. (A) Generation of in-phase (c)
and antiphase (d) components in the COSY experiment. (B) Fate of in-phase vector (c): origin of diagonal
peaks. (C) Fate of antiphase vector (d): origin of cross peaks. (D) Zeeman magnetization and multiple
quantum coherence derived from in-phase vector (b) are not directly observable. See text for details.
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1 during acquisition. This is the origin of diagonal peaks in the COSY experiment, because the
magnetization resides in spin 1 during both the evolution timet1 and the acquisition timet2. The fi-
nal antiphase vectors derived from antiphase vector (g) in Figure 8.10B do not give any observable
signals.

Origin of cross peaks

The origin of cross peaks in COSY is detailed in Figure 8.10C. The antiphase vector (d)
from Figure 8.10A is converted to another antiphase vector (h) by the second 90�

x pulse. The
difference between the two is that before the second 90�

x pulse the transverse magnetization is on
spin 1 and modulated by the chemical shift frequencyω1 duringt1 evolution whereas the transverse
magnetization is on spin 2 and modulated by the chemical shift frequencyω2 after the second 90�x
pulse. This is the mixing step in COSY. Scalar coupling will then give rise to in-phase vector (i) and
antiphase vector (j). The in-phase vector (i) will lead to detectable magnetization modulated by the
chemical shift frequency ofω2. The final antiphase vectors derived from antiphase vector (j) are
again unobservable. Because the detectable vector is modulated by the chemical shift frequency
ω1 during evolution and by chemical shift frequencyω2 during acquisition, cross peaks will be
obtained.

Phase properties of COSY peaks

In a COSY spectrum of a weakly-coupled spin system, the phases of the diagonal peaks and
the cross peaks differ by 90�. This feature of the COSY experiment can be visualized in the vector
diagrams. The diagonal peaks are derived from the in-phase vector (e) in Figure 8.10B and the
cross peaks from the antiphase vector (h) in Figure 8.10C immediately after the second 90� pulse.
At the beginning oft2, vector (e) is on thex-axis while vector (h) is on they-axis. Therefore
a 90� phase difference is expected between the diagonal peaks and the cross peaks. In practice,
cross peaks are usually phased to absorptive mode, while the diagonal peaks are necessarily in the
dispersive mode. Furthermore, because diagonal peaks are derived from the in-phase vector (e)
and cross peaks are derived from the antiphase vector (h), we get in-phase pairs for components
of the multiplets for the diagonal peaks and antiphase pairs for components of the multiplets for
the cross peaks for an AX spin system in a COSY experiment. A simulated COSY spectrum with
cross peaks and diagonal peaks is shown in Figure 8.11. Only one group of cross peaks and one
group of diagonal peaks are shown.

The unobservable coherence

Finally, Figure 8.10D shows what happens to they-component (b) in Figure 8.10A. Scalar
coupling during evolution will lead to in-phase vector (k) and antiphase vector (l). Then in-phase
vector (k) is converted to Zeeman magnetization by the second 90�

x pulse and becomes unobserv-
able. Antiphase vector (l) is converted to multiple quantum coherence (in this case double-quantum
and zero-quantum coherence) and is not observable during acquisition. The unobservable coher-
ence shown here is actually the origin of sensitivity enhancements in many multidimensional NMR
experiments, in which the unobservable coherence is converted to observable magnetization by
adding additional pulses in those experiments, a topic that will be visited in more detail later.
This also illustrates an important aspect in multiple pulse NMR: different coherence pathways
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Figure 8.11:Simulated COSY spectrum of a two-spin system. Only one half of the spectrum is shown
here with cross peak antiphase doublets phased to absorption in both dimensions. Consequently the diag-
onal peaks are dispersive in-phase doublets in both dimensions. The 3D graphics was generated using the
programMathematica.

will experience different effects in multiple pulse experiment. When a specific pathway gives rise
to undesired signals, it has to be suppressed either by phase cycling or dephased by pulsed field
gradients.

