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Classical Mechanics Applied to Biology  

The purpose of this tutorial is to introduce several popular numerical techniques used to simulate the 
structure and dynamics of biomolecules. The discussion is confined to simulation methods that apply 
classical mechanics to biological systems, although some quantum theory is presented to quantify some 
shortcomings of classical approximations. Molecular dynamics (MD) simulation, Langevin dynamics 
(LD) simulation, Monte Carlo (MC) simulation, and normal mode analysis are among the methods 
surveyed here. There are techniques being developed that treat the bulk of a macromolecule classically 
while applying quantum mechanics to a subset of atoms, typically the active site. This research frontier 
will not be addressed here. Completely classical studies remain more common and continue to 
contribute to our understanding of biological systems.  

When is classical mechanics a reasonable approximation?  

In Newtonian physics, any particle may possess any one of a continuum of energy values. In quantum 
physics, the energy is quantized, not continuous. That is, the system can accomodate only certain 
discrete levels of energy, separated by gaps. At very low temperatures these gaps are much larger than 
thermal energy, and the system is confined to one or just a few of the low-energy states. Here, we expect 
the `discreteness' of the quantum energy landscape to be evident in the system's behavior. As the 
temperature is increased, more and more states become thermally accessible, the `discreteness' becomes 
less and less important, and the system approaches classical behavior.  

For a harmonic oscillator, the quantized energies are separated by , where h is Planck's 

constant and f is the frequency of harmonic vibration. Classical behavior is approached at temperatures 
for which , where  is the Boltzmann constant and  = 0.6 kcal/mol at 300 K. 

Setting hf = 0.6 kcal/mol yields f = 6.25/ps, or 206 . So a classical treatment will suffice for 
motions with characteristic times of a ps or longer at room temperature.  

Outline - Shades of things to come  

We'll expand on the above argument with a more quantitative analysis of classical and quantum 
treatments of simple harmonic oscillation. This not-too-mathematical glimpse of quantum mechanical 
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phenomena is included to help simulators estimate how much they can trust various motions that have 
been simulated with the approximations inherent in classical physics. Then, we'll identify the basic 
ingredients of a macromolecular simulation: a description of the structure, a set of atomic coordinates, 
and an empirical energy function. This is followed by a discussion of the most popular simulation 
techniques: energy minimization, molecular dynamics and Monte Carlo simulation, simulated annealing, 
and normal-mode analysis. Finally, a few general suggestions are offered to those about to perform their 
first macromolecular simulation. But first, a little theoretical background is presented to aid the 
discussion. It's a short summary of the most relevant concepts of classical, quantum, and statistical 
mechanics, along with a glimpse of classical electrostatics.  
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Classical and Quantum Mechanics - in a 
Nutshell  
Classical Mechanics 

Building on the work of Galileo and others, Newton unveiled his laws of motion in 1686. According to 
Newton:  

I. A body remains at rest or in uniform motion (constant velocity - both speed and direction) unless 
acted on by a net external force.  

II. In response to a net external force, , a body of mass m accelerates with acceleration .  

III. If body i pushes on body j with a force , then body j pushes on body i with a force 

.  

For energy-conserving forces, the net force  on particle i is the negative gradient (slope in three 

dimensions) of the potential energy with respect to particle i's position: , where 

 represents the potential energy of the system as a function of the positions of all N particles, . 

In three dimensions,  is the vector of length 3 specifying the position of the  atom, and  is the 

vector of length  specifying all coordinates. In the context of simulation, the forces are calculated 
for energy minimizations and molecular dynamics simulations but are not needed in Monte Carlo 
simulations.  

Classical mechanics is completely deterministic: Given the exact positions and velocities of all particles 
at a given time, along with the function , one can calculate the future (and past) positions and 

velocities of all particles at any other time. The evolution of the system's positions and momenta through 
time is often referred to as a trajectory.  

Quantum Mechanics  

A number of experimental observations in the late 1800's and early 1900's forced physicists to look 
beyond Newton's laws of motion for a more general theory. See, for example, the discussion of the heat 
capacity of solids. It had become increasingly clear that electromagnetic radiation had particle-like 
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properties in addition to its wave-like properties such as diffraction and interference. Planck showed in 
1900 that electromagnetic radiation was emitted and absorbed from a black body in discrete quanta, each 
having energy proportional to the frequency of radiaion. In 1904, Einstein invoked these quanta to 
explain the photo-electric effect. So under certain circumstances, one must interpret electromagnetic 
waves as being made up of particles. In 1924 de Broglie asserted that matter also had this dual nature: 
Particles can be wavey.  

To make a long and amazing story [1] short, this led to the formulation of Shrödinger's wave equation 
for matter:  

  
 
Don't let the brevity of notation fool you; this partial differential equation is difficult to deal with and 
generally impossible to solve analytically. It is tailored to a given physical system by defining the 
Hamiltonian operator  to incorporate all the relevant forces exerted on the particles of the system. 
The solution of this equation yields the discrete (quantized) values (or eigenvalues) of energy , and 

for each  its corresponding wave function . In general, these wave functions are complex-valued 

functions (involving ), but the quantity  is always real and thus may correspond to 

something physical. (  is the `complex conjugate' of .) In fact,  is a probability density. For 
motion in the single dimension x, it is `a probability per unit x':  is the probability that the 
particle will be found at a position between x and . The wavefunctions are normalized (scaled) 

by the requirement that the particle must be somewhere, i.e., that these probabilities must sum to one:  

  
 
Quantum mechanics is thus not deterministic, but probabilistic. It forces us to abandon the notion of 
precisely defined trajectories of particles through time and space. Instead, we must talk in terms of 
probabilities for alternative system configurations.  

