
Introduction 
Why Predict Protein Structure?  

Globular proteins owe their importance to their unique tertiary structure. This allows them to bind, be 
regulated by and transport smaller molecules; interact with and regulate larger ones; and catalyze 
biochemical reactions. Structural biochemists who use x-ray crystallography, nuclear magnetic 
resonance, circular dichroism, and other physical techniques to predict tertiary structure do so through 
measurements on folded protein molecules. However, the primary sequence of a potential protein can 
now be determined from DNA and many such sequences are being reported. Which of those are most 
likely to warrant further study can often be determined with knowledge of the tertiary structure. Thus it 
would be extremely useful if tertiary structure could be predicted directly from primary structure.  

Each tertiary structure is determined by a primary sequence, but exactly how (the protein folding 
problem) is the subject of much current research. Tertiary structure can be considered an aggregate of 
alpha helices, beta strands and turns, elements of secondary structure. If secondary structure could be 
accurately predicted from primary sequence, one would "only" need to correctly pack secondary 
structural elements - a seemingly less complicated task- and the protein folding problem would be 
solved (for an introduction to the packing problem, see Nagano, 1989). This is one approach to protein 
structure prediction from primary sequence. 

Alternative approaches use empirical techniques or molecular mechanics and dynamics to predict 
tertiary structure without necessarily first predicting secondary structure. This chapter summarizes 
progress in protein structure prediction, emphasizing methods for predictions in globular proteins since 
Fasman (1989a). Other reviews include Nishikawa and Noguchi (1991); Garnier and Levin (1991); 
Swindells and Thornton (1991); Benner (1992, 1993); Rost et al. (1993); and Cohen and Cohen (1994). 
Structure prediction for membrane-bound proteins is reviewed by Heijne (1994). The chapter includes a 
list of Resources for protein structure prediction, and a Glossary. Words and phrases included in the 
glossary are printed in boldface type when they first appear in the text. 

Background and Overview  

Prediction of structure began in the 1960s when the first protein crystal structures were available for 
detailed study. Prothero (1966) reported certain amino acids could be used to predict helices in 
myoglobin and hemoglobin. Schiffer & Edmunson (1967) developed the helical wheel both to predict 
helical potential and, if a helix is present, to indicate the presence of a hydrophobic region. Ptitsyn 
(1969) studied secondary structures of seven globular proteins and found certain amino acids were 
partitioned differently between helical and non-helical sections; his conclusions agreed with Prothero. 
More details of the early history in this field is given in Fasman (1989b).  

The most commonly used secondary structure prediction methods today were developed in the 
following decade. These include the statistical methods of Chou & Fasman (1974a, 1974b) and of 
Garnier and co-workers (Garnier et al., 1978; Garnier and Robson, 1989). Alternative approaches also 
applied to the problem of predicting secondary and tertiary structure include neural networks (for 
example, Qian & Sejnowski, 1988) and molecular modeling (for example, Bruccoleri and Karplus, 
1987).  

Any method of structure prediction must be first tested on sequences with known tertiary structure. 
Early studies were limited by the small number of proteins with known structure, and of necessity used 
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all that were available. As more structures were reported, researchers had the choice of continuing to 
base their methods on all known globular proteins, and in that sense seek universal rules, or to limit their 
universe to certain structural classes or even single protein families. Today both approaches are being 
actively explored. Predictive studies limited to a single protein family are called homology modeling. 

Evaluating the Accuracy of Predictions  

To compare various methods of protein structure prediction requires a gold standard of structure. 
Structures derived from X-ray or nmr measurements are usually the standards for tertiary structure 
prediction. Many published tertiary structures include secondary structure assignments, but these can be 
incomplete and subjective. Thus when secondary structure is predicted, it is often preferable to reassign 
secondary structure from tertiary coordinates using a computer program such as DSSP (Kabsch and 
Sander, 1983 TARGET = "refs").  

Accuracy of tertiary structure predictions are usually measured by comparing the coordinates for correct 
and predicted structures using the root mean square (r.m.s.) deviation. Let xi stand for a set of atomic 
coordinates for one atom in a (possibly known) structure, and yi for the corresponding atom in a second 
(possibly predicted) structure. One can mathematically transform the set of yi coordinates to Yi such that 
the sum of the squares of the distance deviations  

 (1)  

is a minimum. Then the r.m.s. deviation is defined as: 

 (2)  

where N is the total number of atoms in the structure (for further discussion of r.m.s., see Lesk (1991)). 
Cohen and Kuntz (1989) emphasize that such r.m.s. measurements must be compared to measurements 
on random structures constrained to pack in a sphere. Cohen and Sternberg (1980) developed an 
equation for determining such random r.m.s. deviations:  

 (3)  

where N here is the number of residues in the protein sequence. When such a comparison is made, early 
predicted tertiary structures are little better than random.  

Another method to analyze the spacial errors between two tertiary protein structures is to use volume 
overlap integrals (Schiffer et al., 1990). The two structures are superimposed by overlapping their Cα 
backbones. The volume of a particular residue is calculated by extending the atomic coordinates of each 
atom into a sphere with a radius equal to its van der Waals radius. The percentage volume overlap 
between two residues is determined by the volume overlap between the predicted residue and the residue 
in the crystal structure.  

The accuracy of sequence patterns developed in certain types of homology modeling is best measured 
by developing two sets of test sequences, one of the sequences which are contain the structural feature 
under study (knowns) and one of representative sequences which do not contain it (controls). Then 
pattern accuracy can be assessed by counting the number of correct matches (true positives, TP) where it 
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is found in the knowns; correct non-matches (true negatives, TN) where it is not found in the controls; 
incorrect matches (false positives, FP) where it is found in the controls; and incorrect non-matches (false 
negatives, FN) where it is not found in the knowns. Two measures of pattern accuracy are sensitivity = 
TP/(TP + FN), and specificity = TN/(TN + FP), and both must be calculated for a pattern to be 
evaluated. The validity of sequence patterns is further discussed by Lathrop et al. (1993).  

Even given a standard for secondary structure, the best measure of accuracy for secondary structure 
predictions is not as clear. A performance measure that accounts for both over- and under-prediction is 
the Mathews correlation coefficient developed by Mathews (1975). For the structure type a, the 
correlation coefficient is defined by 

 (4)  

where pa is the number of correctly predicted cases, na is the number of correctly rejected cases, oa is 
the number of overpredicted cases, and ua is the number of underpredicted cases. A more frequently 
used measure, single residue accuracy, is the number of residues correctly predicted to contain a 
structure divided by the number of residues that do contain that structure. To determine overall 
accuracy, this can be summed over the number of different structures or states predicted, usually either 
three (helix, strand, other) or four (helix, strand, turn, coil).  

Since turns and surface (random coil) loops are frequently interchanged in homologous proteins, three-
state accuracy is arguably the better measure. Also four-state values can easily be converted into three-
state ones. Three-state single residue accuracy (Q3) is:  

 (5)  

where N is the total number of predicted residues and Pa is the number of correctly predicted secondary 
structures of type a. Q3 values of from 0.5 to 0.7 (50-70% accuracy) have been reported for Chou-
Fasman; Garnier, Osguthorpe and Robson (GOR); and other current methods.  

Jenny and Benner (1994a) list several deficiencies of the Q3 score for the evaluation of secondary 
structure predictions and recommend several scores to be reported in addition: the three individual single 
residue scores which make up Q3; a score that reflects the number of serious errors (those where helix is 
mistaken for strand and vice versa); and a score for accuracy of prediction for each individual structural 
element. They also recommend three guidelines for comparing predictions. First, compare a consensus 
prediction (one made from several homologous sequences) with a "consensus" experimental structure, 
or, where multiple experimental structures do not exist, lower the "target score" for a perfect prediction 
to reflect the diversity found in secondary structure in homologous proteins. Second, compare prediction 
methods only with others that are similar (for example, all completely sequence-based, or all 
incorporating the same type of experimental data). Third, compare predictions made before a structure is 
known (de novo predictions) only other such predictions, not with predictions ("retrodictions") made 
after a structure is known.  

Russell and Barton (1993) describe one way to determine the proper target score for perfect prediction. 
These authors determine "expected prediction accuracy" for a given family of proteins based on a new 
variable which they call conservation (C) and the length class (based on number of residues) of the 
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sequence (<=50, 51-100, 101-150 and >150), where C is the percentage of alignment positions sharing 
seven or more property states (hydrophobicity, aliphatic, etc.) as defined by Zvelebil et al. (1987), across 
all aligned sequences. Their lower limit for expected Q3 accuracy is as low as 70%, an accuracy range 
achieved by several recent predictions.  

One candidate for Jenny and Benner's "score for structural elements" has been developed by Rost et al. 
(1994), since "the ultimate goal is reliable prediction of tertiary . . . structure, not 100% single residue 
accuracy for secondary structure." Approaching the same problem as Russell and Barton (1993) in a 
different way, Rost et al. compared secondary structures of proteins with the same tertiary fold. They 
found an average three-state single residue accuracy of 88.4%, with a standard deviation of 9%. 
Accuracy for dissimilar sequences is about 35%. They propose a score, segment overlap (Sov), which is 
a measure of similarity of predicted and actual segments (elements) of secondary structure: 

 (6)  

where N is the total number of residues in the protein; the numerator is summed over all segments of 
secondary structure; subscripts 1 and 2 are the two sequences of secondary structures being compared (1 
is usually observed and 2, predicted); s1 and s2 are two segments, one from each sequence, that have in 
common at least one residue position in the same secondary structure; minov is the actual overlap 
between the two segments; maxov is the total extent of either sequence, and len(s1) is the length of the 
observed segment. That is, for a helical prediction, minov is the number of residues for which both 
segments have an H (helical prediction) in common; maxov is the number of residues for which either of 
the two has an H. δ is an integer variable chosen to be smaller than minov and smaller than one-half the 
length of s1; δ = 1, 2, or 3 for short, intermediate, and long segments. The ratio of minov/maxov is 
constrained to a maximum value of 1.0.  

Sov is defined such that two sequences with identical segments will have a Sov of 100%; in practice it 
can be as high as 90% for homologous sequences and is usually higher than single residue accuracy. Sov
weighs more heavily those aspects of secondary structure that are more important in tertiary structure 
and Rost et al. suggest that both it and single residue accuracy be reported as joint measures of 
prediction accuracy.  

Whatever the measure of accuracy used, it might be expected that when the same prediction method is 
assessed using the same evaluation method by different workers, the same accuracy would result. 
However, ". . . it can be stated unequivocally that the original claims of accuracy in the predictability of 
the various methods of the secondary structure of proteins have not been found to be maintained in the 
laboratories of others." (Fasman, 1989b).  

All the above accuracy discussions assume a predictive method is being used as its developers intended. 
While the Chou-Fasman secondary structure prediction method can be carried out manually, it and most 
other methods are usually implemented in computer programs. Unfortunately, when these 
implementations have been checked in the case of the GOR method, a high percentage of commonly-
used commercial and non-commercial algorithms are invalid (Ellis & Milius, 1994). Testing 
implementations of any method is strongly recommended. 
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General Empiric Methods 
Empiric methods for protein structure prediction are based on experimental data. This can be statistical 
information on the sequences themselves, or include data on, for example, hydrophobicity of individual 
amino acid residues, but, since the goal is structure prediction from primary structure alone, no 
information based on measurements made on the protein itself. These methods are primarily statistical in 
nature, but also include neural networks. Most are used to predict secondary structure. Examples of 
tertiary structure prediction are discussed separately.  

Statistical  

The accumulation of known protein structures enables researchers to collect statistical information on 
the probabilities of various amino acids being in certain structural states within a protein. One can use 
these statistical probabilities to develop empirical rules for secondary structure predictions. The quality 
of a particular method depends both on the size and the quality of the database from which statistical 
information is obtained, and the way the statistical probabilities are used to develop the rules.  

