Heterotrimeric G proteins and the role of lipids in signaling

John Sondek, Ph.D. Depts. of Pharmacology and Biochemistry & Biophyscis

The GTPase cycle – molecular switch

A GTPases is <u>NOT</u> a kinase

Two major regulators of GTPase cycle

Specific GEFs and GAPs for heterotrimeric G proteins

Regulator of **G** protein **s**ignaling

RGS

Active heterotrimer dissociates into a Gα subunit and a Gβγ dimer

Regulator of **G** protein **s**ignaling

G protein-coupled receptors as GEFs for heterotrimeric G proteins

- GPCRs are the largest family of cell-surface receptors for extracellular signals (superfamily of >1000 members)
- GPCRs respond to a wide range of inputs: hormones, neurotransmitters, odorants, tastants, photons of light, etc.
- ~60% of all clinical therapeutics act by affecting some aspect of GPCR signaling (e.g., agonist, antagonist, inhibition of natural ligand metabolism)

GPCRs are seven transmembrane (7TM) receptors

G proteins sense conformational changes of intracellular loops

G proteins sense conformational changes of intracellular loops

Active receptor stabilized nucleotide-depleted heterotrimer

GTP-loading catalyzes heterotrimer dissociation

active trimer ($G\alpha + G\beta\gamma$)

Figure 10-20 Molecular Biology of the Cell (© Garland Science 2008)

Rasmussen et al., Nature 450, 383 (2007)

Bockaert & Pin (1999) EMBO J. 18:1732

2012 Nobel Prize in Chemistry

Brian Kobilka

Robert Lefkowitz

The Gα subunit:

palmitoylation

myristoylation

Lipid modifications for membrane binding

MGXXXS

MXCC

Exotoxin from *Bordetella pertussis* (whooping cough) catalyzes ADP-ribosylation of <u>i-class</u> Gα: Result? De-coupling from receptor

Exotoxin from Vibrio cholerae (cholera diarrhea) catalyzes ADP-ribosylation of <u>s-class</u> $G\alpha$: Result? Constitutive activity since crippled as a GTPase

pertussis toxin C

NKXD

R cholera toxin

GAGE phosphate binding

phosphate binding

DVGGQ

guanine binding

$G\alpha$ contains a Ras-like domain and an all-helical domain

$G\alpha$ contains a Ras-like domain and an all-helical domain

"Arginine finger" is critical for GTP hydrolysis.

"Arginine finger" is critical for GTP hydrolysis

Site of cholera activation; R>C mutation activates. Q>L mutation also activates by crippling GTPase function.

Gat-GDPAIF₄

Ras/p120GAP.GDPAIF₃

For Ras-like GTPases, arginine finger is supplied in *trans* by GAPs. For heterotrimeric G proteins, the catalytic arginine is part of the alpha subunit.

Primary sequence characteristics of $G\beta\gamma$ dimers

$G\beta$ forms a propeller; $G\gamma$ is an extended helical peptide.

Sondek et al. Nature (1996) 379: 369

The switches of $G\alpha$ are primary interaction sites with $G\beta\gamma$ (no interactions between $G\alpha$ and $G\gamma$!)

The switches of $G\alpha$ are primary interaction sites with $G\beta\gamma$ (the N-terminal helix of $G\alpha$ is also used)

Portions (purple) of all three subunits contact receptor

N

Area of ADP-ribosylation via pertussis toxin (αi-class)

Swap receptor specificity by switching C-termini? Inhibit coupling via C-terminal minigenes?

Gilchrist et al. (2001) JBC 276:25672

$G\alpha$ switches (I, II, III) are sensitive to bound nucleotide

G α switch regions (I, II) directly interact with GTP

The four families of Ga subunits

Examples of G-protein effector systems

G-protein subunit	Effector	"Second messenger"
Gas, Gaolf	↑adenylyl cyclase	↑[cAMP]
Gai1/i2/i3	↓adenylyl cyclase	↓[cAMP]
Gαq/11	↑phospholipase-Cβ	\uparrow [IP ₃] & \uparrow [DAG]
Ga12/13	↑RGS-box RhoGEFs	↑[RhoA-GTP]
	↑phospholipase-Cε	\uparrow [IP ₃] & \uparrow [DAG]
Gατ (transducin)	↑cyclic GMP phosphodiesterase	↓[cGMP]
Gβγ dimer	\uparrow or \downarrow adenylyl cyclase	\uparrow or \downarrow [cAMP]
	PLC-β & PLC-ε	\uparrow [IP ₃] & \uparrow [DAG]
	↑or \downarrow ion channel flux	K+ and Ca2+