To clarify these concepts, consider two major successes for the quantum theory, predictions of the 
discrete energy levels of the harmonic oscillator and the hydrogen atom. Pictured below are the potential 
energy (solid lines) and the four lowest energy levels (dashed lines) for a one dimensional harmonic 
oscillator (red) and the three dimensional hydrogen atom (blue). The harmonic oscillator depicted 
corresponds to a hydrogen atom oscillating at the frequency f = 100/ps and represents one of the highest 
frequency atomic motions in macromolecules. The energy levels of harmonic oscillators are equally 
spaced, separated by an energy of hf, or 9.5 kcal/mol for the oscillator shown. The energy gaps for a 
hydrogen atom oscillating at f = 10/ps are 0.95 kcal/mol, on the order of thermal energy, and so classical 
mechanics better approximates quantum results (e.g., average energy and motional amplitude) for this 
slower oscillator.  

Excitation of electrons within atoms requires much more energy than excitation of atomic vibrations. 
Promotion of the hydrogen atom's electron from its ground state to its first excited state requires 235 
kcal/mol. Way beyond the reach of thermal energy, this excitation requires the absorption of ultraviolet 
radiation with a wavelength of 121 nm. 
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Potential and four lowest E levels 
for a harmonic oscillator (red) and the hydrogen atom (blue).
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Statistical Mechanics - Calculating Equilibrium 
Averages  
According to statistical mechanics, the probability that a given state with energy E is occupied in 
equilibrium at constant particle number N, volume , and temperature T (constant , the 
`canonical' ensemble) is proportional to , the `Boltzmann factor.'  

The equilibrium value of any observable O is therefore obtained by averaging over all states accessible 
to the system, weighting each state by this factor. 

Quantum mechanically, this averaging is performed simply by summing over the discrete set of states 
(Figure 1):  

where Z is the partition function:  

and  is the expectation value of the quantity O in the  energy eigenstate:  

Classically, a state is specified by the positions and velocities (momenta) of all particles, each of which 
can take on any value. The averaging over states in the classical limit is done by integrating over these 
continuous variables:  

  
 
where the integrals are over all phase space (positions  and momenta ) for the N particles in 3 

dimensions. 
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When all forces (the potential energy V) and the observable O are velocity-independent, the momentum 
integrals can be factored and canceled:  

where  is the total kinetic energy, and . As a result, Monte Carlo 

simulations compare V's, not E's. 
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Classical vs. Quantum Mechanics: The 
Harmonic Oscillator in One Dimension  
The harmonic oscillator is the model system of model systems. We study it here to characterize 
differences in the dynamical behavior predicted by classical and quantum mechanics, stressing concepts 
and results. More details and mathematical formalism can be found in textbooks [1,2]. Our model 
system is a single particle moving in the x dimension connected by a spring to a fixed point. Its potential 
energy is , where k is the spring constant. Stiff springs are described by large k's. 

Classically, this oscillator undergoes sinusoidal oscillation of amplitude  and frequency 

, where E is the total energy, potential plus kinetic. In equilibrium at temperture 

T, its average potential energy and kinetic energy are both equal to ; they depend only on 

temperature, not on the motion's frequency.  

Quantum mechanically, the probability of finding the particle at a given place is obtained from the 
solution of Shrödinger's equation, yielding eigenvalues  and eigenfunctions . For the one 

dimensional harmonic oscillator, the energies are found to be , where  is 

Planck's constant, f is the classical frequency of motion (above), and n may take on integer values from 
0 to infinity. The  turn out to be real functions involving the Hermite polynomials. From 

equation 1, only the ground state ( ) is populated as the temperature . The energy does not 
go to zero but to . The corresponding zero-point motion is a quantum mechanical phenomenon. 

Classically, there is no motion as . Thus, we expect that quantum mechanics predicts more 
motion than classical mechanics, especially at low temperature.  

 

Subsections 

Probability(x): Where is the oscillating particle?  
Average Energy U and Heat Capacity  
Mean-Square Fluctuation  
Overall Comparison - What does all this mean for simulation?  
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Probability(x): Where is the oscillating particle?  

For the oscillator in the  eigenstate with energy , the probability of being between x and 

 is . In the following figure,  is plotted in solid lines for  (red) and for 

 (blue), along with the corresponding classical predictions, plotted in dotted lines for classical 
oscillators with the same total energies (0.5 hf and 5.5 hf). Numerical constants chosen: m = mass of H 
atom, f = 100/ps, about the frequency of O-H bond stretching. 

Classically, the probability that the oscillating particle is at a given value of x is simply the fraction of 
time that it spends there, which is inversely proportional to its velocity  at that position. The 

particle must stop completely (for a moment) before reversing its direction, and so it spends the most 
time where the spring is either fully compressed or fully extended ( ). It spends the least time 

where its velocity is greatest, i.e., where the spring is at its equilibrium length ( ). Classically, 
there is zero chance for a particle to have a potential energy V greater than its total energy E, and so the 
motion is strictly confined to the range  (see vertical dotted lines at ).  
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Quantum mechanically, there exist states (any n > 0) for which there are locations x, where the 
probability of finding the particle is zero, and that these locations separate regions of high probability! 
Also, note that there is appreciable probability that the particle can be found outside the range 

, where classically it is strictly forbidden! This quantum mechanical tunneling is related 

to the famous Heisenberg Uncertainty Principle, which states that one cannot know both the position 
and momentum of a particle with infinite precision at the same time.  

Finally, note that the classical approximation more closely resembles the average of  as the 

energy  of the oscillator increases.  
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Average Energy U and Heat Capacity  

Next, we consider the average energy  of the harmonic oscillator at fixed . We 

calculate it as a function of temperature using equations 2, 4, and 5, with the observable . U is 
plotted in dotted lines for three frequencies (spring constants k): f = 100/ps (green), 10/ps (blue), and 
1/ps (cyan). The classical result (red) is , regardless of the frequency of the harmonic motion 

(the classical `equipartition of energy'). Note that the deviation of classical from quantum behavior is 
reduced as the frequency, and hence the energy gap between quantum states, is reduced. 

The heat capacity at constant volume, , is plotted in solid lines for each of the four U 

curves. (To fit on the same scale,  values were scaled by a factor of 1500). This heat capacity 

measures the energy absorbed (released) by a system as its temperature is raised (lowered) one degree 
while the volume is held constant. (The heat capacity at constant pressure, , is larger than  for 

gases because work is done as the container expands.) In the early twentieth century, experimentally 
measured values of the heat capacity for solids at low temperature, which can be approximated as three 
dimensional arrays of harmonic oscillators, pointed to a problem in the classical theory. Classical 
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physics predicted a temperature independent heat capacity (red horizontal line), whereas the measured 
values went to zero as  as . The much improved predictions (by Einstein in 1907 and Debye 
in 1912) of the low-temperature heat capacity of solids were among the earliest successes for theoretical 
models that invoked quantum concepts.  