Over the years, several empirical statistical methods for secondary protein structure predictions have 
been developed. Some were designed to predict general secondary structures in all conformation states 
(helix, strand, turn, or random coil). Others focus only on predictions of selected states. Those 
techniques discussed here are based either on databases of all globular proteins, or are limited to no less 
than a protein structural class. Empiric statistical tecniques more appropriate to single protein families 
are described under Homology Modeling.  

Among the most widely used methods for predicting general secondary structures are those of Chou-
Fasman (1974a, 1974b) and Garnier et al., 1978; Garnier and Robson (1989). In the Chou - Fasman 
(CF) method, the conformational parameter of the amino acid i for the conformation state X (X= helix, 
strand, turn, and coil) from a database of a total number of N amino acids is defined as 

 (7)  

where ni,X is the number of observed amino acid i in the conformation state X, ni is the total number of 
amino acid i, and nX is the total number of amino acids in conformation state X. The amino acids are 
placed in order by the value of the conformational parameters for a conformation state and placed into 
various classes (helix former, helix breaker; strand former, strand breaker; etc.). In order to predict the 
nucleation, propagation and termination of helices and beta strands, as well as the presence of turns, a 
set of heuristic rules are included as follows: 

For α helix:  

(i) Helix nucleation occurs when four helix formers are found out of six residues in the sequence;  

(ii) The helix continues in both directions until four helical breakers are encountered;  

(iii) There are special rules for proline;  

(iv) The segment is considered a helix when the average probability for helix P(α) is greater than 1.03 
and P(α) > P(β), where P(β) is the average probability for β strand. 
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For β strand:  

(i) A β strand is formed if 3 beta formers are found out of 5 residues;  

(ii) The strand continues in both directions until 4 beta breakers are encountered;  

(iii) The segment is a strand if P(β) > 1.05 and P(β) > P(α).  

While the simplicity of the CF method makes it possible to do predictions by hand, it is usually 
computerized; for example, Ralph et al. (1987), and Prevelige & Fasman (1989). The CF algorithm not 
only can locate secondary structural regions but also will detect regions with the potential for 
conformational changes. A wide range of prediction accuracies (58% - 86%) have been reported. In 
general, prediction accuracy is better for a protein with a single type of secondary structure (all helix or 
all strand) than for a mixed type protein. Helices were found to be better predicted than strands and 
turns.  

The GOR method uses information theory to predict secondary structures (Garnier et al., 1978). For the 
conformational state Sj of the jth residue in a sequence, the general form of information is defined by 

. (8)  

Equation. 8 contains the information from the first to the last residue on the jth residue. If I>Sj has n 
possible states, then there are n values of information associated with each state and the highest value 
defines the predicted conformational state. Although Equation 8 includes every residues in the sequence, 
it was found that the effect on the jth residue is dominated by the information of residues up to eight 
residues distant. Therefore, Equation 8 can be approximated by 

 (9)  

where I(Sj,Rj+m) represents the conformational information that the (j+m)th residue carries about the jth 
residue.  

Four conformational states were defined in the first version of GOR method (GOR I): α-helix, β-sheet, 
reverse-turn, and coil. Parameters I(Sj,Rj+m) were obtained from the directional information plots of 25 
proteins of known structures. For optimizing the accuracy of predictions, two more adjustable 
parameters, decision constant and run constant, were also introduced for each conformational state. An 
overall accuracy of about 60% residues correctly predicted was achieved. The apparent upper limit of 
accuracy in predicting secondary structures was attributed to the tertiary interactions between residues 
far apart in the sequence. This reasoning led to the recommendation that homologous proteins should be 
included whenever they are available.  

Gibrat et al. (1987) updated GOR methodology to include a new data table, but limited to three, rather 
than four, secondary structure conformations, based on the directional information values from 75 
proteins. Garnier and Robson (1989) expanded the Gibrat et al. (1987) tables to the same four state 
model used in GOR I. This 1989 update is called GOR II. The information-theory equations and 
algorithms are the same in GOR I and GOR II; they differ only in their data tables.  
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The combination of the single-residue information and the pair information about jth residue by a 
residue of type Rj+m at position j+m given that a type Rj is at position j gives  

. (10)  

Equation 10 is referred to as the GOR III equation. Theoretically, GOR III should be more accurate than 
GOR I or GOR II because more detailed information is used. However a comparison of the accuracies of 
all three GOR methods (Garnier and Robson, 1989) showed that little if any improvement could be 
achieved by using GOR III method for four-state predictions. In the remainder of this chapter, GOR is 
used to refer to the GOR II method, unless otherwise specified.  

Zhang et al. (1992) developed yet another statistical approach, similar to GOR in that it is a pairwise 
methodology, but includes information on all Cn

2 possible pairs in a window of size n, not (n-1) pairs as 
does GOR. This method is not evaluated alone, but is one of three "experts" that form a hybrid system. 
The other two parts are a memory- (case-) based reasoning system and a neural network. The entire 
hybrid system is discussed under Neural Networks.  

Other techniques or modifications of the previous techniques are useful for predicting specific 
structures. The helical wheel method of Schiffer and Edmunson (1967) uses hydrophobicity of residues 
to detect the presence of amphipathic α-helix structure. Presumed helical residues are arranged in a 
circle or wheel, each residue located 100 degrees from its predecessor (the angular distance separating 
adjacent side chains in an α-helix). Wheels of amphipathic helices would show a region with a 
preponderance of hydrophobes. Cornette et al., (1987) expanded on this to use hydrophobicity values. 
Thirty-eight published hydrophobicity scales were compared for their ability to detect the characteristic 
period of α-helices and an optimum scale was developed using a new eigenvector method. Both discrete 
Fourier transform and least-squares power spectrum methods were used to find the dominant frequency 
of helical wheel intervals. The latter method was found to be more reliable.  

Garret et al. (1991) modified GOR parameters to predict substates of β-residues. β-residues can be 
divided into two substates, internal and external, based on their distinct hydrogen bonding patterns. 
Internal residues are shared by two β-ladders (β-strands) while external residues belong to a maximum 
of one β-ladder. Two sets of GOR prediction parameters for both external and internal β-substates were 
developed. The overall quality of predictions is not significantly improved by the new parameters. 
However, the distinction between these two substates of β-residues may provide limited tertiary 
structural information.  

The empiric, statistical methods mentioned so far in this section have made predictions based on 
statistics from all available (or general representative) globular proteins. As mentioned earlier, 
predictions based on a single protein family use different techniques and are discussed later, under 
Homology Modeling. There are two types of intermediate methods which will be discussed here. The 
first type includes predictions based on a protein's structural class. Structural-class-specific variants of 
the Chou-Fasman prediction tables with improved accuracy have been reported (Chou, 1989).  

The technique of pattern matching is generally a "homology", rather than an "empiric statistical" 
method. Most examples of this are discussed under Homology Modeling, but the results for two which 
predict general structures in proteins of a single structural class are discussed here. Cohen and coworkers 
(1986, 1991) developed a hierarchical pattern search algorithm for locating turns in proteins of three 
structural classes (all-α, α/β, and all-β). The hierarchical order is defined by the classification of four 
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individual patterns based on the following physical principles: local maxima in hydrophilicity; 
secondary structure identification and avoidance; regions containing proline; and weakly hydrophobic 
segments distant from well-defined turns. A 95% accuracy was achieved on a test set of proteins of 
known structure.  

The same hierarchical pattern search approach was subsequently expanded and improved (Presnell et 
al., 1992) to predict α-helices by dividing regular secondary structures into components and by the 
inclusion of a new procedure for the analysis of metapatterns. Regular helical patterns are divided into 
three components: the amino terminus, the core, and the carboxy terminus. The algorithm achieves a 
high recognition score for helix core, 95% with 10% overprediction, but appears less reliable for 
predicting N- and C- terminal caps, 50% with 25% overprediction. Overall, an accuracy of 71% was 
reported on 20 all-α protein sequences, compared to 65% using the CF algorithm, 71% from the GOR 
algorithm, and 78% using the neural network of Kneller et al. (1990). This last system, and its 
combination with the turn-prediction pattern-matching approach, is discussed under Neural Networks.  

The second type of intermediate method determines the most similar, though not homologous, protein 
structures to use for secondary structure prediction, and is called the case-based method.  

Leng et al. (1994) has developed a "case-based" secondary structure prediction method which 
automatically finds 55 of the most similar proteins from a structure database. "Similarity" is based on 
amino acid composition or sequence, but is not as close a relationship as is used in homology 
techniques. Then each sequence with known structure is decomposed into segments of 22 residues in 
length, and the segments are compared to corresponding segments in the unknown sequence, 
correspondance measured by a different similarity score. "Each segment of a reference protein will 
assign its structure to a segment of the unknown with a weight equal to the product of its similarity value 
and the similarity weight of the protein it comes from . . . . For each amino acid in the unknown, weights 
are accumulated for three classes of structures, α-helix, β-strand, and coil." The intermediate prediction 
for each amino acid is the class with the highest weight. A final step uses rules to fill in gaps in helices 
and strands and to change isolated predictions of helix or strand to coil. With a 22-residue window, this 
method looks at a longer segment than most. When the window was shortened, predictive accuracy 
decreased. Predictive accuracy of this method is in the 70% range, which puts it in the high end for 
secondary structure prediction in non-homologous proteins.  
 
 
Neural Networks  

A computer-based neural network is a computer program that can, wth training, detect correlations in 
data and learn to recognize patterns. In principle, neural networks can detect second- or higher-order 
correlations in data; therefore, they can be more powerful than methods based on standard first-order 
statistical treatments. In this section, we shall briefly describe how a neural network works and how one 
can be used to predict protein structure. 
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Figure 1. Typical neural network architecture. 

A typical neural network contains an input layer of units which receives input signals, an output layer of 
units which outputs structure predictions, and zero, one, or more hidden layers in between the input and 
output layers. A network without hidden layer is called a perceptron, and can only detect first-order 
correlations between input signals and output responses. Networks with hidden layers can extract 
higher-order features. The units of the network are connected to one another with a real number as a 
weight. These weights determine the behavior of the neural network. A neural network is trained to 
recognize patterns by changing the weights between various units. When using a neural network to 
predict protein structure based on primary sequence, several decisions have to be made: (i) the method 
of encoding a sequence; (ii) the number of input units; (iii) the number of hidden layers; and (iv) the 
choice of learning algorithm ( Hirst and Sternberg, 1992). The typical learning procedure used in protein 
secondary structure predictions is the back-propagation of errors algorithm. It maps input to output 
by adjusting the connecting weights to minimize the difference between the computed and the desired 
output unit values.  

An early work using a neural network for predicting the secondary structure of globular proteins ( Qian 
and Sejnowski, 1988) used a segment of protein structure of fixed size as input. The length of the 
segment is called the input window size. A sequence of 21 binary numbers are used to encode each 
amino acid residue, 20 for identifying the amino acid (19 zeros and a single 1) and 1 for regions between 
proteins. For an input window of N amino acids, the input layer of the neural network needs at least N 
group of units with 21 units in each group. The output layer of the neural network consists of 3 units 
corresponding to 3 types of secondary structures: α-helix, β-sheet, and coil. The network maps the input 
sequence of amino acids and outputs the state of the middle residue in the sequence. The input window 
moves through the protein, while the network predicts the secondary structure of one amino acid at a 
time.  

A database containing 106 proteins was used in the study. A subset of these proteins was used for 
training the network and the remaining proteins were used for the testing. Since the results were highly 
sensitive to homologies between proteins in the training and testing set, care was taken in the selection 
of proteins so that no homologies were present in the training set.  

Predictions using various input window sizes show a maximum success rate at around 13. Reduced 
performance at smaller window sizes probably results from lack of information on residues outside of 
the window. The performance deterioration associated with larger window sizes was attributed to the 
interference from irrelevant input groups (residues).
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Networks with various numbers of hidden units (0 - 60 in one hidden layer) were trained and tested in 
the study. The results show that the testing success rate was almost independent of the number of hidden 
units, suggesting that only first order features were present in both the training and the testing protein 
sets. However, the learning rates of the training set became slower as the number of hidden units 
decreased.  