8.4.2 Multiple-quantum coherence spectroscopy

In multi-dimensional NMR, multiple quantum processes are more the rule than the exception.
Multiple quantum filters are used to suppress single-quantum diagonal peaks in Double-quantum-
filtered COSY (DFQ-COSY) experiment. Multiple quantum coherence evolution is present in a
number of indirect detection experiments such as HMQC and many triple-resonance experiments.
Here we present the vector description of INADEQUATE-2D (Incredible Natural Abundance Dou-
blE QUantum Transfer Experiment) [14-16], which is mainly used for the correlation of13C nuclei
in organic molecules. The basic pulse sequence is shown in Figure 8.9B.
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The INADEQUATE experiment

In the INADEQUATE experiment, the spin system of interest is the isolated coupled13C pairs
present in natural abundance sample. In a weakly-coupled two-spin (13C) system, the magnetiza-
tion is along thez-axis at equilibrium. In Figure 8.12A, only in-phase magnetization from spin C1
is shown. The first 90�x pulse will rotate the in-phase magnetization intoxy-plane. Antiphase mag-
netization on C1 will develop to its maximum amplitude during timeτ = 1=2J and the magnitude
of the in-phase component will be zero due to scalar coupling between C1 and C2. The 180�

x pulse
in the middle will refocus chemical shift evolution duringτ and is not explicitly included in the
vector diagram. The second 90�

x pulse converts the antiphase magnetization on spin C1 to multiple-
quantum coherence (magnetization vectors for both C1 and C2 are now within thexy-plane). Then
the multiple quantum vector will evolve duringt1 to give four vector terms (Figures 8.12A (a)-(d),
also see Figure 8.5B). The third 90�

x pulse converts the first two vectors (a) and (b) into observable
single quantum magnetization (Figure 8.12A (e) and (f)) for detection. Specifically, vector (e) will
give resonances at (ω1+ω2, ω1) and vector (f) will give resonances at (ω1+ω2, ω2). Note that the
multiple quantum coherence present duringt1 evolution is a mixture of double- and zero-quantum
coherence. Because of the phase cycling scheme used, only double-quantum coherence is selected
during thet1 evolution time while zero-quantum coherence is suppressed by phase cycling. There-
fore the effective chemical shift evolution frequency is the sum of the chemical shift frequencies
of the two spins involved. It can be readily seen that during the evolution timet1, the chemical
shift evolution from both C1 and C2 are in effect because both vectors are within thexy-plane,
while during acquisition, only one magnetization vector from either C1 (Figure 8.12A (e)) or C2
(Figure 8.12A (f)) is within thexy-plane. This leads to a cross peak atω1+ω2 in F1 andω1 or ω2

in F2. In Figure 8.12A (g) and (h), the vectors represent Zeeman and multiple quantum coherence
and are not directly detectable.

The importance of phase cycling

The success of the original INADEQUATE experiment relies heavily on phase cycling to
suppress signal from uncoupled13C nuclei present in the sample (about 100 times more intense
as the desired signal) and signal from other unwanted pathways. To illustrate the importance of
phase cycling, we present the fate of uncoupled13C spins in Figure 8.12B as an example. The
equilibrium magnetization of the uncoupled spin C1 is rotated to thexy-plane by the first 90�x
pulse. No net chemical shift evolution or scalar coupling evolution is present during delayτ (the
180� pulse refocuses chemical shift evolution during the delayτ). The second 90�x pulse converts
the transverse magnetization to Zeeman magnetization. After the evolution time, the last 90�

x pulse
will again convert the Zeeman magnetization to transverse magnetization. This magnetization
will be detected if not suppressed by phase cycling or alternatively by pulsed-field gradients. For
the INADEQUATE experiment, a minimum of 4-step phase cycling is sufficient to select double
quantum coherence while suppressing zero- and single-quantum coherence during evolution time
t1. It can be clearly seen now that coherence selection (and suppression of unwanted coherence
pathways) is indispensable in multidimensional NMR experiments. The principles involved in
coherence selection by phase cycling have been elegantly described in the literature [19,20]. The
details of phase cycling as applied to DQF-COSY have been illustrated by Shriver [9]. The basic
principle of coherence selection by phase cycling can be summarized as follows: the NMR signal
derived from a particular pathway has a specific phase factor associated with the signal. When
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(A) (B)