Four Gβ subunits and one oddball

Plenty o' Gy subunits

K-EKLKMEVEOLRKEVKLOROOVSKCSEEIKNYIEERSGEDPLVKGIPEDKNPFKE-KGSCVIS* hGy11 73 K-DKLKMEVDQLKKEVTLERMLVSKCCEEVRDYVEERSGEDPLVKGIPEDKNPFKELKGGCVIS* 74 hGy1 K-DLLKMEVEQLKKEVKNTRIPISKAGKEIKEYVEAQAGNDPFLKGIPEDKNPFKE-KGGCLIS* hGy8 69 NIAQARRTVQQLRLEASIERIKVSKASADLMSYCEEHARSDPLLIGIPTSENPFKDKK-TCIIL* hGy7 65 NIAQARKLVEQLRIEAGIERIKVSKAASDLMSYCEQHARNDPLLVGVPASENPFKDKK-PCIIL* hGy12 72 SIAQARKLVEQLKMEANIDRIKVSKAAADLMAYCEAHAKEDPLLTPVPASENPFREKKFFCAIL* SISQARKAVEQLKMEACMDRVKVSQAAADLLAYCEAHVREDPLIIPVPASENPFREKKFFCTIL* 75 hGy4 71 hGy2 SIGQARKMVEQLKIEASLCRIKVSKAAADLMTYCDAHACEDPLITPVPTSENPFREKKFFCALL* hG₇3 75 SVAAMKKVVQQLRLEAGLNRVKVSQAAADLKQFCLQNAQHDPLLTGVSSSTNPFRPQKV-CSFL* SASALQRLVEQLKLEAGVERIKVSQAAAELQQYCMQNACKDALLVGVPAGSNPFREPRS-CALL* hG₇₅ 68 hGy10 68 DVPOMKKEVESLKYOLAFOREMASKTIPELLKWIEDGIPKDPFLNPDLMKNNPWVE-KGKCTIL* hGy13 67

Blake et al. (2001) JBC 276:49267

Gs = "stimulatory" G-protein linked to adenylyl cyclase activation (2nd-messenger generation) Adrenaline β2-adrenergic receptor on vasculature of skeletal muscles Isoproterenol ("1st messenger") Adenylyl cyclase AC Second (+messenger **cAMP ATP**

<u>Net result</u>: Five-fold increase in [cAMP]_i in seconds

Complex of Gas with cytoplasmic portions of **Adenylyl cyclase** Gas **S3 S2 GTPyS** IIC₂ **S1** Gas interacts with cyclase primarily through switches 1 and 2 forskolin **Forskolin favors** dimerization of cyclase domains Tesmer (1997) Science 278:1907 Turning off the signal Multiple levels & multiple time-frames

- Reuptake/destruction of agonist (~millisec)
- Hydrolysis of GTP bound to $G\alpha$ subunit (~sec)
- Reuptake/destruction of second messenger (~sec)
- Uncouple receptor from signal machinery (~sec/min)
- Remove receptor from cell-surface (~min/hr)

RGS proteins stabilize the transition state for GTP hydrolysis

Figure 10-1 Molecular Biology of the Cell (© Garland Science 2008)

Figure 10-3 Molecular Biology of the Cell (© Garland Science 2008)

Figure 10-4 Molecular Biology of the Cell (© Garland Science 2008)

Figure 10-7b Molecular Biology of the Cell (© Garland Science 2008)

Figure 10-11 Molecular Biology of the Cell (© Garland Science 2008)

Figure 10-19 Molecular Biology of the Cell (© Garland Science 2008)

PLC- β isozymes are classic effectors of heterotrimeric G proteins