The frequency dependencies of U and  at 300 K are shown in the second figure. Again, the  

values have been scaled by a factor of 1500. Classical quantities (in red) are independent of frequency, 
with  = 0.6 kcal/mol drawn as a dashed line. Quantum mechanical quantities (U in green, 

 in cyan) deviate more and more from classical values as the frequency is increased. As 

foreshadowed in the introduction, this deviation becomes appreciable at frequencies above 1/ps.  

An aside: For those unfamiliar with the concept of heat capacity, consider the well known consequences 
of water's large heat capacity. Water can absorb and release considerable thermal energy with little 
change in temperature. Hence, average coastal temperatures are cooler in summer than inland 
temperatures as the water absorbs and stores heat. The reverse is true in winter, as the water releases the 
stored energy.  
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Harmonic oscillation at 300 K: average energy and heat capacity versus frequency
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Mean-Square Fluctuation  

One physical quantity of great interest is the variance in the position of atoms at equilibrium, . 

For our model oscillator, ; so . This mean-square fluctuation about the 

average position is related to the B factors of crystallography and is also measurable by neutron 
scattering [3] and by Mössbauer spectroscopy [4]. It is one of the most important quantities to keep an 
eye on in molecular dynamics simulations as well. What is this fluctuation for the harmonic oscillator in 
equilibrium at constant  according to classical and quantum mechanics? We again use 
equations 2, 4, and 5, now with , and consider the same three frequencies of proton vibration. 
Because  and  for harmonic oscillation, the quantum and classical 

results are proportional to those obtained above for the average energy. That is, 
. Again, m is taken as the mass of a proton. (To plot the three frequencies 

on one scale, results have been scaled to the f = 100/ps values (green): Results for f = 10/ps (blue) were 
scaled by 0.01 ; results for f = 1/ps (cyan) were scaled by 0.0001. Consequently, the three classical 
curves (red), , coincide.) 
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Overall Comparison - What does all this mean for simulation?  
As expected, the classical approximation is at its best (approaches the quantum results) at high 
temperatures and for oscillators of low frequency (small k and/or big m). Under these conditions, the 
gaps between quantum states are small relative to thermal energy, .  

The highest energy vibration we've looked at in detail has been that of protons oscillating at f = 100/ps. 
This frequency was chosen because it is essentially that of oxygen-hydrogen bond stretching. It 
represents one of the highest frequency modes of vibration in a biomolecule and thus serves as a worst-
case scenario for classical approximations in macromolecular simulations. Several aspects of this motion 
have been depicted; see the plots of V and eigenvalues E, of probability(x), and the green curves in the 
plots of U and heat capacity and mean-square fluctuation.  

Indeed, the mean-square fluctuation predicted classically at this frequency is about eight times too small 
at 300 K. We can take consolation in the scale, though. For while the quantum value of 

 (rms x = 0.07 Å) is large compared to the classical result, it is still modest relative to 

crystallographic resolutions and the equilibrium length of the O-H bond. Furthermore, when compared 
to motional amplitudes measured by neutron scattering, classical simulations predict too much motion 
[6]. Thus, the reduced motion resulting from the neglect of quantum effects is overshadowed by other 
approximations made in simulations (perhaps the neglect of electronic polarizability and the assumed 
pairwise additivity of van der Waals forces). The overestimate of protein motion by simulations is not 
yet understood.  

Another problem with classical dynamics is the incorrect partitioning of energy (see plots of U and heat 
capacity). Classically  and , independent of frequency. In reality, high frequency 

motions have much more energy (larger U) and much less ability to exchange energy (smaller ) than 

classical mechanics predicts. High frequency motions like O-H bond stretching are energetically trapped 
in their quantum ground state, unexcitable to higher energy levels except at very high temperatures. 
Thus, the average energy U for the oscillator with f = 100/ps is very nearly temperature independent (

) all the way up to 600 K. The frequency-dependent underestimate of U by classical mechanics 

complicates calculations of free energy differences  when vibrational frequencies are likely to 
change during the process under investigation. However, these errors tend to cancel in estimates of 

 values. In classical simulations, low frequency motions exchange energy with too many (high 
frequency) degrees of freedom, but this unphysical give-and-take of energy with high frequency motions 
tends to average out.  

To summarize, classical simulations are unable to analyze the details of bond stretching and angle 
bending quantitatively. These motions are at frequencies too high for an accurate treatment using 
Newton's laws. However, we've observed that the errors in motional amplitude are relatively small, and 
errors in energy tend to cancel out in appropriately designed calculations, as when 's are 
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calculated rather than 's. For lower frequency motions (  1/ps or less), observables such as U 

and  become temperature independent (as quantum effects dominate) at much lower temperatures. 

For these motions, classical mechanics is a good approximation at physiological temperatures.  
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Electrostatics and the `Generalized Born' 
Solvent Model  
We now delve into electrostatics to estimate the electrostatic polarization free energy, , involved 

in the transfer of a solute with an arbitrary charge distribution from vacuum to aqueous solution.  

is the interaction between the charge distribution and its reaction potential, the potential induced by the 
charge distribution in the presence of the dielectric boundary at the solute-solvent interface.  

First, we review some basics. Again, we will focus on important results, and leave most of the 
mathematical details to textbooks [7]. Don't worry if the equations are unfamiliar; just stay tuned for the 
punch line.  