Figure 8.12:Non-classical vector diagrams for the INADEQUATE experiment. (A) In-phase magnetiza-
tion is allowed to evolve under scalar coupling during delayτ. At the end of delayτ, the anti-phase vector is
at its maximum amplitude. Multiple quantum evolution takes place during evolution timet1, giving rise to
four multiple quantum vectors shown in (a), (b), (c), and (d). The last 90� pulse converts multiple quantum
vectors (a) and (b) into observable magnetization for detection. Vectors (c) and (d) remain unobservable.
(B) Uncoupled13C nuclei will contribute to detected signal if not suppressed by phase cycling or dephased
by pulsed-field gradients. The minimum phase cycle to select double-quantum coherence duringt1 while
suppressing single-quantum and zero-quantum coherence is a four step cycle for the first three pulses in the
sequence.

signals from a complete phase cycle are combined, the signal from different scans will add up
for the desired pathway(s), while signal from different scans will sum to zero for the unwanted
pathways.

Finally, if the tip-angle of the last pulse is not 90�, then all vectors represented by (a), (b),
(c), and (d) will more or less contribute to the signal detected, leading to different pathways to be
selected. A comprehensive analysis is best done using product operator formalism. However, a
qualitative understanding of the tip-angle effect is still possible if all four vectors before the final
pulse are considered.

The DEPT experiment

Another representative experiment that makes use of multiple quantum coherence is the DEPT
experiment (Distortionless Enhancement by Polarization Transfer) [17,18]. The pulse sequence of

21



Biophysical Society Online NMR Textbook Non-Classical Vector Model

Figure 8.13:Non-classical vector diagrams of the DEPT experiment for a two-sin systemIS with one
proton coupled to13C. After the first1H pulse the in-phase1H vector is converted to antiphase vector due to
scalar coupling between13C and1H. A 90� pulse on13C on thex axis generates the desired multiple quantum
vector. This multiple quantum vector is frozen until the last1H pulse with a tip-angle ofθ is applied. Then
multiple quantum vector is partially converted to an antiphase vector, from which the observable in-phase
vector is derived. The delayτ is set to 1=(2JCH) to maximize the magnitude of the antiphase and multiple
quantum vectors. The two 180� pulses will refocus chemical shift evolution ofI spin (during the first 2τ
delay) andS spin (during the last 2τ delay) respectively and are not included in the diagrams.
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the experiment is shown in Figure 8.9C. The simple case of a two-spinIS system with one proton
coupled to heteroatom13C will be considered here. For simplicity the chemical shift evolution of
the I spin during the first 2τ delay and theS spin during the last 2τ delay will not be included in
the vector diagrams. The chemical shift evolution is refocused by the 180� pulses in the middle of
the two delays, respectively. The first 90� pulse onI (proton) rotates the1H magnetization vector
(a) into thexy-plane. Under scalar coupling between13C and1H, the 1H in-phase vector (b) is
completely converted to antiphase vector (c) when the delayτ is set to 1=(2JCH). The first13C
90� pulse on thex-axis will then generate the desired multiple quantum vector (d). The multiple
quantum vector does not evolve under active scalar coupling and is in a sense frozen during the
following τ delay (Figure 8.6C). At the end of the secondτ delay the multiple quantum vector (d)
is converted to vector (e) by the last1H pulse with tip-angleθ. Vector (e) can then be decomposed
into an antiphase vector (f) (with a sine amplitude dependence onθ) and multiple quantum vector
(g) (with a cosine amplitude dependence onθ). From antiphase vector (c) to antiphase vector
(f), the magnetization from1H in (c) is transferred to13C in (f). The anti-phase vector (f) then
evolves into in-phase vector (h) during the lastτ delay for observation. The “Distortionless” in
DEPT comes from the fact that the observable magnetization at the start of acquisition is in-phase
as opposed to antiphase in INEPT and broadband decoupling can be applied on theI spin (proton)
during acquisition. The multiple quantum vector (g) decomposed from vector (e) does not evolve
under activeJ-coupling and remains unobservable.