Improved performance on predicting α-helix and coil regions (but not β-sheet regions) was achieved 
when cascaded networks were used. The input to the second network was sequences of outputs from the 
first network, 13 groups of units with 3 units per group. Each group contains the secondary structure 
assignment derived from the first network. The improvement of performance was attributed to the fact 
that the second network joins short fragments of secondary structure and eliminates isolated assignments 
from the predictions of the first network.  

The prediction accuracy on the testing set was found to increase with the increasing size of the training 
set as a result of better generalization. However, the success rate approaches to a limiting value beyond 
certain size of training set. This implies that adding more protein structures to the training set will not 
result in significant improvement for non-homologous proteins. A number of modifications to the basic 
network did not lead to performance improvements. These included modifying the input by 
incorporating biophysical properties (such as charge, size, hydrophobicities, etc.) of the amino acids. 
More detailed secondary structure classification (three types of helices, two types of β−structures, two 
types of turns, and coil) also failed to increase the accuracy of predictions. Finally, various modifications 
to the network architecture were carried out with little or no performance improvement (Qian and 
Sejnowski, 1988).  

Qian and Sejnowski (1988)compared their prediction results to those from early versions of statistical 
methods including those of Chou-Fasman, GOR and Lim using a non-homologous testing set of 
proteins. The Q3 value of the neural network was found to be about 10% better than those from the three 
statistical methods. The Mathews correlation coefficients of the neural network are also better (>30%) 
than those of the statistical methods. However, it should be pointed out that improvements on the 
statistical methods have been made since 1988. The current level of performance of these methods are 
comparable to that of Qian and Sejnowski's neural network.  

Neural network methods have also improved and a more recent comparison between them and statistical 
methods for structure prediction is of interest. The task chosen was identifying ATP-binding motifs 
(Hirst and Sternberg, 1991). The feed-forward neural network had two layers, the input window size was 
17 residues with 20 units for each residue, and the output layer was a single unit to predict whether the 
sequence would bind ATP or not. The statistical method used in the comparison was a motif-searching 
program which measures the similarity between two sequences by defining a pattern using a set of 
aligned sequences and computing the score between the test sequence and each of the pattern-defining 
sequences. The average score from the summation over all the sequenes reflects the degree of homology 
between the test sequence and the set of pattern-defining sequences.  

For the comparison, 193 ATP-binding proteins and 156 ATP-non-binding proteins were chosen from the 
SWISSPROT database. For testing the neural network, one sequence was removed out of the 349 
sequences, and the network was trained on the remaining 348 sequences. Prediction was performed on 
the removed sequence. The procedure was repeated for each sequence so that the network was tested on 
all sequences. For the statistical method, one of the 193 ATP-binding proteins was removed for testing, 
and a binding pattern was defined using the remaining 192 sequences. Prediction was then carried out on 
the removed protein, and the procedure was repeated for each of the ATP-binding proteins. In the case 
of ATP-non-binding proteins, an ATP-binding pattern was defined on all 193 ATP-binding proteins and 
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then a score was calculated for each of the 156 ATP-non-binding sequences. The methods were 
essentially identically accurate; the neural network correctly predicted 78% of the 349 sequences, 
whereas 80% of these sequences were correctly classified by the statistical method (Hirst and Sternberg, 
1991).  

Returning to predicting general secondary structure, Rost and Sanders (1993a) developed a three-level 
percepton (neural network with no hidden layer) which uses multiple sequence alignments as input 
instead of single sequences with a window size of 13 consecutive residues. This inclusion of protein 
family information increases the prediction accuracy by 6-8 percentage points. A combination of three 
levels of networks results in a three-state accuracy of 70.8% for globular proteins. Another 
methodology, inductive logic-based machine learning, differs from either statistical or neural network 
methods, yet is empirically based. Muggleton et al. (1992) used such a system trained on 12 all-α 
proteins to predict residues in helical structures for four all-α proteins not in the training set. The 
predictions had an accuracy of 81%, compared to 72% using GOR. One of the 12 sequences was 
mistakenly included though it had 44% sequence identity to another. However removal of one of these 
two homologous proteins did not reduce the accuracy of the predictions for all the four all-α proteins 
(Muggleton et al., 1993).  

Rost and Sander (1993b) studied the same four sequences using two neural networks. One network was 
trained on two states (helix, non-helix) using Muggleton and co-worker's training set; the other one, a 
general secondary structure prediction network (Rost and Sander, 1993a), was trained on three states 
(helix, strand, loop), using 130 proteins of all structural classes, and then evaluated on two states. An 
overall two-state single residue accuracy of over 80% was obtained by either network, and the authors 
concluded "there is no practical advantage in training on two states, especially given the added margin 
of error in identifying the structural class of a protein."  

Holley and Karplus (1989) also explored the application of neural network for protein secondary 
structure prediction. Their network consists of an input layer of 17 units (residues), compared to a 13 
residue window used by Qian & Sejnowski (1988), a hidden layer of 2 units, and an output layer of 2 
units - one for helix and the other for sheet. A back-propagation learning algorithm was used in training 
of the network. 62 proteins were used in the study with the first 48 proteins for training and the 
remaining 14 for testing. An overall predictive accuracy of 63% for 3 states (helix, sheet, and coil) was 
achieved. This accuracy is about 10% higher than those of the statistical methods of the time. Similar to 
the findings of Qian & Sejnowski (1988), no accuracy loss was noted when the hidden layer was 
removed, implying that only first order correlations were extracted.  

Attempts were made to improve the results by adding periodic sequence information to the neural 
network and by subdividing proteins into all-α, all-β, α/β and "other" classes (Kneller et al.,1990). 
Based on the fact that α-helices often have a hydrophobic and a hydrophilic side, additional inputs 
representing the hydrophobic moments defined by Eisenberg et al. (1982) were introduced to the 
network, resulting in limited prediction accuracy improvement. On the other hand, the inclusion of a 
special unit that looks for complementary charge pairs between residues i and i+4 (a common feature of 
helices) failed to show any improvement. The authors also subdivided their database of 105 proteins into 
four structural classes: all-α (22), all-β (24), α/β (20), and "other" (39). (Methods to predict structural 
class are discussed later.) Training and testing were performed on each individual class of proteins. 
Compared to the results of Qian and Sejnowski, enhanced accuracies were obtained for all-α and all-β 
classes, while no improvement was noted for the α/β class. The all-α protein class also showed a strong 
correlation between prediction accuracy and sequence identity. No such correlation was found for the 
all-β class.  
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This work continued, and was combined with the pattern matching approach of Cohen et al. (1986, 
1991) described earlier, in the development of MacMatch (Presnell et al., 1993), a package for 
secondary structure prediction. Turns are predicted by pattern matching, with three different patterns for 
all-α, all-β and α/β structural classes. If structural class is unknown, the α/β class may be used as 
default, or it can be predicted from amino acid content as discussed later in this section. Tested and 
trained neural networks, which use either general or structural-class-specific weights, predict helix and 
strand. The authors report neural network predictive accuracies of 79, 71, and 64% for all-α, all-β and 
α/β proteins of known structure.  

As mentioned earlier, a second combined predictive methodology was developed by Zhang et al. (1992). 
Instead of usig discrete, separate methods for different aspects of structure, this is a hybrid system, with 
three structures prediction "experts," statistical, memory-based, and neural network. The results of each 
expert are examined by a combiner to make the final prediction. All three methods used a window size 
of 13 residues to predict the structure of the center residue. The statistical method has been described 
earlier. The memory-based method is similar to the case-based method of Leng et al. (1994) described 
above, except that cases are segments only, 22 most similar sequences were used instead of 55, and a 
different similarity matrix is used.  

The neural network is a back-propagation network with one hidden layer with only two units. The 
combiner is also a one-hidden-layer neural network, with 30 units in the hidden layer, and is trained; that 
is, it learns the best way to combine results. The three-state accuracy of the hybrid system is 66.4%, 
better than the C-F, GORIII, Qian and Sejnowski (1988), and Holly and Karplus (1989) methods 
described earlier. The fact that 20% of the time all three systems produced the same, wrong, prediction, 
suggests an upper bound on the accuracy of empirical methods at the present time (Zhang et al., 1992).  

The inclusion of tertiary interaction information to the input of the neural network could, in principle, 
increase the secondary structure prediction accuracy. Vieth and Kolinski (1991) added the information 
of contacts between the central residue of the 13-residue input window and other residues in the 
sequence to the input layer of a network similar to that of Qian and Sejnowski (1988). In addition, three 
filtration procedures were developed to deal with the problem that the network result for the entire 
protein often contains unphysical sequences of structure assignments: (i) terminal residues (C- and N-
terminus) are given coil assignments; (ii) structures of the type HXH or HHXHH are replaced by HHH 
or HHHHH, where H represents a helical assignment and X is for coil or β-strand; and (iii) separated α 
or β assignments of one or two residues in length are replaced by coil ones. A set of 39 proteins from 
Brookhaven Protein Data Bank were used: 31 of them for training the neural nets and 8 for testing. The 
combination of the inclusion of tertiary interactions and the filtration rules was found to increase the 
prediction accuracy by 3-5% compared to a network without these treatments; however, adding tertiary 
interactions means this is not prediction based on primary structure alone.  

Vieth and co-workers (1992) continued by explorig the advantages of cascade network and filtration 
rules. They developed a complex network containing four cascaded networks with two simple networks 
per cascaded one and three sets of filtration rules. The first cascaded network was used for assigning the 
structural class of the protein (α, β, or α/β). The other three cascaded networks were trained individually 
for three specific classes. Once the structure class of the protein was determined, the sequence was sent 
to one of the specific cascaded networks, followed by a filtration for final structure assignment. When 
only two hidden units were used in each simple network, it was found that the complex network 
increased the prediction accuracy by 2-4% compared to a simple network. However, little improvement 
was obtained when the number of hidden units increased to 40. 

Tertiary Structure  
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The previous empirical statistical and neural network methods predict secondary structure. A more 
ambitious goal is to use similar techniques to predict tertiary structure. A step toward complete tertiary 
structure prediction is the prediction of a protein's structural class. Structural class is usually defined as 
one of four different groups of protein folds, based on the predominant secondary structure: all-α, all-β, 
α/β (α alternating with β), and α + β (one or more all-α and all-β domains or regions). For completness, 
a fifth small/irregular class is sometimes included in the classification, though not included in predictive 
methods.  

While circular dichroism and other techniques can predict structural content and class when measurable 
quantities of protein exist, it is more difficult to do so when only a protein sequence is available. Cohen 
et al. (1993) suggest the use of amino acid composition to predict structural class in those cases. Chou 
(1989) developed an algorithm that can assign the correct structural class to a protein based on its amino 
acid composition with 80% accuracy. In this method, the average mole percent amino acid composition 
of representative proteins is four structural classes (all-α, all-β, α/β, and α + β) is calculated as shown in 
Table I. The amino acid composition of the unknown protein sequence is compared to each column of 
the table, the absolute values of the differences found for each amino acid type are summed, and the 
protein is assigned to the structural class to which it has the least total compositional difference. 
[Table I]  

Zhang & Chou (1992) expanded on Chou's method to achieve 83% accuracy. Metfessel et al. (1993) 
compared two different neural networks and a statistical approach for predicting structural class based 
on amino acid composition and hydrophobic residue pattern frequency. They similarly obtained a 
predictive accuracy of about 80%, and the differences between the three different methods were not 
statistically significant. As mentioned above, Vieth et al. (1992) used a cascaded neural network to 
predict structural class (α, β, or α/β), with 79% accuracy, as part of their secondary structure prediction 
method. Muskal & Kim (1992) have developed a neural network which predicts secondary structure 
content (and thus can partition proteins into all-α, all-β, and mixed α+β and α/β classes), given a 
protein's amino acid composition, molecular weight and the presence or absence of heme, with greater 
than 90% accuracy. However, heme content is not known from primary sequence.  