All problems in electrostatics boil down to the solution of a single equation, Poisson's equation:  

  
 
where  is the Laplacian operator,  is the electrostatic potential,  is the charge density (total 

charge per unit volume including all `free' and `polarization' charges), and  is the permittivity of free 

space. In cartesion (xyz) coordinates,  

  
 
The electrostatic potential at a given point in space is the potential energy per unit charge that a test 
charge would have if positioned at that point in the electric field  specified by :  

  
 
where , , and  are unit vectors in the x, y, and z directions, respectively. Similarly, the electric field 

at a given point in space is the force per unit charge that would act on a test charge located at that point. 
If we know  at all points in space, we've solved the problem since all forces and energies can be 

obtained from . 
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Let's examine two model systems, a point charge and a point dipole, each immersed in a dielectric 
medium. In the following two boundary-value problems, we simply state the answer, giving  as a 

function of position for all points in space. In these problems, we seek  in regions were there is no 

charge ( ). Thus, we need solutions to the special case of Poisson's equation known as Laplace's 

equation, , that satisfy two boundary conditions. First,  must be a continuous function, e.g., 

at the dielectric boundary. Second, because there is no `free' charge (charge other than the induced 
polarization charges) at the dielectric boundary, the normal component of the electric displacement, 

, will also be continuous at this boundary.  

First, we model a single ion in solution as a sphere of radius a with a point charge q at its center, 
immersed in a solvent of dielectric constant . Aside from the point charge at the center, there is nothing 
inside the solvent-exclusion cavity, and so the dielectric constant inside is the permittivity of free space 

. The spherical symmetry of this system renders it a problem of only one dimension, the distance r 

from the point charge. The solution is:  

 

One step up in complexity from a point charge is a point dipole. So let's replace the point charge at the 
center of our solvent-exclusion sphere with a point dipole . With this model system we can 

approximate the solvation energy of a neutral molecule possessing a permanent dipole moment. Again, 
the dielectric constant of the solvent is , and the dielectric constant inside the spherical molecule is . 

This cylindrically symmetric system has two independent dimensions, the distance r and the angle  
from the direction of the dipole vector. We get [8]:  

 

where 

  

 
 
Note that in equations 6 and 7 the potential inside the spherical molecule is a sum of two terms. In each 
case, the first term is the potential that would exist in the absence of the dielectric boundary at , 

(6)

(7)
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and the second term is the potential induced in the spherical cavity by the charge distribution's 
interaction with the dielectric (e.g., the solvent). The energy of the charge distribution arising from this 
second term (the reaction potential) gives the electrostatic contribution to the solvation free energy.  

The energy of a point charge in its reaction potential is one half of the product of the charge and the 
reaction potential. The `one half' appears because this is not the energy of a charge in an external electric 
field. Here, the charge has contributed to the creation of the field through its electrostatic interactions 
with the dielectric. So our continuum model of the solvent predicts that the electrostatic polarization free 
energy of solvating a spherical ion is  

This G is known as the Born energy [9]. 

The energy of a dipole in its reaction field (the negative gradient of the reaction potential) is minus one 
half of the dot product of the dipole and the reaction field. Again, this is half the energy of a dipole in an 
external electric field. The reaction field of the dipole is parallel to the dipole, and we get  

Several names (Bell, Onsager, Kirkwood) have been associated with this energy. 

Note that both G values are zero if , i.e., if we haven't changed the dielectric constant of the 

environment.  

Still and coworkers [10] have proposed the following approximate expression for the free energy of 
solvent polarization for an arbitrary charge distribution of N charges:  

where 

  

 
 
This functional form of the so-called Generalized Born (GB) approximation has been used with 
considerable success to efficiently evaluate hydration energies for small molecules. Parameterization of 
the method involves accounting for the effects of neighboring solute atoms in the determination of each 
atom's effective Born radius a. 

As shown in the following figure, this GB approximation behaves appropriately in important limiting 
situations. For N identical, coincident ( ) particles of charge q, it gives the correct Born energy 

(8)

(9)

(10)
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(equation 8, for a single particle of charge ). For two charges of equal and opposite sign, it 

approaches the dipole result (equation 9) at short separation distances, as it should. For two well 
separated charges ( ), it approaches the appropriate energy: the two Born energies plus the 

energetic change in the Coulomb interaction between the two charges due to the dielectric medium.  
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GB approximation (in red) to solvent polarization energies for two charges of equal radii as a 
function of separation. Upper curves: Equal and opposite charges with G_dipole (blue) at small 

separation and Coulomb + Born polarization energies (green) at large separation. Lower curves: 
Equal charges with G_ion (blue) at zero separation and Coulomb + Born polarization energies 

(green) at large separation.
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Classical Macromolecular Simulation  
To simulate the structure and dynamics of biomolecules, we approximate them as a physical network of 
balls that have point charges at their centers and are connected by springs. In addition to springs that 
govern the bending of bonds and angles, there are forces that favor certain rotations about the bonds. 
The balls representing the atoms are not hard spheres; they are Lennard-Jones particles that can overlap 
each other. Our goal is to study the motion of this physical network of balls and springs, in hopes of 
interpreting and predicting the dynamics of real macromolecules at the atomic level.  
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Simulating Biomolecules: The Three Necessary Ingredients 

I. A Description of the Structure  
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Classical Macromolecular Simulation  
 
A Note on Notation - Some CHARMMing language  
The following discussion of classical simulation techniques is quite general. But when introducing a 
particular concept, its name in the program CHARMM may be given parenthetically. Every program 
designed to simulate macromolecules deals with these concepts in its own way. Connecting the concepts 
to CHARMM-like nomenclature simply reflects my experience and may better clarify the concepts for 
those with particular interest in this simulation package.  

 

Steinbach 2003-03-07  
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Simulating Biomolecules: The Three Necessary Ingredients  
To simulate the dynamics of a macromolecule, we need to specify three things:  

 

Subsections 

I. A Description of the Structure  
II. Initial Coordinates  
III. An Empirical Energy Function: Free Energy vs. Potential Energy  
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Biomolecules: The Three  
 
I. A Description of the Structure  

The Protein Structure File (CHARMM: `.psf') contains a description of all molecules in the system to 
be simulated, their covalent connectivity, and all the energetic interactions to be calculated. Despite its 
name, the psf is not limited to proteins. It may be used to describe other systems, such as nucleic acids 
or lipids. The psf defining a specific system (e.g., carboxymyoglobin (MbCO) hydrated by 350 water 
molecules) is assembled, or GENErated, from the generic building blocks defined in the Residue 
Topology File (.rtf). To generate the psf for hydrated MbCO, we need amino acids and water molecules 
(defined in aminoh.rtf), and a heme and CO ligand (in porphyrinh.rtf). Again, despite the term `rtf', the 
components found in an rtf need not be amino acid residues. Other rtf's contain different building 
blocks: base pairs, lipid head groups, etc.  