One important feature of the DEPT experiment is that the magnitude of the observable in-
phase vector (h) derived from vector (f) depends on the tip-angleθ of the last proton pulse. For CH
groups, the magnitude of the observable magnetization is sine-dependent onθ as shown by vector
(e) in Figure 8.13. For CH2 and CH3 groups the tip-angle dependence is different (it is sinθcosθ
for CH2 groups and sinθcos2θ for CH3 groups, see references [17,18]). Therefore signals from
CH, CH2, and CH3 can be easily separated by suitable linear combinations of spectra obtained
with different values ofθ. The sign of the lastI pulse is inverted in alternate experiments and the
resulting FIDs are stored in subtractive combination to eliminate the nativeS magnetization not
shown in the vector diagrams.

8.4.3 Sensitivity enhancement in multidimensional NMR

NMR spectroscopy is one of the most powerful techniques in the studies of structure, dy-
namics, and interactions of biomolecules. Unfortunately, it is also a very insensitive technique
compared to other spectroscopic methods in terms of the achievable signal-to-noise ratio per unit
measuring time. The problem is worse in multidimensional NMR spectroscopy due to the fact that
each time the spectral dimensionality is increased, the sensitivity drops by a factor of

p
2 because

the real and imaginary components of the signal must be sampled in separate experiments. As a re-
sult the optimization of sensitivity of multidimensional NMR experiments is a very important area
of research and development In recent years an ingenious approach that falls into the spin physics
modification category has been proposed by Rance and coworker [21, 22] to enhance the sensitiv-
ity of a number of 2D experiments by a factor of

p
2 and has been extended to three-dimensional

experiment [23]. A gradient version of the 2D sensitivity-enhanced HSQC experiment has been
reported by Kay et al. to achieve the same goal [24] and has been incorporated into many recent
3D triple-resonance experiments for labeled proteins [25]. In this section, the principles involved
in this class of sensitivity-enhanced experiments will be described by non-classical vectors using
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the original sensitivity-enhanced HSQC experiment as an example. The same principles can be
applied to the gradient versions of the sensitivity enhanced experiments and will not be discussed
here.

Sensitivity enhancement and quadrature detection

The sensitivity enhancement found in the Rance-type experiments are closely related to quadra-
ture phase-sensitive detection and cross-coil detection in one-dimensional NMR to achieve

p
2 im-

provements in sensitivity. For quadrature detection in 1D experiments, the signal intensity is twice
as that in single phase-sensitive detection because thex- andy-magnetization are detected at the
same time. In two-dimensional NMR experiments, the quadrature detection with pure absorption
in the indirect dimension is invariably implemented so that the cosine- and sine-modulated sig-
nals (analogous to thex- andy-magnetization in the 1D experiment) are recorded in two separate
experiments. Therefore a

p
2 loss in sensitivity will occur each time the dimensionality of the ex-

periment is increased. In the sensitivity enhanced experiments this problem is solved by modifying
the spin physics of the experiment to simultaneously detect both components in the indirect dimen-
sion. The details of sensitivity enhancement are illustrated below using the HSQC experiment [22]
as an example.