Wilcox et al. (1990) and Xin et al. (1993) predict complete tertiary structure using a back-propagation 
neural network on a supercomputer. They began by using a small training set of 15 proteins, which was 
later extended to 20 proteis, each with less than 133 residues. Their network had one hidden layer. 
About twice as many hidden units as training items are required for optimum convergence. They use the 
entire hydrophobicity-coded sequence as input and produce a distance matrix as output. The trained 
network can predict reasonable structures (average RMS residual error ca. 0.05) for novel proteins as 
long as there are at least two respresentatives of that protein's family in the training set.  
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C. Homology Modeling  
Definitions  

The terms "homology" and "homology modeling" can have varying definitions. Some would restrict the 
phrase "homologous proteins" to only those sequences that share a common ancestor (Doolittle, 1987). 
Since it is difficult to prove or disprove ancestry for proteins which have less than about 30% residue 
identity, one alternative, the one used here, more broadly defines the phrase to refer instead to structural 
similarity.  

The phrase "homology modeling", defined most strictly, means predicting the tertiary structure of an 
unknown based on the known coordinates of a protein to which it is homologous (has a high degree of 
sequence identity/similarity). Here again we will use a broader definition to include, in addition, 
predictions of secondary structure carried out in a similar fashion, the development of consensus 
patterns, and other predictive methods developed for a single protein family.  

A more important concept to define is "similarity." That is, how much similarity to a known sequence 
do you need, in how long a sequential run of residues, to accurately predict structure? To gain insight 
into the first question, Hilber et al. (1993) studied pairwise superpositions of a large number of known 
structures from different conformational and functional classes with various degrees of homology, and 
suggested the following relationship between sequence homology and structural differences:  

(i) The size of the common core region decreases with decreasing sequence identity. Pairs with identity 
greater than 50% have over 90% of their residues in structurally conserved regions. If sequence identity 
drops below 20%, the common cores contain about 65% of the amino acids.  

(ii) The overall r.m.s. difference of corresponding α-carbon atoms increases as the sequence identity 
decreases, ranging from 0.32Å for identity near 100% to 3.66Å for about 20% identity.  

(iii) Structurally divergent regions (loops, turns) with more than 50% sequence identity have similar 
conformational structures. Greater structural deviations may occur for homologous loop regions with 
lower degrees of sequence identity.  

(iv) Decreasing sequence identity correlates with increasing numbers of insertions and deletions. A 
maximum of 16 was observed for a case with about 20% identity. On the other hand, virtually no 
insertions are needed when the identity is beyond 60%.  

Although there are exception to these general relations between sequence homology and structural 
differences, the above observations provide some tools for the assessment of accuracy at a given level of 
sequence homology.  

How large a run of similar or identical residues can be used to imply structural similarity? Kabsch & 
Sander (1984) demonstrated that even exact sequence identity, in small enough segments, gives no 
indication of structure, by providing examples of sequentially identical pentapeptides that adopted 
different structures in different proteins. Wilson et al. (1985) extended this to hexapeptides. However 
Cohen et al. (1993) reexamined hexapeptides and found that, within a protein structural class (all α, all 
β, α/β, α+β), the structural similarity of sequentially identical hexapeptides usually is preserved.  

This last study encourages the development of structural-class-specific secondary and tertiary structure 
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prediction algorithms. Chou (1989) describes such structural-class variants of the Chou-Fasman 
secondary structure prediction tables and reports improvements in predictive accuracy if these are used 
where structural class is known, instead of the standard C-F tables based on all proteins.  

Consensus Patterns  

Closely related to predicting protein structure through runs of identical sequence is the use of patterns of 
consensus sequences. These are patterns of amino acid residues, optionally including alternative residues 
at selected positions, variable gaps in sequence, and predicted secondary structure.  

As an example, Boldt and co-workers (1995) recently reported a revised consensus pattern for extradiol 
dioxygenases:  

(G,T,R,N)X(H,A)X{7}(L,I,V,M,F)YXX(D,T,E,A,N)PX(G,P)X{2,3}E  

The first 11 residue positions of this 21- or 22-residue-long pattern can be read as: A glycine, threonine, 
arginine or asparagine residue followed by any residue followed by a histidine or alanine residue 
followed by any seven residues followed by a leucine, isoleucine, valine, methionine or phenylalanine 
residue. The "X{2,3}E" at the end of the pattern specifies that the terminal glutamate residue is 
preceded by two or three residues of any type.  

As mentioned in the Introduction, patterns of this type are evaluated by their sensitivity (measure of how 
frequently they occur in the proteins which are known to share the given structure or functionality), and 
specificity (measure of how frequently they do not occur in proteins which are known not to have the 
structure or functionality). The extradiol dioxygenase pattern has 100% sensitivity and specificity, 
occuring in all known members of a certain class of extradiol dioxygenase sequences and in no other 
sequences in the 67,423-member PIR40, or the 36,000-member Swiss-Prot 28, protein sequence 
databases. This pattern could be used to predict extradiol dioxygenase structure and activity if it were 
found in a protein for which only sequence was known. No tertiary structure is known at present for any 
member of the family. Thus, though the pattern does include several residues thought to be involved in 
metal binding, it is not certain what structural feature(s) it specifies (Boldt et al., 1995).  

While such consensus patterns can be developed from multisequence alignments, most are based on a 
structurally and/or functionally important part of a known tertiary structure, and are used to predict this 
structural element. The PROSITE database (Bairoch, 1993) is a compendium of consensus sequence 
patterns. Various search engines can accept a sequence as input and search PROSITE to discover if the 
sequence contains any of PROSITE's patterns.  

Most commercial computer-based protein sequence analysis packages include modules to search protein 
databases for primary sequence patterns as complex as the one for extradiol dioxygenases. Cohen and 
coworkers (1991) have developed a more elaborate pattern specification language, PLANS, which, as 
discussed under Empirical Statistical Methods, they have used to predict turns and alpha helices. 
PLANS can be used for the more specific patterns discussed here; Cohen and coworkers use of it is 
more general since the structures they predict are found in a structural class, not a specific protein 
family.  

As mentioned earlier, consensus patterns can optionally include predicted secondary structure. The 
Ariadne pattern specification language (Lathrop et al., 1987, 1993) is one that facilitates this. As an 
example, part of an Ariadne pattern for the thioredoxin redox motif is:
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(b-strand 
(* :gap-min -9 :gap-max -1 :gap-max-overrun 0) 
aliphatic 

This can be read as: "Search for residues that are predicted to be in β-strand secondary structure. When 
these are found, go to the end of the predicted strand and search for the second pattern element (an 
aliphatic residue). The gap required between the first and second element is -9 to -1. A gap size of zero 
would have the second element directly follow the first. A gap range of -9 to -1 states that the second 
element is found between the 9th to the first residue from the C-terminal end of the first element." The 
complete pattern was found in the ORF3 protein in the mer operon of Staph. aureus and this 
hypothetical protein was predicted to be structurally similar to thioredoxin (Ellis et al., 1992). 

Other Methods  

Later in this section we will see how multiple sequence alignment can improve secondary structure 
prediction, but the reverse is also true: secondary structure prediction can improve alignments. For 
example, gaps and insertions may be placed in regions that do not have a high probability of secondary 
structure. An extension to the Pattern-Induced Multiple Alignment (PIMA) program (Smith & Smith, 
1992) can employ secondary-structure-dependent gap penalties given the tertiary structure of one or 
more members of the same family. The use of secondary structure information can significantly improve 
the accuracy of aligning structure boundaries.  

If we do not use knowledge of sequence similarity, it is a truism that secondary structure prediction is no 
better for homologous than for inhomologous sequences. For example, if the Chou-Fasman and GOR 
prediction methods are used on four highly homologous ribonuclease structures, only three of the nine 
helices and strands are correctly predicted by both methods and in all sequences (Cohen and Cohen, 
1994). However, secondary and tertiary structure are better conserved than amino acid sequences in 
homologous proteins. One method to use known structure in structure prediction is to align homologous 
sequences, optionally make three-dimensional models, and predict the structure of the unknown 
sequences based on the known structures. The serial publication Protein Profiles, described in more 
detail under "Resources", includes in each issue multisequence alignments of a given protein family.  

In a good example of homology modeling in the strict sense, 17 thioredoxins and seven thioredoxin-like 
domains from protein disulfide isomerase and its homologs were aligned. Models of tertiary structure 
were constructed and secondary and tertiary structure was predicted based on one known tertiary 
structure (Eklund et al., 1991). With such close homologs, additional tertiary structures may not be 
necessary. The structure predictions made in this manner may be off by one or two residues at the start 
or end of an element of secondary structure, but the overall fold, or backbone tertiary structure, of each 
member of the family is expected to be very similar. However this method works less well as sequence 
similarity decreases. For example, Ellis et al. (1992) made secondary and tertiary structure predictions 
for several sequences, including the DsbA protein, based on sequence alignments and pattern matches 
with thioredoxin. Later, an x-ray crystal structure of DsbA indeed showed it to have structural similarity 
to thioredoxin. However, the prediction was incorrect in the C-terminal half due to a 80-residue insertion 
in the DsbA sequence not found in the alignment (Martin et al., 1993).  

In a second example, Boniface and Reichert (1990) predicted thioredoxin structure and functionality in 
follitropin and lutropin, though those hormones had little sequence identity to the thioredoxin family. A 
second prediction of Ellis et al. (1992) was that these two protines and other members of the 
glycoprotein hormone family do not contain structural analogs of the thioredoxin redox motif. This last 
prediction has recently been confirmed (Lapthorn et al., 1994; Wu et al., 1994).  
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Local homologies have been used in more elaborate ways to improve secondary structure predictions. 
The basic assumption once more is that similar peptide sequences have similar secondary structure 
tendencies. Zvelebil et al. (1987) used multisequence alignment of homologous proteins to predict 
secondary structures based on the GOR I method (Garnier et al., 1978). Using the observation that 
insertions and sequence variations tend to occur in loop regions, the algorithm first aligns a family of 
sequences and obtains a value of the extent of sequence conservation at each position. Then this value is 
used to modify the GOR prediction. Predictions performed on 11 proteins with a known secondary 
structure and more than four homologous sequences show an average improvement of 9% in accuracy 
over the GOR I method. Up to 4% improvement can be found by simply averaging the predictions at 
aligned positions (Zvelebil et al., 1987).  

A more detailed study using seven protein families and several multiple alignment programs showed 
that a mean increase of 6.8% in accuracy could be achieved when the minimum sequence identity 
between all the members in a group of homologous proteins is greater than 25% (Levin et al., 1993). 
The increase in prediction accuracy was attributed to the extended information provided by very 
distantly related sequences.  

As described under Neural Networks, Rost and Sander (1993a) also predict secondary structure using 
information from multisequence alignments rather than individual sequences. This was used as input to 
a neural network, and three-state accuracies of greater than 70% were achieved. Such accuracy is 
comparable to that of physical measurements such as circular dichroism specroscopy.  

Boscott et al. (1993) improved the secondary structure prediction step in homology modeling in a 
different manner. Each of four algorithms is used to predict the structure of a protein with known 
structure homologous to the unknown protein. Then the customized weighted average structure 
prediction (WASP) algorithm which best predicts the structure of the known homolog is used to predict 
the secondary structure of the unknown protein. They reported an improvement ranging between 3% to 
7% over the GOR method.  

Donnelly et al. (1994) looked specifically at helix prediction in homologous protein families using 
multisequence alignments, environment-dependent (but family-independent) substitution tables, Fourier 
transform methods, and helix capping rules. They tested the method on four protein families: 
homeodomain, indoleglycerol phosphate synthase, insulin, and cytochrome c. Averaging the results over 
all four families, they can correctly predict 79% of the residues in helices, compared to 69% using GOR, 
and only overpredict 12% of non-helical residues as helical, compared to 35% using GOR. The method 
reliabily predicts the correct number and approximate position of the helices. It also reliably predicts the 
internal face of each helix, thus can be used for predicting their tertiary arrangement. 