 

Steinbach 2003-03-07  

n previo

Page 1 of 1I. A Description of the Structure

5/14/2004http://cmm.cit.nih.gov/intro_simulation/node12.html



    
Next: III. An Empirical Energy Up: Simulating Biomolecules: The Three Previous: I. A Description of 
 
II. Initial Coordinates  

The psf only specifies what atoms are involved, how they're connected, and what interactions determine 
the system's energy. Next, we need to place the atoms somewhere. Simulations are generally begun with 
experimentally determined coordinates, typically from the Brookhaven Protein Data Bank. Structures 
determined by X-ray diffraction lack positions for hydrogen atoms, while those determined by neutron 
diffraction (less common) or nuclear magnetic resonance do not. For X-ray structures, the hydrogen 
positions can be assigned by CHARMM (using the HBUIld command). Initial coordinates of small 
systems can also be created in the absence of experimental data by invoking ideal stereochemistry, as 
specified in the parameter file. This can also be done for proteins for which limited data exist, e.g., if 
only the C  coordinates are known to within 1 Å or so.  

 

Steinbach 2003-03-07  
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Coordinates  
 
III. An Empirical Energy Function: Free Energy vs. Potential Energy  

Finally, given a defined system and its initial atomic coordinates, we need a function describing the 
energy of the system for any configuration, , of the atomic coordinates. A functional form must be 
chosen for the energy as well as the associated numerical constants. For macromolecular simulation 
potentials, these parameters number in the thousands and include spring stiffnesses and equilibrium 
distances, torsional barriers and periodicities, partial charges, and Lennard-Jones coefficients. The 
energy function and its associated constants are contained in the Parameter File (.prm). Development 
of parameter sets is a laborious process. Both the functional form and numerical parameters require 
extensive optimization. A brute-force iteration of simulation and parameter modification is performed to 
improve agreement between simulations of model systems and information derived from ab initio 
calculations, small-molecule spectroscopy, and educated guessing.  

Free Energy vs. Potential Energy  

For a system held at constant , the Helmholtz free energy, , is a 

minimum at equilibrium, where is the average total energy of the system (kinetic energy plus 

potential energy), T is the absolute temperature, S is the entropy, and Z is the partition function (eq 3). 
Suppose the pressure P is held constant instead of the volume (constant , the `isothermal isobaric' 
ensemble). In this case, the Gibbs free energy, , is minimized at equilibrium. Note 

that the enthalpy, , is the quantity at constant pressure that corresponds to U at constant 

volume. Differences in G drive chemical reactions.  

Some empirical energy functions are designed to approximate the Gibbs free energy G. For example, in 
Monte Carlo studies of protein structure prediction, the energy function may be based simply on the 
likelihood of residues of type i and j being within a certain distance of each other. The probabilities p are 
determined by counting the number of times that residues i and j are found close to each other in the 
protein structures deposited in the Protein Data Bank. They are then converted into -like energies 
by: . Because the p's are derived from structures at constant T and P determined 

experimentally, these energy functions account for entropic contributions to the Gibbs free energy in an 
approximate way.  

In most molecular dynamics software packages, however, the empirical energy function,  (not to 

be confused with the volume ), is developed to approximate the potential energy of the system. In 
general, it does not include entropic effects in any effective way. Many simulations have been 
performed at constant energy, E. That is, E is fixed and T fluctuates about an average value as energy is 
exchanged between the kinetic energy and the potential energy. In principle, simulations performed at 
constant T and P mimic experimental conditions better than simulations at constant E. Recently, an 
improved constant-  algorithm has been developed [11]. Constant E simulations have the advantage 
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that they allow energy conservation to be checked. Any significant drifts in E indicate a problem that 
should be tracked down before continuing the simulation. Although it fluctuates, the temperature is still 
well defined at constant E, and differences between dynamics at constant T and constant E are generally 
not too significant on the time scales currently accessible to MD simulation (100's of ps to a few ns). 
However, the constant-  simulation may well become the standard as large solvated systems are 
simulated over longer time scales.  
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Empirical Energy  
 

The Empirical Potential Energy Function  
Each of the interactions commonly employed in the potential energy function  is sketched below. 

Simple harmonic terms describe bond stretching and angle bending. The planarity of groups (e.g., the 
amide planes of proteins) can also be enforced by harmonic potentials known as an improper 
dihedrals. Rotation about single bonds (torsions) is governed by sinusoidal energies.  

The electrostatic attraction or repulsion between two charges is described by Coulomb's law:  

  
 
where  and  are the atoms' partial charges,  is the distance separating the atoms' centers,  is 

the permittivity of free space, and  is the relative dielectric coefficient of the medium between the 

charges (i.e., ). 

A distance-dependent dielectric coefficient (RDIE: ) has been used to approximate solvent 

screening without including explicit water molecules. Physically, it's a pretty ugly way to cheat. But if 
you don't want to include water, it may be the best your simulation package has to offer; it is almost 
certainly better than using unscreened partial charges in the absence of water. For realistic dynamics, we 
recommend constant-dielectric (CDIE) simulations with explicit solvation and . The presence of 

water retards conformational searching, however.  

An important electrodynamic effect remains to be included: van der Waals interactions. The electron 
cloud of a neutral atom fluctuates about the positively charged nucleus. The fluctuations in neighboring 
atoms become correlated, inducing attractive dipole-dipole interactions. The equilibrium distance 
between two proximal atomic centers is determined by a trade off between this attractive dispersion 
force and a core-repulsion force that reflects electrostatic repulsion and the Pauli exclusion principle. 
The Lennard-Jones potential models the attractive interaction as  and the repulsive one as 

:  
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where  is the equilibrium separation distance (where the force ) and  

is the well depth; i.e., . Why this `6-12' form for the van der Waals interaction? 