The original HSQC experiment

The pulse sequence of the sensitivity-enhanced HSQC experiment is shown in Figure 8.9D.
The sequence of the normal HSQC includes all pulses up to point A in Figure 8.9D. The vector
description of the normal HSQC experiment is shown in Figure 8.14A. Starting from thermal
equilibrium, the Zeeman magnetization of spinI (1H) is tipped down to thexy-plane by the first
90� pulse, creating coherence on spinI. During the next 2∆ delay the net active evolution comes
from scalar-coupling between spinI andS, with chemical shift evolution refocused by the 180�

pulse on spinI. Because 2∆ = 1=(2JIS) the magnitude of the antiphase vector is at its maximum
and the magnitude of in-phase vector is zero and is not shown. The 90� pulses on bothI and
S transfer spin coherence from spinI to spin S, setting the stage for frequency labeling of the
heteronucleus duringt1. During t1 the J-coupling between spinsI and S is decoupled by the
180� pulse on spinI at the middle oft1 and need not be considered. Chemical shift evolution of
antiphase vector 2IzSy gives two new antiphase vectors 2IzSy cosωSt1 and 2IzSx sinωSt1 (see also
Figure 8.5B). The two 90� pulses on bothI andS transfer magnetization in antiphase vector 2IzSy

from spinS to spinI, generating antiphase vector 2IySx with coherence present on spinI. The other
antiphase vector at the end oft1 is now converted to multiple-quantum vector by the two 90� pulses.
During the subsequent 2∆ delay with the heteronuclear scalar-coupling active, the antiphase vector
evolves into observable in-phase vector. And the multiple quantum vector does not change under
the influence of active coupling (see also Figure 8.5C). Note that in the normal HSQC experiment,
only the in-phase vector at the end of Figure 8.14A contributes to observable signal. The boxed
vector represents multiple quantum coherence and is not directly observable.

The sensitivity-enhanced HSQC experiment

For the sensitivity enhanced experiment, the evolution up to point A indicated by the arrow in
Figure 8.9D is identical to the normal HSQC experiment. The key to the sensitivity enhancement
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(A) (B)

Figure 8.14: Non-classical vector description of sensitivity enhancement in 2D sensitivity-enhanced
HSQC. (A) Vector description of the normal HSQC experiment. (B) Vector description of sensitivity im-
provement in sensitivity-enhanced HSQC.

is the additional pulses and evolution period after point A. At the end of the normal HSQC pulse
sequence, only the in-phaseI-vector is observable, the multiple-quantum vector does not contribute
to observable signal. As shown in Figure 8.14, the in-phaseI-vector is first converted to Zeeman
magnetization by the 90� pulse onI-spin and stored asz-magnetization. The multiple quantum
vector is first converted into antiphaseI vector. In the 2∆= 1=(2JIS) delay, the antiphase vector has
evolved into in-phaseI-vector due toJ-coupling. No evolution takes place for thez-magnetization
for theI-spin during 2∆. Finally, thez-magnetization is rotated to thex-axis, giving two observable
vectors (one on thex axis and and the other on they-axis) at the same time. The net result is that
the multiple quantum vector in the normal HSQC experiment has been converted into observable
in-phaseI vector and the intrinsic sensitivity of the experiment has been enhanced. The increase
by a factor of

p
2 comes from the fact that thex vector is sine modulated int1 and they-vector is

cosine modulated int1, giving a 90� phase difference between the two signals int1. The vector sum
of the two signals in the indirect dimension then gives a

p
2 increase in sensitivity. The sensitivity

improvement is identical with that obtained in quadrature detection compared to single-channel
detection in 1D experiments.
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8.5 Conclusion

In this chapter we have presented a complete non-classical vector model for the product-
operator formalism. Using this model any multi-dimensional NMR experiments can be visualized
in a traditional hand-waving manner. The derivation of the new vectors has been discussed in
detail and the time evolution of product operator has also been presented. Examples are given
for this new vector model. It is hoped that this new vector model will be useful in understanding
complicated multi-pulse multi-dimensional NMR experiments without resorting to the product
operator formalism itself and provide a useful teaching tool for the biophysics community.
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