Applications  

With the wide range of techniques available to homology modelers, it is interesting to examine 
representative predictions, the methods used by each, and how successful were their predictions. Steven 
A. Benner and coworkers are among the most prolific of recent homology modelers. Protein families or 
domains they have studied include protein kinases (Benner & Gerloff, 1991), Src homology domain 3 
(Benner et al., 1993), nitrogenase MoFe proteins (Gerloff et al., 1993a), hemorrhagic metalloprotease 
family (Gerloff et al., 1993b), and the pleckstrin homology domain (Jenny & Benner, 1994b). They 
have also developed methods to predict interior and surface residues (Benner et al., 1994), which in turn 
have been used to predict interior and surface residues which in turn can be used for secondary structure 
prediction. For example, 3.6 residue periodicity in surface and interior assignments can predict a surface 
helix, and consecutive interior assignments can predict interior β-strands. Their technique can be 

Page 4 of 6alignments

5/14/2004http://www.biophysics.org/btol/seq_homology.html



summarized as (Benner, 1992): get 10 to 20 homologous sequences, some pairs of which have high (70-
80%), some moderate (40-50%), and some low (~30%) sequence identity. Align the sequence. Assign 
surface, interior, active-site and parsing (those that lie between secondary structure elements) residues. 
Assign secondary structure. Build models of tertiary structure.  

Since Benner and co-workers emphasize predicting unknown structures, confirmation of their 
predictions must wait on experimental verification. This was forthcoming for the protein kinase 
prediction (Benner and Gerloff, 1991), and ". . . Benner and Gerloff's prediction of the core secondary 
structure was much better than that achieved with standard methods." (Thorton et al., 1991). The Src 
homology domain 3 secondary structure prediction correctly predicted four of the five secondary 
structural elements for a "per segment" accuracy of 80% (Benner and Gerloff, 1993).  

A number of other groups have made homology-based predictions. A few representatives are briefly 
mentioned here, including such diverse protein families as: tryptophane synthetase (Crawford et al., 
1987); aminoacyl-tRNA synthetase (Jentoft et al., 1992); creatine kinase (Mühlebach et al., 1994); 
matrix metalloproteinase (Hodgkin et al., 1994); protein serine/threonine phosphatase (Barton et al., 
1994); and flavodoxin (Caldeira et al., 1994). The most recent of these predictions have yet to be 
verified.  

Crawford and co-workers (1987) used multisequence alignment, and CF, GOR, average hydropathy, and 
chain flexibility calculations to predict the secondary and tertiary structure of the α-subunit of 
tryptophan synthetase. It was predicted to have eight repreated β-loop-α-loop motifs, and an α/β barrel 
tertiary structure. The prediction agreed quite well with x-ray crystallography, with the sequences of all 
nine helices and all but β7 and β8 of the eight strands, sharing overlapping residues.  

Burbaum and co-workers (1990) reviewed work in predicting the structure of a subclass of the 
aminoacyl-tRNA synthetase family. The members of this subclass, which synthesize bacterial Arg-, 
Gln-, Glu-, Ile-, Leu-, Met-, Trp-, Tyr-, and Val-tRNAs, all contain a signature consensus sequence. In 
the two cases where complete or partial structures are known, the residues in the signature sequence are 
superimposable. They thus probably form the same three-dimensional structure and have the same 
function in most, if not all, of the members of this subclass. While known structure can often be used to 
predict important residues for a homologous sequence with unknown structure, they offer an example 
where the significant loss of activity in a mutation at Gly94 in Ile-tRNA synthetase (with no known 
structure) lead to a prediction of functional importance for the homologous Ala-50 residue in Met-tRNA 
synthetase (with known structure).  

Jentoft and co-workers (1992) tested the prediction that mammalian dihydrolipoamide dehydrogenases 
have structural similarity to the known structure of human glutathione reductase. Conservation of polar 
and non-polar groups in predicted secondary structural elements, conservation of active site residue 
functionality, and conservation of residues at the predicted dimeric interface all support this prediction. 
They next created a model tertiary structure for human dihydrolipoamide dehydrogenase based on 
human gluathione reductase, and used this to predict a highly polar, negatively charged active site for 
dihydrolipoamide dehydrogenases.  

Mühlebach and co-workers (1994) have made structural predictions for creatine kinase (CK) 
isoenzymes. They defined a structurally important "CK framework" consensus pattern of the most 
conserved sequence blocks or regions, and "diagnostic blocks" which serve as signature sequences for 
each CK isoenzyme subfamily. Only the first block of the CK framework is missing in the invertebrate 
guanidino kinase sequences, leading them to speculate that this block determines the guanidino substrate 
specifically.  
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Hodgkin and co-workers (1994) made successful structure prediction of the catalytic domain of matrix 
metalloproteinases, using the methods of Zvelebil et al. (1987) for conformational propensity, combined 
with other methods for surface probability and residue conservation or variation. Although their 
prediction was for an entire protein family, when it was applied to one structure that was later 
determined, all strands and helices, except one, were correctly predicted, and the predicted ends of 
secondary structural elements were off by no more than 3 residues, compared to the crystal structure of 
Lovejoy et al. (1994).  

Barton and co-workers (1994) used multisequence alignments to guide secondary structure predictions 
for serine/theronine-specific protein phosphatases, which lead to prediction of two domains, one with a 
β-sheet with flanking helices, and the other predominantly helical, and, coupled with similarity to 
Escherichia coli diadenosine tetraphosphatase, prediction of a phosphate-binding site at the N-terminus 
α-helix.  

Caldeira and co-workers (1994) modeled the Desulfovibrio desulfuricans flavodoxin on the highly 
similar (49% identity) D. salexigens structure. Since these two proteins are highly similar and can be 
aligned with no gaps or insertions, they kept backbone coordinates the same, changed side-chains where 
needed and used a four-step energy minimization technique (described under Molecular Modeling) to 
change bond angles and lengths to minimize the energy of the molecule. The x-ray crystal structure of 
this molecule is currently being determined.  

The examples should end on a cautionary note. Lustbader and co-workers (1993) predicted the tertiary 
structure of human chorionic gonadotropin using empirical and molecular modeling techniques 
including chemical studies on homologous members of its protein family (thus not based on primary 
sequence alone). These predictions proved to be incorrect; this class of glycopeptide hormones was 
found to have an intricate "cysteine-knot" fold (Lapthorn et al., 1994; Wu et al., 1994). This last 
example reminds us that tertiary structure prediction is still not an exact science at this time. However 
homology-based techniques have had greater success compared to other methods of structure prediction. 
This has been succinctly summarized by Rees (1990): "The answer to the question 'Structure from 
sequence?' is 'Not yet, unless you know what the structure looks like.'"  
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Molecular Modeling  
While the preceeding sections have focused on empirical protein structure prediction, using statistical or 
neural network or homology techniques, a more theoretical approach seeks to predict less empirically, 
from "first principles." The fundamental assumption is that the native structure of a protein corresponds 
to the conformation which has the lowest energy. Then tertiary structure of a protein can be predicted if 
the energy of the protein system can be calculated and the conformation associated with the lowest 
energy can be found. 

The energy of any molecule can, in principle, be calculated using quantum mechanics. In reality, the 
high cost of computation prohibits the application of quantum mechanics on all but the simplest 
macromolecules. Instead, approximations of potential energy functions have been extensively used in 
the calculations of protein conformation energy. The approximations used often limit their accuracy. 
Nor is discovering the lowest energy conformation without problem. The large number of degrees of 
freedom in protein systems makes an exhaustive conformation search impractical. For instance, it would 
take approximately 108 hours of supercomputer time to simulate the folding of a protein starting from 
an extended polypeptide chain in solution (Karplus and Petsko, 1990).  

In an attempt to partition the problem into smaller pieces, workers have examined important partial 
structures, and more simplified models of complete structures. Much effort has been devoted to the 
development of better potential energy functions for calculating the energy of the protein system, more 
efficient methods for searching for the lowest energy conformation, and simpler models of protein 
structure. In this section, we will briefly introduce the basic concepts and major techniques used for 
predicting tertiary protein structure based on the minimum energy assumption and survey current 
research in the area. 

Molecular Mechanics  

Molecular mechanics is a computational method designed to give accurate structures and energies of 
molecules. It treats molecules as collections of masses that are interacting with each other via harmonic 
(or more complicated) forces between bonded atoms and via van der Waals and electrostatic forces 
between non-bonded atoms. Mathematical functions of the atomic coordinates (called potential energy 
functions) are used to describe these interactions. Various parameters derived from experimental 
observations are included in the potential energy function, also known as the force field.  

Although the basic ideas behind molecular mechanics can be traced back to D.H. Andrews (1930), 
practical procedures using these basic ideas were first implemented in the 1970's. One of the most 
widely cited implement was introduced by Burkert and Allinger (1982). The basic idea of molecular 
mechanics is that simple molecules have "natural" bond lengths and bond angles. Any structural 
deviation from such "ideal" molecular geometry will result in an increase in potential energy. One of the 
fundamental assumptions of molecular mechanics is that the total potential energy of a molecule can be 
divided into several parts. A typical potential energy function form widely used for proteins is (Brooks 
et al., 1983): 

 

(12)  

where E(R) is a function of the coordinate set, R, of all the atoms in the system. The first term 
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corresponds to a Hooke's law description of bond stretching. The second term is a similar approximation 
to the energy of bond angle bending. The parameters kb and kθare force constants that determine the 
flexibility of the bonds, b0 and θ0 are natural bond length and bond angle, while b and θ are the actual 
bond length and bond angle. The third term accounts for the energy associated with torsional angle 
rotations. The last term represents the non-bonded interactions between two atoms separated by distance 
r. It has three parts: the first two are the Lennard-Jones 6-12 potential which includes both short-distance 
repulsive and long-distance attractive interactions, and the last one corresponds to the electrostatic 
energy where q1 and q2 are the charges on atoms 1 and 2. Parameters A and B depend on the atoms 
involved and ε is the dielectric constant of the medium.  

The preceding force field discussion is based on the assumption that a force field for macromolecular 
systems can be treated as a combination of force fields determined for many smaller molecular systems. 
Such force fields have been extensively used in the molecular modeling of macromolecutes during the 
last two decades. More recently, force fields contructed from known protein structures have gained 
increasing attention. Sippl (1993) describes the physical principles behind these so-called knowledge-
based mean fields and discusses applications of these fields.  

Two physical principles are used in the knowledge-based approach: (i) at equilibrium, the native state of 
a protein system has the global minimum free energy; (ii) the distribution of molecules among the 
microscopic states is governed by Boltzman's distribution law. Know tertiary protein structures are 
used to determine mean force energies of intramolecular amino acid pair interactions as a function of the 
distance between atoms. Protein-solvent interactions are calculated in a similar fashion. The predictive 
power of these knowledge-based mean force fields was tested using 157 proteins of known structure. 
They successfully indentified 94% (148) of the native conformations. Possible applications of the 
knowledge-based mean fields include the validation of experimentally determined protein structures, 
database searches for identifying native-like sequence structure pairs, sequence structure alignments, 
and conformation calculatios from amino acid sequences (Sippl, 1993). Other potential function have 
also been used. Examples of programs used for the modeling of biomolecular systems which incorporate 
various different force fields include: AMBER (Kollman, 1991), DISCOVER (see Resources), and 
Empirical Conformational Energy Program for Peptides (ECEPP) (Nemethy et al., 1992).  

Once a potential function is chosen, another factor to consider in a molecular mechanics simulation is 
how the minimum energy conformation is determined. The landscape of a potential energy surface as a 
function of the coordinates of all the atoms in a system has many peaks (local maxima) and valleys 
(local minima). Each valley corresponds to a stable or semistable state of the system. For a protein, the 
structure associated with a stable state is called a conformation. Therefore, conformations can be found 
by locating the local minima on a potential energy surface. The computational method that starts with a 
set of atomic coordinates of the system and finds a nearby potential energy local minimum is call 
energy minimization. Various energy minimization methods are available. The methods using the first-
derivatives of the potential energy function are usually less computationally intensive, while higher 
accuracy can often be achieved by using the methods involving both the first- and second-derivatives.  