The application of quantum perturbation theory to two well separated hydrogen atoms in their ground 
states yields an interaction energy that decays as , and  is obviously easy to calculate from 

. For simplicity, the Lennard-Jones forces are typically modeled as effectively pair-wise additive: 

the potential energy  of three adjacent particles A, B, and C is the sum of the three energies for 

each atom pair: . Pair-wise additivity is only an approximation. 

Perhaps, you are thinking, `Hey, what about magnetic forces?' The magnetic force between two moving 
charges is expressed in terms of a double vector cross product involving the two particle velocities and 
the vector  of separation. It does not generally act along , but it does when two charges q have 

instantaneous velocities v along parallel lines. For this case, we can conveniently compare the 
magnitudes of the magnetic and electric forces. It turns out that the magnetic force is weaker than the 
electric force by a factor of , where c is the speed of light. Thus, magnetic forces are neglible for 

nonrelativistic particles, such as the partial charges that are used in simulation force fields. For example, 
if a particle moves as much as 1 Å in as short a time as 1 femtosecond (  s), then 

. We may therefore completely neglect magnetic interactions.  
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For those who like equations with their pictures, a typical potential energy function used in MD 
simulations looks like:  

Interactions included in representative potential energy function 
for MD simulation.
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with  

 
 

  
 
The first `bonded' sum is over bonds between atom pairs; the second sum is over bond angles defined by 
three atoms; the third and fourth sums are over atom foursomes (as in the figure above). For 
bookkeeping purposes, each atom is assigned a number. In the `nonbonded' interactions (van der Waals 
and electrostatics), the summation is over atoms i and j, where `i < j' simply ensures that each interaction 
is counted only once. Generally, atoms separated by one or two bonds are excluded from the nonbonded 
sum, and those separated by three bonds, `1-4 interactions', may have electrostatic interactions reduced 
by a multiplicative scale factor. The form of  shown here reflects the choice not to include an 

explicit hydrogen bond term, favoring instead to account for hydrogen bonds through an appropriate 
parameterization of Lennard-Jones and Coulomb interactions. Note also that a single dihedral angle 
(torsion) may have an energy described by more than one Fourier component (multiple values of n).  
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Potential Energy  
 
Matching CHARMM's Electrostatic Approximations to 
Environmental Approximations  

To speed up computation of , electrostatic and van der Waals forces are commonly terminated at 

a specified distance (CTOFnb) from the atom exerting the forces [12]. For van der Waals forces, use the 
CHARMM keyword VSHIft. For electrostatic forces, the choice of approximation depends on the 
system to be simulated. Ewald summation is being used more and more as a way to treat electrostatics 
without any cutoff in periodically repeated (infinite) systems such as solutions or crystals. However, the 
appropriate choice of spherical cutoff is still relevant for any modeling and simulation of a finite system, 
e.g., a hydrated protein in vacuum.  

The following figure shows the potential energy of electrostatic interaction for two unit charges (top), as 
approximated by various methods using a cutoff distance of 12 Å. Also shown is the error in the 
Coulomb force (bottom) resulting from these approximations. Note the large force errors at long range 
obtained when using a switching function on the potential energy (switch). This potential-switching 
method should not be used. The choice made from among the other alternatives available in 
CHARMM should be made based on the system simulated, as detailed in the following discussion.  
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Potential energy and error in force calculated by some `spherical cutoffs.'
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No Explicit Solvent (RDIE)  
Partial Solvation by Explicit Water Molecules  
Solutions, Crystals, and Interfaces  
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Matching CHARMM's Electrostatic Approximations  
 
No Explicit Solvent (RDIE)  

A distance-dependent dielectric coefficient (RDIE: ) has been used to approximate solvent 

screening without including explicit water molecules. Physically, it's a pretty ugly way to cheat. But if 
you don't want to include water, it may be the best your simulation package has to offer; it is almost 
certainly better than using unscreened partial charges in the absence of water. For realistic dynamics, we 
recommend constant-dielectric (CDIE) simulations with explicit solvation and . The presence of 

water retards conformational searching, however.  

The SHIFt option does a good job of monotonically damping a  force (RDIE electrostatics) to 

zero. Use of CTOFnb = 10 Åshould suffice. Although simulations have definitely evolved toward 
explicit solvation with true Coulombic forces (CDIE), RDIE SHIFt is arguably the best choice (in 

CHARMM) when the inclusion of explicit water remains prohibitively expensive.  

 

Steinbach 2003-03-07  
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Partial Solvation by Explicit Water Molecules  

When water molecules are included in the simulation, constant-dielectric (CDIE) electrostatics should 
be employed. For systems of finite size (e.g., a protein hydrated in vacuum), spherical cutoffs are used. 
Good numerical input values are CTOFnb  (Å), CUTNb  CTOFnb  2, and INBFreq . 

Electrostatic SHIFting does not monotonically damp the  force, but force shifting (FSHIft) and 

force switching (FSWItch) do. If the system simulated is composed entirely of neutral groups, force 
shifting (ATOM FSHIft) is the better of the two. As the number of charged groups in the system 
increases (e.g., hydrated protein), force switching (ATOM FSWItch) is recommended with CTONnb  
CTOFnb  4.  

 

Steinbach 2003-03-07  
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Solutions, Crystals, and Interfaces  

Solutions and crystals are simulated as `infinite' systems. More precisely, the basic `unit cell' (e.g., a 
single protein in a cube of water) having zero net charge is replicated periodically in all three 
dimensions. Periodic boundary conditions are used so that an atom exiting through one face of the unit 
cell enters the cell through the opposite face. These simulations are expensive, requiring considerable 
explicit water and the calculation of forces exerted by the `image' atoms that neighbor the primary unit 
cell. Ewald summation is the preferred electrostatic treatment for these periodic systems. If an interface 
(e.g., air-water) is present, Ewald summation may improve results even more than otherwise.  

 

Steinbach 2003-03-07  
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Modeling  
 
Questions We Can Ask With a Computer  
Given a structural description and atomic coordinates: `What does it look like?'  

