Proteins — *polymer molecules*, folded in complex structures

Konstantin Popov Department of Biochemistry and Biophysics

Outline

- General aspects of polymer theory
 - Size and persistent length of ideal linear polymer chain
 - Volume interactions and Coil-Globule transition
 - Electrostatic and hydrophobic interactions
- Branched polymers as a next step towards proteins
- Proteins as extremely complicated and well designed polymers

Model of ideal polymer chain

In 1920 Hermann Staudinger proposed existence of polymer chains — **long** chains of atoms covalently bounded one to another and called them *macromolecules*.

Examples:

$$-CH_2 - CH_2 - CH_2 - CH_2 - poly(eth)$$

$$-CH_2 - CH - CH_2 - CH_2 - CH - CH_2 - CH_2$$

Polymers are long molecules, N>>1:

- Synthetic polymers N usually $10^2 10^4$ ۲
- Biopolymers N up to 10^9

Model of ideal polymer chain

Ideal chain — model where monomer units do not directly interact if they are not neighbors along the chain.

Simplest example:

Freely jointed chain. No interactions, no correlations.

$$\vec{u}_{i} \langle \vec{R}^{2} \rangle = \left\langle \left(\sum_{i=1}^{N} \vec{u}_{i}\right)^{2} \right\rangle = \left\langle \sum_{i=1}^{N} \vec{u}_{i}^{2} \right\rangle + 2 \sum_{1 \leq i < j \leq N} \langle \vec{u}_{i} \vec{u}_{j} \rangle$$
$$\vec{R} = \sum_{i=1}^{N} \vec{u}_{i} \qquad R = \sqrt{\left\langle \vec{R}^{2} \right\rangle} = N^{1/2} l$$
$$R < < L = Nl$$

Flexibility of ideal polymer chain

Rectilinear conformation of a poly(ethylene) chain, shown on the picture, corresponds to the minimum of the potential energy. All monomer units are in trans-position. This conformation would be an equilibrium only at T = 0.

Thermal fluctuation will cause deviations from liner conformation. Probability to find particular conformation can be estimated according to Boltzmann law:

$$p(U) \sim e^{-\frac{U}{k_b T}}$$

Flexibility of ideal polymer chain

Persistent length — roughly a maximum chain section remaining straight. At greater lengths, bending fluctuations destroy the memory of the chain direction.

For many polymer chains it is shown that :

$$\langle \cos\theta(s) \rangle = \exp\left(-s/l_p\right)$$

Correlations decay exponentially along the chain.

Where I_p — persistent length of the polymer.

Ideal polymer chain summary

• Monomers are connected into a chain, thus restricted in spatial movement. that makes polymer chains "poor" in entropy.

• Polymers are long chains: N>>1.

• Size of ideal polymer chain — polymer coil, is given by the universal expression that doesn't depend on selected model:

$$R = aN^{1/2}$$

Where a is monomers size and N is the number of monomer units.

• Ideal are flexible molecules. Flexibility is thermally driven. Directional correlation between two segments decay exponentially with increasing the distance separating them.

$$\langle \cos\theta(s)\rangle = \exp\left(-s/l_p\right)$$

Model of real polymer chain

Consider polymer chain with interacting monomers immersed into a solvent.

Interaction examples:

- Excluded volume interactions
- Hydrophobic/hydrophilic interactions
- Electrostatic interactions
- Hydrogen bonds

These interactions significantly change conformational behavior of macromolecules.

Solvent quality for real polymer chain

Typical potential between two monomers in the absence of solvent:

U repulsion due to self-volume of the beads (excluded volume) $-\varepsilon$ Van-der-Waals attraction Presence of solvent can change the shape of the potential:

Solvent effect on polymer chain size: lpha=

• Effective repulsion will result in swelling of polymer coil ~lpha>1~ – good solvent

 $\frac{R}{R_{ideal}}$

• Effective attraction will result in collapse of polymer coil $\,lpha\,<\,1\,$ $\,$ – bad solvent

Solvent quality and temperature

The *free energy* of polymer chain is a sum of energetic and entropic contribution:

$$F = U - TS$$

At U = 0 we have ideal chain with $\,R \sim N^{1/2}$

Taking into account low concentration of monomers in ideal coil we expand interaction energy in a power series of number of particles in a unit volume(virial expansion):

$$U = Nk_BT(nB + ...)$$
, where $B(T) = \int \{1 - \exp[-u(\vec{r})/k_BT]\}d^3r$

describes pair interaction between monomers.

It can be seen:

- At $T=\Theta$, B=0 and chain behaves as ideal
- At $T>\Theta$, B>0, repulsion dominate, chain swells
- At $T < \Theta$, B<0, attractions dominate, chain collapse

Coil-Globule transition

A globule-coil transition point lies around Theta point, and it is determined by the balance between entropy gain caused by chain extension and energy lose due to reducing attractions.

Volume interactions summary

- Presence of solvent can introduce effective interaction between monomers
- Solvent quality is temperature dependent
- Size of the globule in the bad solvent is given by:
- Size of the ideal coil in the Θ solvent is given by:

• Size of the swollen coil in the bad solvent is given by:

$$\begin{aligned} R &= aN^{1/3} \\ R &= aN^{1/2} \\ R &= aN^{3/5} \end{aligned}$$

Electrostatic interactions

Where r_D is the screening (Debye) radius, which depends on temperature and low molecular salt concentration.

- Presence of strong electrostatic interactions increase the size of the chain
- Conformation of charged macromolecule depends mostly on fraction of charged monomers and low molecular-weight salt concentration

Hydrophobic interactions

Two non polar molecule immersed into a polar solvent (water).

- Gibbs free energy:
- $\Delta G = \Delta H T\Delta S$

- $\Delta H\,$ Can be either negative or positive, depending on the strength of dipole-dipole interactions
- $\Delta S~$ Positive due to loss of the solvent structure

$$|T\Delta S| > |\Delta H|$$

Linear chain summary

- Connectivity into the chain
- Hydrophobic core
- Stretched electrostatic part
- Swollen hydrophilic loops

All these leads to micro-phase separation phenomenon in polymer physics

Outline

- General aspects of polymer theory
 - Size and persistent length of ideal linear polymer chain
 - Volume interactions and Coil-Globule transition
 - Electrostatic and hydrophobic interactions
- Branched polymers as a next step towards proteins
- Proteins as extremely complicated and well designed polymers

Comb-like macromolecules

- Each side chain has properties of a single polymer chain, discussed above
- Chains grafted on the backbone that make entropic effects very strong
- Properties of of each grafted chain amplified on the scale of entire macromolecule

Description of such molecules is much more complicated compare to linear chains

Outline

- General aspects of polymer theory
 - Size and persistent length of ideal linear polymer chain
 - Volume interactions and Coil-Globule transition
 - Electrostatic and hydrophobic interactions
- Branched polymers as a next step towards proteins
- Proteins as extremely complicated and well designed polymers

Proteins

Imagine now of branched polymer which

- Has side chains of extremely complicated nature
- Has to fold into preprogrammed structure for exact amount of time
- Has to function in a very specific biological condition
- Can not missfold
- Has to interact with other molecule in extremely crowded environment

Taken from wiki

 \mathbf{H}

Η

COOH

Simple homo-polymer like protein. Side chains glycine. H_2N glycine

Side chains are random amino acids:

Real protein:

Thank you.