As mentioned before, the fundamental idea of predicting the structure of a protein using molecular 
modeling relies on the assumption that the conformation with the lowest potential energy is the native 
conformation of the protein. Therefore, the task of finding the native structure of a protein becomes the 
search for the global potential energy minimum. Most energy minimization methods can search only in a
"downhill" direction and are unable to overcome energy barriers.  

Various conformational search algorithms have been developed to sample a large area of the 
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conformational space in order to locate the global minimum; for instance, Ferguson and Raber (1989) 
developed a random incremental pulse search algorithm. However, the number of minima increases 
dramatically as the size of the protein increases, making the identification of all minima on the potential 
energy surface an impossible task. Therefore, the scope of searches are often reduced by either imposing 
some form of constraint on the conformations generated or by biasing the search toward regions where 
the lowest energy conformation is more likely to be found. 

Molecular Dynamic and Monte Carlo Simulations  

Molecular dynamics is a computational method for simulating the motion of a system of many 
particles. It requires knowledge of the interaction potential from which the forces acting on each 
particles can be calculated, and the equations of motion that govern the dynamics of the particles. 
Molecular mechanics force fields are often used as the potential functions in molecular dynamics 
simulations. The force on atom i is calculated from the derivatives of the potential energy function with 
respect to the position of atom i (dE/dxi, dE/dyi, dE/dzi). Newton's equation, fi = miai, is used for finding 
the accelerations of each particles at each simulation step. More details of the methodology of molecular 
dynamics and its applications in biology may be found in van Gunsteren and Berendsen (1990); Karplus 
and Pesko (1990); and van Gunsteren et al. (1994).  

The total energy of a system is the sum of both potential energy and kinetic energy. The mean kinetic 
energy is related to the temperature T of the system by  

 (13)  

where N is the total number of atoms in the system, <vi
2> is the average velocity squared of the ith atom 

and kB is the Boltzmann constant.  

Equation 13 can be used to control the temperature of the system. Simulated annealing is a technique 
where the simulated protein system starts at a high temperature, and then is cooled down gradually. By 
heating the protein to a high temperature, the simulation enables it to overcome larger energy barriers 
and to sample more conformations of interest. Ideally, as the system is cooled towards 0oK, the protein 
is trapped in the global mininum energy conformation. If the force field used in the simulation has 
sufficient accuracy, this global minimum energy conformation should be close to the native structure of 
the protein. Metropolis and coworkers (1953) developed a Monte Carlo method for randomly 
searching the conformational space that simulates a molecular system by randomly changing its 
conformation. The energy of each new random conformation is compared to the energy of the previous 
one. If the new energy is lower, then the new structure becomes the current conformation. If the new 
energy is higher, then the value of the Boltzmann factor is compared to a random number between 0 
and 1. If the Boltzmann factor is greater than the random number, then the new structure becomes the 
current conformation.  

The advantage of a Monte Carlo method is that its randomness can overcome many energy barriers. On 
the other hand, for the same reason, simulations using Monte Carlo methods are usually slower to 
converge than those using molecular dynamics. Simulated annealing can be carried out in a Monte Carlo 
just as in a molecular dynamic simulation. 

Predicting homologous, loop and side chain conformation 
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As mentioned, limits of computational power at this time preclude complete modeling of the entire 
protein molecule. However, if the system is contrained in some fashion, parts of it may be more easily 
modeled. Three constrained models of interest are those for homologous structures, for loops, and for 
side-chains. The discussion that follows refers to the geometry of the peptide bond, as shown in Figure 
2. 

  

Figure 2 - A segment of polypeptide chain defining the backbone dihedral angles φ,ψ, and ω and a 
representative side-chain torsional angle χi .  

Homologous Structures. Combining primary sequence homology ad energy calculations including 
solvation, Schiffer et al. (1990) developed a "knowledge-based" method for predicting the structure of a 
protein from a known structure. Once a homologous protein with known structure is chosen for a 
sequence, the residues in the known structure are exchanged for the sequence of the unknown protein 
and a computational search is carried out on the exchanged residues using molecular mechanics energy 
minimization. The predicted structure is the lowest energy conformer. Protein-solvent interactions are 
included in the energy minimization using the solvent exposed surface area of each atom and a set of 
experimentally derived atomic solvation energy parameters. To test their method, the structure of rat 
trypsin was predicted from the crystal structure of bovine trypsin. The two primary sequences are 74% 
identical with a difference of 56 residues between the two proteins. Volume overlap integrals (see 
Introduction) were used to measure the accuracy of the prediction instead of the r.m.s. After exchanging 
all 56 residues, the predicted rat trypsin structure has an overall 22% volume overlap error with a 
standard deviation of 15%. Since all of the residues exchanged between the two sequences are external 
residues with are highly accessible to the solvent, the authors concluded that the inclusion of solvation is 
crucial to the energy calculation (Schiffer et al., 1990).  

As menioned under Homology Modeling, Caldeira and co-workers (1994) recently used molecular 
modeling techniques to model one flavodoxin on another with known structure to which it had 49% 
sequence identity. Since the two proteins could be aligned with no gaps or insertions, the backbone 
coordinates were kept the same, side-chains were altered where needed, and energy was minimized in a 
four-step procedure using AMBER. First, main-chain and active site atoms were constrained, and energy 
minimization was carried out ignoring electrostatic interactions. Second, the same constraints were used 
but electrostatics were included. Third, most of the constraints were removed, but atoms of isoalloxazine 
rings were kept rigid and coplanar, ignoring the electrostatics. Finally, do as in step three, but include 
the electrostatics.  

Loops. One of the more difficult tasks in predicting tertiary protein structure using homology modeling 
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is to predict the conformation of loop regions. Among members of a protein family, the hydrophobic 
core regions with a sequence identity of 30% or more tend to adopt a similar three-dimensional 
structure, while surface loops in these proteins often have little or no sequence or structural similarity to 
each other. Yet the knowledge of the correct conformation of these loops are important in both the 
structural stability and biological function of a protein. Thus predicting loop conformation, a special 
case of homologous structure prediction, is a separate, specialized area of molecular modeling research.  

Assuming that the two end points of a short chain are fixed and all peptide units are planar, Gõ and 
Scheraga (1970) developed a mathematical method for calculating the conformational energy of the 
local conformational deformations of polypeptide chain molecules. In order to reduce the cost of 
computation, only the backbone dihedral angles φ and ψ of each residues are treated as variables, 
keeping all bond lengths, bond angles and peptide bond dihedral angles ω fixed. The solution of the 
equations that generates a local deformation requires at least six degrees of freedom. Therefore, for a 
chain with n residues, 2n-6 dihedral angles (φ,ψ) must be specified in order to solve for the remaining 
six dihedral angles.  

A different approach to determine loop structure in the presence of a fixed core was developed by Ducek 
and Scheraga (1990) using global energy minimization. The energy calculations were carried out using 
the ECEPP potential energy function ( Sippl et al., 1984). The conformational search was confined near 
the known distributions of φ and ψ angles of each amino acid. In addition, an empirically parameterized 
function was introduced to represent hydration free energy to increase the efficiency of hydration free 
energy calculation.  

The global free energy minimization procedure includes the following steps:  

1. A seven-residue segment is deformed to generate a large collection of backbone structures.  
2. A local minimization procedure is applied to each of these structures.  
3. Side-chain minimization is performed to each low-energy backbone structure from step 2.  
4. Structures resulting from step 3 are locally minimized.  
5. The lowest energy structure is retained as the starting point for the next cycle.  

The procedure was tested using nine proteins with high-resolution tertiary structures: avian pancreatic 
polypeptide, crambin, trypsin inhibitor, erabutoxin B, immunoglobulin B-J fragment, ribonuclease A, 
lysozyme, papain D, and trysin. The results suggest that reasonably complete structure searches were 
achieved by the procedure ( Ducek and Scheraga, 1990). 

Palmer and Scheraga (1990) modified the original Gõ and Scheraga algorithm by fixing the bond 
lengths and bond angles at values derived from high-resolution X-ray crystallographic data for each of 
the 20 amino acid residues. The energy calculations were carried out using ECEPP potential energy 
function ( Sippl et al., 1984). Later Palmer and Scheraga (1992) refined this conformational search 
procedure for short regions of polypeptide chains. The procedure generates a series of local 
deformations in the polypeptide chain. After eliminating the structures having serious atomic overlaps or 
energetically unreasonable backbone dihedral angles, the remaining deformations are then refined by 
energy minimization. Finally, the r.m.s. deviations (relative to the native structures) of these energy-
minimized structures are calculated. The practical advandage of this so-called rigid-geometry 
approximation is that it allows a large number of conformations to be sampled.  

A series of five-residue chain segments were selected to test the search method. These segments include 
α-helices, β-sheets, β-turns, and irregular regions of the RNase A structure. In addition, the method was 
further tested using all the reverse turns in human lysozyme. In each test, a small number of candidates 
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including the sturcture close to the native are efficiently generated. A good correlation between low 
r.m.s. deviation and low energy was observed (Palmer and Scheraga, 1992).  

The Gõ and Scheraga algorithm was also adopted by Bruccoleri and Karplus (1987) in their procedure, 
CONGEN (CONformation GENerator), for sampling the conformational space of short polypeptide 
segments in proteins. Similar to Scheraga's rigid-geometry method, the main degrees of freedom for the 
conformational space in CONGEN are single bond torsions (φ,ψ) and the side-chain χi torsion angles. 
However, certain bond lengths and bond angles are allowed to vary in CONGEN while all bond lengths 
and bond angles are fixed in the rigid-geometry method. In order to further reduce the number of 
variables, the values of the three torsion angles are grouped together and the backbone conformational 
search is carried out by iterating over sets of energetically acceptable ω, φ, and ψvalues selected from 
Ramachandran-type plots. The conformational energy is calculated using the CHARMM potential 
energy function. Once a set of backbone conformations is generated, the side-chains of each backbone 
conformations is constructed by placing the side-chain atoms based on side-chain torsion angles, 
followed by energy minimization. Five molecules with known structures were chosen to test the 
CONGEN procedure: flavodoxin, plastocyanin, and the Fv part of immunoglobulins MC/PC 603, KOL 
and NEW. The procedure is capable of generating conformations where the lowest energy one matches 
the known structure within an r.m.s. deviation of 1 Å (Bruccoleri and Karplus, 1987).  

Another loop conformation search method developed by Levinthal and co-workers (Fine et al., 1986; 
Shenkin et al., 1987) starts with a conformation generated by setting all the backbone φ and ψ angles to 
random values. These angles are next altered in a iterative fashion constrained by the distances between 
four atoms: the N and Cα of the N-terminal residue and the Cα and carbonyl C of the C-terminal residue. 
After generating a large number of initial conformations, structures exhibiting bad atomic overlaps are 
screened out. Combined with energy minimization and molecular dynamics, the loop generating method 
was applied to several complementarity determining regions of the immunoglobulin MCPC603 
(Shenkin et al., 1986, 1987).  

The application of the Gõ and Sheraga (1970) algorithm requires a predetermined distance between the 
two ends of the loop and the conformational search is carried out with this distance fixed. Collura et al. 
(1993) developed a loop modeling method that starts with a competely extended loop conformation. The 
method combines Monte Carlo simulation with a simulated annealing algorithm. The structure of a loop 
is predicted from the ensemble average of the coordinates of the Monte Carlo simulation at 300o K. 
Loop closure is achieved by applying a harmonic distance constraint to the backbone atoms of the 
terminal residues. The method was tested with loop segments from immunoglobin, bovine pancreatic 
trypsin inhibitor, and bovine trypsin, and has an average 1 Å r.m.s. deviation for all heavy atoms. In 
addition, the predicted loop structures show good hydrogen bonding compared to observation (Collura 
et al., 1993).  