This is an obvious question to ask, but the value of sitting down and staring at a structure is difficult to 
overestimate. Of course, the pretty pictures generated by graphics packages are only representations of 
models, even the pretty pictures of `experimental' structures. CHARMM graphics has broad capabilities 
but is less convenient than some commercial packages, such as QUANTA or SYBYL. It's hard to beat 
RASMOL, a public domain program that spins proteins on command, with options to display them as 
ribbons, balls and sticks, or space-filling overlapping spheres. RASMOL also allows point-and-click 
atom identification as well as limited zooming and z-clipping.  

Given a structural description, atomic coordinates, and an energy function: `How does the system 
relax and fluctuate?'  

Now we're getting to the point! Structure determination is clearly a critical step toward understanding 
biological function, but protein function requires motion. Molecular dynamics is the link between 
structure and function.  

We might, for example, wish to characterize the dependence of a protein's structure and dynamics on 
environmental conditions. We could perform simulations at different temperatures, different pressures, 
or different levels of hydration. We could approximate the solution environment by a periodically 
repeating system in which the repeating unit was a single protein in a box of water. Or the crystalline 
phase could be simulated as a special case of the periodic system with a particular box size and shape.  

To answer questions like these on a computer, we need to employ a few techniques that manipulate the 
structure, , given the potential energy, .  
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Modeling 
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Questions We Can Ask  
 
 
Energy Minimization  
Function optimization is a calculation that pervades much of numerical analysis. In the context of 
macromolecules, the function to be optimized (minimized) is an energy. The energy landscape of a 
biomolecule possesses an enormous number of minima, or conformational substates. Nonetheless, the 
goal of energy minimization is simply to find the the local energy minimum, i.e., the bottom of the 
energy well occupied by the initial conformation (  in figure). The energy at this local minimum may 
be much higher than the energy of the global minimum. Physically, energy minimization corresponds to 
an instantaneous freezing of the system; a static structure in which no atom feels a net force corresponds 
to a temperature of 0 K. In the early 1980's, energy minimization was about all one could afford to do 
and was dubbed `molecular mechanics.' 

 

Steinbach 2003-03-07  
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Minimization  
 
 
Molecular Dynamics (MD) Simulation  
As already noted, MD simulation generally begins where experimental structure determination leaves 
off, if not during the structure refinement itself. It is generally not used to predict structure from 
sequence or to model the protein folding pathway. MD simulation can fold extended sequences to 
`global' potential energy minima for very small systems (peptides of length ten, or so, in vacuum), but it 
is most commonly used to simulate the dynamics of known structures. 

An initial velocity is assigned to each atom, and Newton's laws are applied at the atomic level to 
propagate the system's motion through time (see `Classical and Quantum Mechanics - in a Nutshell' 
above). Thus, dynamical properties such as time correlation functions and transport coefficients (e.g., 
diffusion constants, bulk viscosities) can be calculated from a sufficiently long MD trajectory.  

Once again, Newton's second law is: , where  is the sum of all forces acting on atom i 

that results in its acceleration . The acceleration is the second derivative of the position with respect 

to time: . In words, it is the rate of change of the velocity , which in turn, 

is the rate of change of the position .  

The `Leap Frog' algorithm is one method commonly used to numerically integrate Newton's second law. 
We obtain all atomic positions  at all times  and all atomic velocities  at intermediate times 

. This method gets its name from the way in which positions and velocities are calculated in an 

alternating sequence, `leaping' past each other in time:  

  
 
 

  
 
Initial velocities are assigned so as to reflect equilibrium at the desired temperature T (a Maxwellian 
distribution), without introducing a net translation or rotation of the system. 

The energy of an isolated system (as opposed to, for example, one in contact with a thermal bath) is 
conserved in nature, but it may not be in simulations. Energy conservation can be violated in simulations 
because of an insufficiently short integration time step , an inadequate cutoff method applied to 
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long-range (electrostatic and Lennard-Jones) forces, or even bugs in the program. Of course, energy 
conservation alone is not sufficient to ensure a realistic simulation. The realism of the dynamics 
trajectory depends on the empirical potential energy function , the treatment of long-range forces, 

the value of , etc.  
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Langevin Dynamics (LD) Simulation  
The Langevin equation is a stochastic differential equation in which two force terms have been added to 
Newton's second law to approximate the effects of neglected degrees of freedom. One term represents a 
frictional force, the other a random force . For example, the effects of solvent molecules not explicitly 
present in the system being simulated would be approximated in terms of a frictional drag on the solute 
as well as random kicks associated with the thermal motions of the solvent molecules. Since friction 
opposes motion, the first additional force is proportional to the particle's velocity and oppositely 
directed. Langevin's equation for the motion of atom i is:  

  
 
where  is still the sum of all forces exerted on atom i by other atoms explicitly present in the system. 

This equation is often expressed in terms of the `collision frequency' . 

The friction coefficient is related to the fluctuations of the random force by the fluctuation-dissipation 
theorem:  

  
 
 

  
 
In simulations it is often assumed that the random force is completely uncorrelated at different times. 
That is, the above equation takes the form:  

  
 
The temperature of the system being simulated is maintained via this relationship between  and . 

The jostling of a solute by solvent can expedite barrier crossing, and hence Langevin dynamics can 
search conformations better than Newtonian molecular dynamics ( ).  
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Dynamics (LD) Simulation  
 
 
Monte Carlo (MC) Simulation  
Instead of evaluating forces to determine incremental atomic motions, Monte Carlo simulation simply 
imposes relatively large motions on the system and determines whether or not the altered structure is 
energetically feasible at the temperature simulated. The system jumps abruptly from conformation to 
conformation, rather than evolving smoothly through time. It can traverse barriers without feeling them; 
all that matters is the relative energy of the conformations before and after the jump. Because MC 
simulation samples conformation space without a true `time' variable or a realistic dynamics trajectory, 
it cannot provide time-dependent quantities. However, it may be much better than MD in estimating 
average thermodynamic properties for which the sampling of many system configurations is important. 