Fidelis et al. (1994) compared molecular modeling and database searching approaches for structure 
prediction, testing the methods on 11 loops representing typical homologous modeling problems, 
including seven loop regions in dihydrofolate reductase from Lactobacillus casei where this enzyme 
significantly differs in sequence from the otherwise homologous E. coli enzyme, a loop with an non-
proline cis peptide bond in β-lactamase from S. aureus. and three IGG hypervariable loops. Using a 
search methodology with a database of 57 unrelated protein structures, they conclude that the database 
search "results in large errors in the insert region, and is not effective for comparative modeling, even 
for short segments."  

The molecular modeling approach of Fidelis et al. (1994) builds segments of chain using a set of φ,ψ
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tortional angles (11 pairs for residues other than Pro or Gly, two for Pro, and 14 for Gly) together with 
rigid geometry for the peptide unit. The chain is extended out from the known "root" residues building 
approximately half the span from each root. All possible conformations of a residue are added to a root 
residue and that is continued with each added residue. At each stage, conformations that overlap severly 
(>1.5 Å) with the surrounding protein structure are rejected. After building half a span from each root, 
the N- and C-pairs that may be able to form complete segments are retained for further consideration. 
Each such pair is subjected to 400 steps of energy minimization including only covalent and van der 
Waals terms (no electrostatics) in the potential function. Root backbone atoms are constrained to be 
close to initial positions. Finally, segments where the linking peptide is more than 30o from planarity, 
and any duplicate structures, are removed. Using this systematic conformational search, all but one of 
the predicted loops has an all-atom r.m.s. deviation of <1 Å compared to the actual structure. Even if 
only the backbone is energetically minimized, and the side-chains are built on the backbone using a 
library of side-chain torsional angles, an all-atom r.m.s. deviation of <1.5 Å is found for all but one loop 
(Fidelis et al., 1994).  

Cα coordinates. A third constrained model of interest is predicting side-chain orientation given the 
backbone or Cα coordinates. This is an important and practically valuable step, since this information is 
sometimes available for proteins whose complete structures are unknown. Several workers have studied 
this problem.  

Correa (1990) first constructed a crude backbone by sequentially adding residues one at a time. Energy 
minimization was carried out after the placement of each additional residue until the entire backbone is 
built. All amino acids were treated as alanine except glycine and proline. The resulting backbone was 
then refined using molecular dynamics by heating the backbone to 1000o K for 100 ps, followed by a 6 
ps cooling molecular dynamics run to 0o K with steepest descent energy minimization. Next the side 
chains were built up sequentially by adding atoms one level at a time. With the β-carbons already in 
place, the first level of side chain atoms included γ-carbons, oxygens, and sulfurs. Once these atoms 
were added, a 30 ps molecular dynamics run at 800o K was performed while keeping the backbone 
fixed. The δ and ε atoms were then added in the same manner. Finally, the remaining atoms were added 
followed by a 30 ps molecular dynamics run at 1000o K. When the procedure was tested on α lytic 
protease, troponin C, and flavodoxin, backbone r.m.s. deviations of less than 0.5Å and overall r.m.s. 
deviations of less than 1.7Å were obtained (Correa, 1990).  

Holm and Sander (1991) studied the same problem from a different perspective, using the observations 
that the side-chain rotamers in known structures have a sharp statistical distribution ad the atoms in the 
protein interior are closely packed with no overlap. Given an amino acid sequence with a known Cα 
trace, the backbone structure is constructed by scanning a protein structure database of 34 high-
resolution proteins with a total of 4,759 residues to find candidate fragments that fit the chain trace 
according to distance criteria and then optimally select and join these fragments into a continuous chain 
using a dynamic algorithm to minimize the overlaps between successive fragments. Once the backbone 
is constructed, side-chain coordinates are generated in two steps: (i) generate sets of plausible side-chain 
coordinates using a rotamer library and calculate all rotamer-rotamer interaction energies, and (ii) 
minimize the intramolecular energy using a Monte Carlo algorithm with simulated annealing. The 
procedure was tested with 17 proteins of different sizes and crystallographic resolutions. For test 
proteins whose X-ray structure resolutions are better than 2.5 Å, the positions of side-chain atoms in the 
core regions have an accuracy of 1.6 Å r.m.s. deviation and 70% of χ1 angles are within 30o of the X-
ray structure (Holm and Sander, 1991).  
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Bassolino-Klimas and Bruccoleri (1992) developed an algorithm for generating the complete backbone 
from Cα coordinates using the CONGEN program and CHARMM potential energy function. When 
constructing the backbone from Cα coordinates, the r.m.s. deviation of partial conformations to the 
known Cα coordinates was used as a guide, so that the conformational search was directed to the areas 
of conformational space where the best fitting structure was more likely to be found. Six proteins of 
known structure of various sizes and classes were used to test the method. The three-dimensional 
backbone coordinates generated have r.m.s. deviations ranging from 0.30-0.87Å for the α-carbons and 
0.50-0.99Å for the rest of the backbone atoms. The method was then applied to two proteins, 
thioredoxin and triacylglycerol acylhydrolase, whose Cα coordinates were the only structural 
information available at the time. All-atom models were proposed for the backbones of these two 
proteins (Bassolino-Klimas and Bruccoleri, 1992).  

Yet another approach by van Gelder et al. (1994) starts with a crude backbone constructed by placing all 
intermediate backbone atoms (carbonyl C, amide N) at one-third and two-thirds of the distance between 
Cαi and Cαi+1. Carbonyl oxygen atoms and amide hydrogens are added at idealized bond distances 
with ω torsional angles of 180o. All C and N atoms are then randomly shifted to avoid undefined Cαi -
C-N- Cαi+1 backbone dihedral angles. Energy minimization is applied to the resulting backbone chain 
to relieve any strain in the initial backbone, fixing all Cα atoms to their X-ray coordinates. Next, side 
chain atoms are added in extended conformations. Energy minimization with a gradually increasing non-
bonded cutoff distance is performed on the resulting structure to overcome the difficulties caused by 
very short non-bonded interactions, followed by a long molecular dynamics run with harmonic 
constraints on the Cα positions at 800o K to ensure the gradual formation of hydrogen bonds. After the 
structure was cooled to 0o K, both constrained and unconstrained minimizations are performed until the 
structure converges. Two proteins, yeast enolase and the RNA binding domain of the A protein, were 
used to test the method. The constructed structures give backbone r.m.s. deviation values of 0.5-0.7Å 
and all-atom r.m.s. deviation values of 1.5-1.9Å (van Gelder et al., 1994).  

Lattice model and other reduced representations  

Another way to approach the problem is to simplify the model of protein structure. One of the most 
widely used simplified models is a lattice representation of globular proteins. In the lattice 
representation, the number of degrees of freedom of a protein is reduced by representing only the α-
carbons, positioning them on a fixed lattice, and replacing the side chains with entities having much 
smaller number of degrees of freedom. Further simplification is achieved by using mean force potentials 
to express the interactions between various parts of the protein and the solvent.  

The applicability and potential problems of lattice models were studied by Godzik et al. (1993), who 
also compared several lattices with increasing fidelity to native protein structure. Lattice models are 
supported by statistical observations of the local structure of the protein backbone: (i) the distance 
between two consecutive α-carbons has a sharp peak around 3.8 Å; and (ii) the angle between three 
consecutive α-carbons has a sharp peak at 90o. These two facts would favor a cubic lattice with side 
length 3.8 Å (Figure 3). However, (iii) the tetrahedral tortional angle between four α-carbons has a sharp 
peak around -130o and a broader peak around 20-50o, not the 90o found in a cubic lattice. Lattices other 
than cubic, and with side lengths shorter than 3.8 Å, are needed to model this feature.  
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Figure 3 - Schematic drawing of a cubic lattice unit with a segment of Cα polypeptide chain. 
 

Several potential problems exist for lattice models. First, the accuracy of secondary structure prediction 
depends heavily on the orientation of the principal axis of the lattice. Second, small errors in the model 
may accumulate quickly in some regions of the lattice and such errors are difficult to correct due to the 
inflexibility of the lattice. Third, structure fragments without regularity (i.e. turns) are often incorrectly 
reproduced. However, these problems can be eliminated if a lattice with sufficiently high fidelity is used 
( Godzik et al., 1993).  

Three large proteins representing three different structural classes and several smaller sequences were 
used to test a series of lattices: myoglobin (all-α), triose phosphate isomerase (α/β), and plastocyanin 
(all-β), E. coli repressor of primer (ROP) protein, fragments of bacteriochlorophyll A protein, 
myohemerythrin, and crambin. The quality of a model was measured by the r.m.s. deviation between the 
α-carbons in the model and those in the crystallographic structure. Cαr.m.s. deviations varied from 4.3 
to 0.7Å for the different proteins and lattices, with two lattices able to model all sequences to deviations 
of 1.0Å or less. By increasing the fidelity of the lattice for backbone construction, the lattice model can 
be made as close to the real protein as required ( Godzik et al., 1993).  

Using the α-carbon lattice model, a hierarchical method for simulating the protein folding and predicting 
the three-dimensional structure was developed (Kolinski and Skolnick, 1994a). Starting from the amino 
acid sequence, a coarse lattice model is first used to fold the protein of interest into several family of 
structures, depending on the topology and secondary structure predictions. Then the lowest energy 
member of each family are subject to refinement by a more precise lattice model. Subsequently, all-atom 
molecular dynamics folding with a detailed force field is applied to the resulting finer lattice 
conformations. The family with the lowest energy and smallest mean r.m.s. deviation between members 
is identified as the putative native structure.  

The mean field potentials are derived from a statistical analysis of a database of high resolution 
structures. The potential function contains at least two parts: one represents the short-range interactions 
and the other for the long-range interactions. The short-range part describes the angular correlation 
between amino acid pairs down the chain. The long-range multibody potential part reflects the regular 
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packing of the side groups. Monte Carlo dynamics is used in both coarser and finer lattice models. The 
dynamics of the model system is simulated by stochastically modifying the chain conformation. An 
energetic bias is introduced so that the system samples most frequently the valleys in an averaged 
Ramachandran map (Kolinski and Skolnick, 1994b).  

Using sequence information alone, the hierarchical method was applied to the prediction of the three-
dimensional structures of three proteins: the B domain of staphylococcal protein A, a monomeric 
version of the E. coli repressor of primer (ROP) dimer, and crambin. The predicted structures have 
native-like secondary structures and side chain packing. The r.m.s. deviation from the native Cα 
coordinates varies from 2.25 Å for protein A to 3.65 Å for ROP (Kolinski and Skolnick, 1994b).  

Sun (1993) proposes a different reduced representation model for protein structure prediction using only 
primary sequence. In this model, each protein is reduced to its backbone atoms with bond lengths and 
valence angles fixed to their ideal values. Each side chain is approximated by a single virtual united 
atom. The backbone dihedral angles φ and ψ are the only coordinate variables. A statistical potential 
function is used to represent local and nonlocal interactions. Algorithms based on the mechanism of 
natural selection (Holland, 1975; Goldberg, 1989) are used for conformational searches. Tests of the 
model on several small proteins give native-like conformations. For the folding of melittin, a protein of 
26 residues, the predicted structures have an average r.m.s. deviation of 1.66Å compared to the native x-
ray crystal structure.  
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Conclusions 
As stated in the Introduction, our goal is prediction of tertiary structure from primary sequence. Many 
tools and methods presently available for protein structure prediction, but how close are we to that goal? 
First, some existing structures were, and are not presently, predictable in advance. For example, as 
mentioned earlier, we cannot yet predict the 74-residue insertion found in the thioredoxin domain of the 
DsbA protein (Martin et al., 1993), or the cysteine knot found in gonadotrophic hormones (Lapthorn et 
al., 1994; Wu et al., 1994). Second, our present techniques were developed on sets of smaller, globular 
proteins, and are much more difficult to interpret when applied to, for example, a 1,200 residue sequence 
with multiple domains. While the estimate of no more than 500-700 unique folding topologies (Blundell 
and Johnson, 1993) mentioned in the Introduction may be correct, a 1,200 residue protein will have 
several such folding units (four or more of from 100 to 300 residues each), and, unless homologies to 
known structures exist, we lack reliable methods to determine domain boundaries or predict domain 
packing. Caballero (1992) provides a good case study of structure prediction for large proteins, using as 
her example the 2,703-residue Notch protein from Drosophila melanogaster. Third, proteins sometimes 
do not spontaneously fold to a native conformation, but require the assistance of other proteins, such as 
protein disulfide isomerases or chaparonins. It is not clear that predictive methods based on 
spontaneously-folding proteins are applicable to these more complicated cases, and it is also presently 
impossible to determine from primary sequence alone when such complications may occur.  

At present, given an unknown primary sequence, our recommendations are: first, search for highly 
similar proteins in protein databases. If sequence identity of >30% is found, especially if there is also 
similarity in size, cellular localization, etc., similar structure is likely. If similarity is found to only a part 
of the unknown sequence, this may indicate a homologous domain in a multi-domain protein. If a 
tertiary structure is known for one or more members of this protein family, it can be expected that the 
new sequence will have a similar fold. Molecular modeling techniques, specifically those use for energy 
minimization and determining side chain and loop conformation, may be useful in detailed prediction of 
the tertiary structure of one member of the family based on a known structure. This recommendation is 
no different from that given by others in previous years (for example, Doolittle, 1987) but as sequence 
databases grow exponentially, with an approximate doubling time of 2 years, the chance of finding 
homologous proteins continues to increase as well.  

If homologous sequences for all or part of the unknown exist, but their tertiary structure is presently 
unknown, use the homology-based secondary structure prediction method of Rost and Sander (1993a). 
Also use multisequence alignments of all members of the protein family to find the most highly 
conserved regions, and also search the PROSITE database (Bairoch, 1993) to determine important 
binding sites or other motifs. It may be possible to accurately predict the secondary or tertiary structure 
of such sites even if the entire structure remains unknown.  

If no highly similar sequence is found, and no other reasons exist to expect structural similarity to less 
similar sequences, search PROSITE to determine if the sequence contains consensus patterns. These can 
indicate structure, especially if they have high sensitivity and specificity. Also, predict structural class 
from amino acid composition or by other techniques and use structural-class-specific secondary and 
tertiary structure prediction methods . Non-class-specific empirical structure prediction, together with 
molecular modeling, can at present only crudely predict tertiary structure without additional homology 
or other information. General empiric secondary structure prediction seems to have reached a maximum 
at 70% three-state single-residue accuracy.  

Molecular modeling applied to proteins is still in its infancy. Although the results form various 
simplified models are encouraging, it is not clear whether the same degree of success can be achieved 
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for entire proteins. Much work remains to be done, especially in the areas of developing better force 
fields and the treatment of side-chains. However, it is interesting to speculate that one might, in the not 
too distant future, start with a primary sequence, produce a Cα lattice model, build the side-chains and 
correctly position surface loops, and thus, using a combination of all the molecular modeling techniques 
described in this chapter, predict native tertiary structure.  
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Glossary 
back-propagation of errors algorithm  
A neural network training procedure that improves the performance of a neural network by gradually 
changing its weights in a "backwards" manner. During the training, the output values of the network are 
compared with the desired values and the error information is propagated back through the network by 
calculating the local error one layer at a time, starting from the layer below the output layer and ending 
at the layer above the input layer. Weights that connect the units are updated so that the difference 
between the desired and the generated outputs are minimized. 

Boltzmann's distribution law and constant  
Boltzmann's distribution law is defined as:  

N1 /N2 = exp(-∆ε/kT)
 

where ∆ε = ε2 − ε1; N1 is the number of molecules in state 1 and ε1 is the energy of state 1; N2 is the 

number of molecules in state 2 and ε2 is the energy of state 2; k is the Boltzman constant (1.38 x 10-23 
J K-1); and T is the temperature in oK. The state of a protein is defined by the relative position of the 
atoms in the protein. 

Boltzmann factor  
The term exp(-∆ε/kT) is called the Boltzmann factor. 

Chou - Fasman (CF) method  
An empirical statistical method for secondary structure prediction which is based on the probability of a 
given amino acid residue being in a given secondary structure or random coil. 

conservation (C)  
A variable defined by Russell and Barton (1993) to measure the similarity found in a protein family, as 
the percentage of alignment positions sharing seven or more property states (hydrophobicity, aliphatic, 
etc.) as defined by Zvelebil et al. (1987), across all aligned sequences. 

correlation coefficient (Mathews)  
For the structure type a, the correlation coefficient is defined by 

  

where pa is the number of correctly predicted cases, na is the number of correctly rejected cases, oa is 
the number of overpredicted cases, and ua is the number of underpredicted cases. 

energy minimization  
The class of computational methods that starts with a set of atomic coordinates of a system and a 
potential energy function, and finds a nearby potential energy local minimum. Some energy 
minimization methods use the first-derivatives of the potential energy function for moving all the atoms 
towards the local minimum, others utilize both the first- and the second-derivatives of the potential 
function. The methods using the first-derivatives are usually less computationally intensive, while 
higher accuracy can often be achieved by using the methods involving both the first- and second-
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derivatives.  

fold  
The generalized tertiary structure of a protein family or superfamily.  

GOR method  
The Garnier, Osguthorpe and Robson empirical statistical method of secondary structure prediction that 
is based on the probability of an amino acid of any type being associated with a neighbor of any type at 
position j, where j varies from +8 to -8 along the sequence.  

helical wheel  
A method of arrangement of presumed helical, sequential residues in a circle or wheel, with each residue 
100 degrees from its predecessor. Wheels of amphipathic helices would show a region with a 
preponderance of hydrophobic residues.  

homology modeling  
Defined most strictly, it means predicting the tertiary structure of an unknown based on the known 
coordinates of a protein to which it has a high degree of sequence identity/similarity. The broader 
definition used here includes, in addition, predictions of secondary structure based on two or more 
homologous sequences, and the development of consensus sequence patterns.  

molecular dynamics  
A computational method for simulating the motion of a system of many particles. It requires the 
interaction potential from which the forces acting on each particles can be calculated, and the equations 
of motion that govern the dynamics of the particles. Molecular mechanics force fields are often used as 
the potential functions in molecular dynamics simulations. The force on atom i is calculated from the 
derivatives of the potential energy function with respect to the position of atom i (dE/dxi, dE/dyi, 
dE/dzi). Newton's equation,  

fi = miai, is used for finding the accelerations of each particles at each simulation step. 
 

molecular mechanics  
A computational method designed to give accurate structures and energies of molecules. It treats 
molecules as collections of masses that are interacting with each other via harmonic (or more 
complicated) forces between bonded atoms and via van der Waals and electrostatic forces between non-
bonded atoms. Mathematical functions (called potential energy functions) of the atomic coordinates are 
used to describe these interactions. Various parameters derived from experimental observations are 
included in the potential energy functions. 

Monte Carlo method  
A conformation search method that simulates a molecular system by randomly changing its 
conformation. The energy of each new conformation is compared to the energy of the previous one. If 
the new energy is lower, then the new structure becomes the current conformation. If the new energy is 
higher, then the value of the Boltzmann factor (exp[-(Enew - Eold)] is compared to a random number 
between 0 and 1. If the Boltzmann factor is greater than the random number, then the new structure 
becomes the current conformation. 

multisequence alignments  
A method of positioning three or more primary sequences, including gaps, to optimally align regions of 
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highest similarity.  

neural network, artificial (see also perceptron)  
A computer program containing an input layer of units which receives input signals, an output layer of 
units which outputs structure predictions, and zero, one, or more hidden layers in-between the input and 
output layers. The units of each layer of the network are connected to each unit in the subsequent layer 
with a real number as a weight. A neural network is trained to produce output which recognizes patterns 
in input by changing the weights between various units.  

perceptron  
A neural network with no hidden layers. A perceptron only detects first-order correlations between input 
signals and output responses.  

potential energy function  
The equations and parameters that define the potential energy of molecules, also known as the force 
field.  

primary structure  
A sequential list of the amino acid residues which make up the protein, starting at the N-terminus and 
ending at the C-terminus. Also known as primary sequence. 

protein folding problem, the  
How primary sequence alone can determine the tertiary structure of folded proteins. 

Ramachandran plots  
Plots of φ vs ψ , which when carried out for numerous proteins can show that residues predominently 
fall into α-helical, β-sheet and other well-defined secondary structural classes. 

root mean square (r.m.s.) deviation  

  

where N is the total number of atoms in the structure, xi is a set of atomic coordinates for one atom in a 
(possibly known) structure, and Yi is the set of coordinates for the corresponding atom in a second 
(possibly predicted) structure which has been mathematically transformed such that the sum of the 
squares of the distance deviations  

  
is a minimum.  

secondary structure  
The folding of the primary structure in frequently-occuring forms, primarily α-helices, β-strands, and 
turns. Helices are sometimes subdivided into those which are mostly buried (hydrophobic) and those 
which have one "side" exposed to the surface (amphipathic). Residues in β-strands can be similarly 
divided into internal and external. Internal residues are shared by two β-ladders while external residues 
belong to a maximum of one β-ladder.  

segment overlap (Sov)  
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where N is the total number of residues in the protein; the numerator is summed over all segments of 
secondary structure; subscripts 1 and 2 are the two sequences of secondary structures being compared (1 
is usually observed and 2, predicted); s1 and s2 are two segments, one from each sequence, that have in 
common at least one residue position in the same secondary structure; minov is the actual overlap 
between the two segments; maxov is the total extent of either sequence, and len(s1) is the length of the 
observed segment. δ is an integer variable chosen to be smaller than minov and smaller than 1/2 the 
length of s1; δ = 1, 2, or 3 for short, intermediate, and long segments. The ratio of minov/maxov is 
constrained to a maximum value of 1.0. 

sensitivity and specificity  
Two statistics for assessing the accuracy of sequence patterns are sensitivity = TP/(TP + FN), and 
specificity = TN/(TN + FP),  

where there are two sets of test sequences, one of those sequences which are known to contain the 
structural feature under study (knowns) and one of those sequences which are known not to contain it 
(controls). Then TP is the number of true positives (correct matches where a pattern is found in the 
knowns); TN is the number of true negatives (correct non-matches where it is not found in the controls); 
FP is the number of false positives (incorrect matches where it is found in the controls); and FN is the 
number of false negatives (incorrect non-matches where it is not found in the knowns).  

simulated annealing  
A molecular dynamic or other simulation that begins with the protein at a high temperature, then cools it 
down gradually. 

single residue accuracy (see also three-state single residue accuracy)  
The number of residues correctly predicted to contain a structure divided by the number of residues that 
do contain that structure  

statisical methods  
Methods that use statistical information on the probabilities of various amino acids being in certain 
structural states within a protein to develop rules for secondary structure predictions.  

structural class  
Usually one of four different groups of protein folds, based on the predominant secondary structure: all-
α, all-β, α/β (α alternating with β), and α + β (α followed by β). For completness, a fifth small, 
irregular class is sometimes included. 

tertiary structure  
A protein's native (natural) three-dimensional structure. Sometimes tertiary fold or fold to refer 
specificially to the backbone Cα structure. 

three-state single residue accuracy (Q3) 
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where N is the total number of predicted residues and Pa is the number of correctly predicted secondary 
structures of type a.. Q3 values of from 0.5 to 0.7 (50-70% accuracy) have been reported for Chou-
Fasman, GOR and other current methods.  

volume overlap integral  
A measure of the spatial errors between two structures. The two structures are superimposed by 
overlapping their Cα backbones. The volume of a particular residue is calculated by extending the 
atomic coordinates of each atom into a sphere of radius equal to its van der Waals radius. The 
percentage volume overlap betwen the two residues is determined by the volume overlap between the 
predicted residue and the residue in the crystal structure.  
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