When the potential energy V and observables to be calculated from the simulation are velocity-
independent (as is typical), an MC simulation need only compare potential energies V, not total energies 
E (see `Calculating Equilibrium Averages' above). Two conformations,  and , are compared and 
updated as shown below [13].  is a random number uniformly distributed on [0,1].  
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For simple systems, the structural modifications are often tuned so that about 50% of the  
conformations are accepted. For macromolecular systems, this acceptance ratio can be much smaller, 
e.g. when dihedral angles are modified by large amounts. It is then generally expedient to bias the 
random moves in favor of known structural preferences such as side chain rotamers (`biased probability 
Monte Carlo') and to do some energy minimization before evaluating the energy . Also, explicit 
water molecules hinder the acceptance of new conformations. So Monte Carlo simulations of 
macromolecules generally use an implicit model of solvation, e.g., a term in the empirical potential 
energy function that mimics the effects of water. See, for example, reference [14].  
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Simulation  
 
Normal Mode (Harmonic) Analysis  
Normal modes of vibration are simple harmonic oscillations about a local energy minimum, 
characteristic of a system's structure  and its energy function . For a purely harmonic , 

any motion can be exactly expressed as a superposition of normal modes. For an anharmonic , the 

potential near the minimum will still be well approximated by a harmonic potential, and any small-
amplitude motion can still be well described by a sum of normal modes. In other words, at sufficiently 
low temperatures, any classical system behaves harmonically.  

In a typical normal mode analysis, the characteristic vibrations of an energy-minimized system (
 K) and the corresponding frequencies are determined assuming  is harmonic in all 

degrees of freedom. Normal mode analysis is less expensive than MD simulation, but requires much 
more memory.  

As a globular protein is heated from very low temperature, the fluctuations of its atoms begin to deviate 
measurably from harmonic behavior around 200 K. The motion at 300 K is considerably anharmonic. 
This must be kept in mind when attempting to interpret physiological behavior in terms of normal 
modes. Still, calculation of the normal mode spectrum is less expensive than a typical MD simulation, 
and the spectrum may provide qualitative, if not quantitative, insight.  

The normal mode spectrum of a 3-dimensional system of N atoms contains  normal modes (

 for linear molecules in 3D). In general, the number of modes is the system's total number of 

degrees of freedom minus the number of degrees of freedom that correspond to pure rigid body motion 
(rotation or translation). Each mode is defined by an eigenvector and its corresponding eigenfrequency, 

. The eigenvector contains the amplitude and direction of motion for each atom. In mode i, all N 
atoms oscillate at the same frequency, .  
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In macromolecules, the lowest frequency modes correspond to delocalized motions, in which a large 
number of atoms oscillate with considerable amplitude. The highest frequency motions are more 
localized, with appreciable amplitudes for fewer atoms, e.g., the stretching of bonds between carbon and 
hydrogen atoms.  
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Small oscillations about an equilibrium position 
can be expressed in terms of normal modes.
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Simulated Annealing  
Simulated annealing is a special case of either MD (`quenched' MD), LD, or MC simulation, in which 
the temperature is gradually reduced during the simulation. Often, the system is first heated and then 
cooled. Thus, the system is given the opportunity to surmount energetic barriers in a search for 
conformations with energies lower than the local-minimum energy found by energy minimization. This 
improved equilibration can lead to more realistic simulations of dynamics at low temperature [6]. Of 
course, annealing is more expensive than energy minimization. Simulated annealing is often applied to 
potentials, , that include unphysical energy terms, as when annealing structures to reduce 

crystallographic R factors.  
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What is Unique to Computer Experiments?  
May look very closely ( , ) at the behavior of any atomic subset of the system. In 

principle, any function of the atomic positions and velocities, whether time-averaged or 
instantaneous, is computable. 

May modify potential function  arbitrarily. Examination of what nature does not do may 

provide a new understanding for what it does do. For example, we have investigated the 
contribution of torsional transitions to the anharmonicity of protein dynamics by comparing 
simulations of MbCO dynamics performed with and without infinitely high barriers that prohibit 
these transitions. Our conclusion: Dihedral transitions account for nearly all the motional 
anharmonicity of dried MbCO but for less than half of the motional anharmonicity of hydrated 
MbCO [16]. 

May mutate structures or environments slowly (Free Energy Perturbation Theory) and 
approximate differences in free-energy differences, . By taking differences in , the 
states of zero energy are consistently defined and errors due to approximations in the simulation 
protocol tend to subtract out. See `Classical vs. Quantum Mechanics: The Harmonic Oscillator in 
One Dimension' above. 
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Worth Worrying About:  
Ultimately, simulations are judged according to two basic criteria:  

I. How well do the empirical energy surface and the chosen system composition approximate 
Nature?  

:  

How realistic are the chosen functional form and the associated numerical constants?  
PSF Generation:  

Which titratable groups should be protonated? Without employing quantum mechanics, 
protonations are assumed at the beginning and maintained throughout the simulation. Also, how 
much water is needed [15]? How many ions should be included?  

II. How well is the energy surface (phase space) explored?  

MD Simulation:  
What length of simulation is sufficient? First, the system must be equilibrated such that system 
properties such as potential energy, temperature, and volume appear to have stopped drifting. 
Then the simulation must continue long enough to obtain reliable equilibrium averages.  

MC Simulation:  
Does the chosen `move set' embody all motions relevant to the question being asked of the 
simulation? Have enough steps been taken?  

Mistakes to Avoid:  

Inconsistent :  

The potential function (long-range cutoff keywords, distances, ...) should not be changed at 
different stages of a simulation study. All input scripts used in a research project that evaluate 
energies and forces (energy minimizations, annealings, dynamics simulations, ...) should explicitly
(Don't trust the defaults!) do so in the same way. 

Submit and Forget:  
Don't let a simulation run unmonitored. Check intermediate results daily. Plot the time 
dependences of the potential and total energies, the temperature, the pressure and volume (if 
applicable), and the root-mean-square deviation from a reference (crystallographic or ) 
structure.  

Remember:  
Simulations are fiction aspiring to emulate reality. Pretty pictures and even a few good numbers do not 
guarantee good science. 
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